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Abstract— This paper presents a motion control method for
mobile robots in partially unknown environments populated
with moving obstacles. The proposed method is based on the in-
tegration of focused D* search algorithm and dynamic window
local obstacle avoidance algorithm with some adaptations that
provide efficient avoidance of moving obstacles. The moving
obstacles are modelled as moving cells in the occupancy grid
map and their motion is predicted by applying a procedure
similar to the dynamic window approach. The collision points
of the robot predicted trajectory and moving cells predicted
trajectories form the new fictive obstacles in the environment,
which should be avoided. The algorithms are implemented and
verified using a Pioneer 3DX mobile robot equipped with laser
range finder.

I. INTRODUCTION

A mobile robot should perform goal-directed tasks in

dynamic and unknown environments. Both global path plan-

ning and local reactive obstacle avoidance algorithms must

be implemented and integrated in a single motion control

module in order to provide the robot with this capability.

While a global path planning algorithm calculates optimal

path to a specified goal, a reactive local obstacle avoidance

module ensures tracking of the global path and takes into

account the unknown and changing characteristics of the

environment based on the local sensory information.

Global path planning is well studied by Latombe in [1]

where techniques such as cell-decomposition and road map

are examined. Global path planning algorithms produce a

graph of possible paths to the goal and then an optimal path

is found by a graph search algorithm such as A* [3], D* [4]

or focused D* (FD*) [5] algorithm.

Some of the most popular reactive collision avoidance

techniques can be divided into directional [6]-[8] and ve-

locity space based approaches [9]-[11]. The directional ap-

proaches generate a direction of the robot to head in. Velocity

space approaches take robot’s kinematic and dynamic con-

straints directly into account by performing a search in space

of translational and rotational velocities. The most popular

and here used velocity space approach is Dynamic Window

(DW) approach [11].

The major challenge in the motion control of mobile robots

is to solve the problems caused by the presence of moving

obstacles. Two major categories of the approaches are: the

space-time approaches and the potential field extension.

While the space-time approaches assume a priori knowledge
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of the moving obstacles trajectories the potential field exten-

sion does not and generates an artificial force that repels

the robot from obstacles instead [6]. For example, some

of the extensive space-time approaches [12]-[13] assume a

moving obstacle as stationary at some location in some future

time instant based on the known moving obstacle trajectory.

Functionality of these approaches depends on a success of

moving obstacle tracking algorithms.

In this paper the proposed approach fits to the space-

time approaches. We extend our original motion control

method, which is based on the integration of FD* and

DW algorithms [15]. While the original integration method

provides reliable real-time control of mobile robot in partially

unknown environments with static obstacles, it does not

ensure collision-free motion in environments populated with

moving obstacles. With three modifications introduced in this

paper our method ensures safe and smooth robot motion in

the presence of moving obstacles.

II. THE ORIGINAL FD* + DW CONTROL METHOD

Here we shortly present control method from our previous

paper which integrates FD* and DW algorithms.

A. FD* Path Planning Algorithm

Graph based search algorithms are the most commonly

used algorithms for path planning of mobile robots. We use

the FD* graph search algorithm [5], which is based on a path

cost function g that represents the total cost from the current

node of the search to the goal node, and a heuristic function

h, which estimates but never overestimates the cheapest

solution for achieving the current node from the start node

in the (x, y) grid map search space. The total cost function

f = g + h determines order of expanding nodes in state

space.

FD* search fans out from the goal node, expanding

neighbor nodes within the contours of increasing f -value

until the start node is reached or all possible obstacle free

neighbors are exhausted upon which the algorithm declares

no path is found. Initial search by FD* algorithm sets

pointer from each state in the searched area to the next

state and optimal paths to the goal from every state in

the expanded area of the environment are computed simply

following the pointers. Any discrepancy that is discovered

from the earlier sensory information about the vicinity of

the robot environment initiates algorithm on-line execution.

New path is then determined redirecting the pointers locally.

The number of expanded nodes is minimal and consequently

the time of execution.
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B. Dynamic Window Obstacle Avoidance

The dynamic window approach is a velocity space based

local reactive avoidance technique where search for com-

mands controlling the robot is carried out directly in the

space of velocities. Trajectory of a robot can be described

by a sequence of circular and straight line arcs as given in

the original paper [11].

The search space is reduced by the kinematic and dynamic

constraints of the robot to a certain span of velocities around

the current velocity vector (vc, ωc) that can be reached within

the next sampling interval ∆t. The dynamic window Vd

containing the possible reachable velocities is defined as

[11]:

Vd =

{

(v, ω) |
v ∈ [vc − v̇b∆t, vc + v̇a∆t]∧
ω ∈ [ωc − ω̇b∆t, ωc + ω̇a∆t]

}

, (1)

where accelerations v̇a and ω̇a are maximal translational

and rotational accelerations exertable by the motors and v̇b

and ω̇b are maximal translational and rotational breakage

decelerations.

A velocity tuple (v, ω) from the Vd is considered safe if

the robot is able to stop along the trajectory defined by (v, ω)
before hitting any object that may be encountered along that

path. The set Va of admissible velocities can be determined

according to:

Va =
{

v, ω ≤
√

2ρmin(v, ω)v̇b ∧
√

2ρmin(v, ω)ω̇b

}

, (2)

where the term ρmin(v, ω) represents the distance to the

closest obstacle on the corresponding curvature.
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Fig. 1. A snapshot of possible robot trajectories

To make the search for velocities feasible and appropriate

for fast reactive response, the dynamic window approach

considers exclusively the first sampling interval to choose

the optimal velocity vector and assumes that the velocities

in the remaining n − 1 sampling intervals are constant. The

reduced search space is two-dimensional over the discrete

set of velocity tuple (v, ω) and thus feasible in polynomial

time search sense. The search is repeated after each sampling

interval and the velocities stay automatically constant if no

new commands are given. A snapshot of possible robot

trajectories at given time and local obstacle configuration

determined by reduced velocity space is depicted in Fig. 1.

The velocity maximizing a certain objective function

Γ(v, ω) [11] is chosen from the reduced set of velocities.

As reported in [9] and [11], this approach is susceptible

to local minima without further global path information. If

connectivity of free-space toward goal position is considered,

local minima can be avoided. There are a number of more

or less successful approaches, such as those described in

[5], [2], [16], [17]. However, each of them possess some

limitations, which can cause unsatisfactory robot motion. In

our previous work [15] we proposed a new approaches based

on the integration of DW and FD* algorithms which avoids

those limitations. It is shortly described in the next section.

C. Integration of Dynamic Window and FD* Path Planning

A criterion for DW and FD* integration is proposed,

which makes comparison of the current possible robot tra-

jectories and the geometric global path by applying the

global objective function Γ(v, ω) expressed as weighted sum

of objective measures for clearance ϑclear(v, ω) and path

alignment ϑpath(v, ω) [15]:

Γ(v, ω) = λϑclear + (1 − λ)ϑpath, (3)

where λ is the weighting factor. The clearance objective

measure ϑclear describes how close is a chosen trajectory

to potential obstacles:

ϑclear(v, ω) =







0 : tcol ≤ Tb
tcol−Tb

Tmax−Tb
: Tb < tcol < Tmax,

1 : tcol > Tmax

(4)

where Tb(v, ω) = max( v
v̇b

, ω
ω̇b

) is the breakage time along

a certain trajectory determined by (v, ω) and tcol(v, ω) =
ρmin(v,ω)

v
is the time until collision with the closest obstacle

on the trajectory. It has to be mentioned that the collision

calculation is not based on the contact between an object

and the robot contour itself but rather between an object

and an enlarged safety contour margin around the robot. In

[11] it is called speed dependent side clearance SCv and

is used for the translational velocity. This side clearance

grows linearly with v and the effect of it is that at higher

speeds the free-space areas (i.e. corridors, passages between

objects) appear narrower to the robot. Tmax = sl

vmax
is the

admissible collision time and it represents the temporal limit

above which a trajectory is considered void of obstacles. Its

value depends on the maximum translational velocity of the

robot vmax and the look-ahead distance sl of used sensors.

The path alignment measure ϑpath for a robot trajectory

is defined according to the following expression [15]:

ϑpath(v, ω) = 1 −

∑Nt

i=1

∑Np

j=1 jdij − Dmin

Dmax − Dmin

. (5)

A trajectory generated by DW, which is a circular arc,

is represented by a discrete set of points Nt. Trajectory

length Lt is set according to the velocity tuple (v, ω)
which characterize current trajectory and the time look-ahead

Tmax beyond which all trajectories are considered clear of
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obstacles Lt(v, ω) = vTmax. Np is a set of points on the

so called effective path and dij is the Euclidean distance

between the i-th point on the trajectory and j-th point on the

effective path. The number of points on both curve is fixed.

The limit values Dmin = min(v,ω)

{

∑Nt

i=1

∑Np

j=1 jdij

}

and Dmax = max(v,ω)

{

∑Nt

i=1

∑Np

j=1 jdij

}

are used for

normalization along all possible robot trajectories. The index

factor j that weights the distance contributions is introduced

to penalize more points at the end of the trajectories which

define the trajectory deviation from the global path more than

the starting points on different trajectories, since they all start

from the same robot position.

The so called effective path is the straight line segment

connecting the current robot position and a reference point

on the path. Its orientation determines the current reference

orientation of the robot in relation to the local path configu-

ration affecting the rotational velocity of the robot ωref and

its length determines what the optimal translational velocity

vref should be. Reference point on the path has assigned

constant time Tmax (admissible collision time) as a fixed

travelled time from the current robot position to the reference

point.

The nominal reference point position is at the point of

the second path direction change (path direction changes are

multiples of 45◦), as can be seen in Fig. 2. This assumption
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y
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Fig. 2. Determing the nominal reference point position on the global
geometric path

is based on the fact that detecting the first path direction

change which alters the path direction for ±45◦ starting from

the robot position is not enough to determine the tendency of

the path change thereafter. The second path direction change

then determines whether the path direction changes back to

its original direction or continues changing which signifies

a stronger curvature change and therefore gives a good local

curve tendency information.

III. ADAPTATIONS FOR MOVING OBSTACLES

AVOIDANCE

The path planning and control method described above

ensures efficient and collision-free motion of a mobile robot

in environments with unknown static obstacles. But it can

not ensure collision-free motion in environments populated

with moving obstacles. Many different approaches to mobile

robot motion control in the presence of moving obstacles

have been investigated, e.g. see [12]-[14]. While the majority

of approaches put the assumption on the shape of moving

obstacles, e.g. in [14] all the objects are modelled as ellipses,

our approach does not actually consider moving obstacles,

but moving cells (MCs) of the grid map. Therefore, the robot

is trying to avoid newly occupied cells in its vicinity, which

are modelled as empty in the stored occupancy grid map of

the environment. The motion of an obstacle can be regarded

as the motion of these newly occupied cells. Our algorithm

requires velocity vector (vmc, ωmc) and motion heading θmc

for each moving cell. The estimation of these three quantities

is not considered in this paper, but it is supposed that they

are known.

A. DW adaptation for use with moving obstacles

When a moving obstacle appears in the vicinity of the

robot, a set of predicted obstacle trajectories is generated,

each trajectory starting from a moving cell. Each MC trajec-

tory is a circular arc defined by velocity vector (vmc, ωmc)
which is assumed to be constant for the next n intervals.

MC trajectories are recalculated in every sampling instant

and are represented by a discrete set of points. The number

of points used to represent the MC trajectories is equal

to the number of points of DW trajectories calculated for

the robot (Nt). The length of a MC trajectory Lmc is set

equal to Lmc = vmcTmax, where the time constant Tmax

is the same as for DW trajectory. By choosing the same

number of points Nt and look ahead time Tmax for both

DW and MC trajectories it is achieved that the i-th point on

the MC trajectory has the same assigned time instant ti as

the i-th point on the DW trajectory. This approach greatly

simplifies calculation of the time until collision tcol, since it

is only necessary to check collisions of points on MC and

DW trajectories with the same index i, as shown in Fig.

3. The couple of colliding points with the smallest index i
determines the time until collision tcol, which is then used for

calculation of the clearance objective measure ϑclear(v, ω)
according to (4). If an obstacle is static then MC trajectories

x [m]

y
[m

]
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moving cells
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robot
current

position
collision
locations

enlarged robot
contour (SCv)
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Fig. 3. Collision of MC and DW trajectories

have the zero length and collision calculation turns to be the

same as previously defined in section II-B. If the collision

is detected between the i-th point on the DW trajectory and
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the i-th point on the MC trajectory, then original location

of the MC is marked as unoccupied and cell corresponding

to the collision point as occupied in the map used by FD*

algorithm for the global path recalculation. Therefore, FD*

recalculates the path around the expected collision location,

and path objective measure ϑpath(v, ω) changes the optimal

DW trajectory.

B. Path planning algorithm adaptation

The map is continuously changing around moving obsta-

cles, and consequently a number of FD* pointers changes

directions in each sampling instant. A situation can occur

that FD* generates two mutely distant paths with very similar

costs, and that pointer changes cause continuous switching

between these two paths. Such a situation is illustrated in Fig.

4, where the controlled robot (right robot in the subfigures)

and the other robot (left robot in the subfigures), which

presents the moving obstacle, are moving straight ahead

towards each other. The FD* algorithm generates pointers on

the robot-obstacle connecting line that alternately determine

pair of symmetrical paths around the obstacle. The robot

would alternately try to follow two different distant paths,

which would lead to collision with moving obstacle after a

short time.

Path 1 Path 2

Fig. 4. Path switching

In order to avoid the above described problem we propose

the generation of the paths not only from the robot current

position cell, but also from the surrounding cells. Total costs

of the neighbor paths are simply computed by following

the pointers from the neighbor cells to the goal. The paths

that are close and geometrically similar to the path from

previous sampling instant are preferable, since the robot will

not oscillate between distant paths on its traverse. If the path

with minimal cost among neighbor paths is distinct from the

previous path (e.g. path1 with cost c1 in Fig. 5) it will be

chosen only if its cost is lower then the cost of the path with

minimal cost among those that are close and geometrically

similar to the previous path (e.g. path2 with cost c2 in Fig.

5) decreased by the cost of the transition between starting

cells of these two paths (e.g. transition between cells sc1 and

sc2 in Fig. 5). Otherwise, the robot will choose the path with

minimal cost among those that are close and geometrically

similar to the previous path (path2 in Fig. 5).

The size of the neighborhood around the robot current po-

sition that should be considered for choosing a suitable path

is determined by the property of DW and FD* integration

method explained in the following. Let’s assume the worst

the cheapest
neighbor path
@I

robot position cell�

neighbor cells

�	@R

chosen neighbor path

�	

previous
path

���

path1
(c1)

path2
(c2)

sc1

sc2

Fig. 5. Path selection

case where the robot is traversing in a free space area. There,

the global path is composed of long straight line segments,

and there is one path direction change in the robot vicinity

and the reference point on the path is at maximal distance

Rmax = sl from the robot, encouraging maximal translation

velocity vmax. Robot traverses along sequence of circular

and straight line arcs and thus moves away for some distance

d from the point of the path direction change. The robot

moves away from the global path when the reference point is

chosen on the next path segment, i.e. when the robot is within

the distance Rmax to the point of path direction change (see

Fig. 6). Maximal departure d is given by:

dα

r
r

r

Rmax

R
m

a
x

circle arc

global path

robot
position

Fig. 6. Maximal robot departure from the path

d = Rmax

1 − sinα

cosα
= r

1 − sinα

sinα
, (6)

where α = 3·45/2 (since path directions are always multiples

of 45◦) and r = Rmaxtanα is radius of the circular arc.

Rotational velocity at which robot traverses along the circular

arc is ωr = vmax

r
. In reality, robot gradually increases

its rotational velocity due to selection of reference point

further from the point of the path direction change and thus

gradually decreases the radius of the circle arc along which

the robot traverses. The smaller is the radius, the smaller is

the departure from the global path. Therefore, the distance

d given with (6) can be declared as maximal possible robot

departure from the global path. Thus, the surrounding cells

that are close to the robot within the distance d are used as

starting cells for neighbor paths generation.

C. Safety cost mask

Obstacle cells are C-space enlarged to account for robot

dimensions (robot mask is two cells in our case). That cells
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get prohibitively large safety cost value. But, due to possible

robot departure from the global path it can happen that robot

comes too close to an obstacle and stops in front of it or

even hits it. In order to avoid such situations we propose

generation of so called safety cost masks around the C-space

enlarged obstacles. Their purpose is to push FD* algorithm

to compute global paths as far as possible from the obstacles.

The size of the cost mask is also determined by the distance

d given with (6) as it is the maximal departure of the robot

from the path. Each cell in FD* map within the safety cost

mask around the occupied cell gets corresponding safety cost

value, which depends on its distance from the occupied cell.

The outmost cells get safety cost value for one grater then

empty cells out of safety cost mask, and safety cost value of

inner cells incrementally increase from outmost cells to the

occupied cell. Assigning safety cost values to the cells inside

the safety cost mask is illustrated in Fig. 7, where it can be

seen that the width of the cost mask is four cells in our case.

When the safety cost values of the cells are included in the

6

?

1m

6?
robot
mask

6
?

cost
mask

Fig. 7. Safety cost mask

FD* map, the FD* algorithm will compute the global path

with the cheapest total cost, which will be out of the safety

cost masks around the obstacles if possible, or through the

middle of narrower passages if not. The consequence can be

that the computed cheapest path is not also the shortest one,

as can be seen in Fig. 7. But, this price must be paid in order

to achieve collision-free robot motion.

IV. TEST RESULTS

The proposed motion control algorithms

have been implemented in Player/Stage (a free

software tool for robot and sensor applications,

www.playerstage.sourceforge.net). We tested

many various situations and our motion control algorithms

provided safe and efficient robot motion in all of them.

In order to illustrate the functionality of the proposed

algorithms, the results of a test are presented in Fig. 8,

where two other robots are moving in the vicinity of the

controlled robot crossing its path to the goal position. While

the left column presents the robot motion obtained with the

DW and FD* integration method in the original form [15],

the right column presents the robot motion obtained with

the same method adapted for robot control in the presence

1 1’

2 2’

3 3’

4 4’

MC
trajectories

?

MCs
��

optimal
DW
trajectory

�

effective
path

HHj

initial
path

�	

replanned
path

@R

6

?
1m

Fig. 8. Motion control comparison

of moving obstacles, as described in section III. Both

methods are tested under equal circumstances. A sequence

of simulation shots are arranged consecutive one beneath

another and indexed. The first snapshot presents the initial

configurations, where the global computed path is passing

just by the motion heading side of the first moving obstacle,

which moves almost perpendicular to it. In the second

snapshot, the robot controlled by the original integration

method is still trying to avoid the first moving obstacle in the

shortest way, i.e. passing by its motion heading side, while

the adapted integration method switches the path behind

the obstacle. In the third snapshot, the robot controlled by

the original method stops and turns in place because the
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obstacle closeness forbids robot turning left, while the robot

controlled by the adapted integration method continues

smooth motion. It is visible that the replanned path to the

goal is much shorter for the adapted integration method,

what is the result of the second obstacle motion prediction.

While the first three snapshots show the configurations with

both control method in the same time instants, the last,

forth, snapshot shows the configurations when robot is just

in front of the goal position. Obviously, the adapted method

produces much smoother and shorter path of the robot from

the start to the goal position. From the velocity profiles for

the original method shown in Fig. 9 and adapted method

shown in Fig. 10 it is clearly seen that the adopted method

produces much smoother motion and that the robot reaches

the goal twice faster (19 seconds vs. 38 seconds). Results of
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Fig. 9. Velocity profiles of the original integration method
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Fig. 10. Velocity profiles of adapted integration method

a number of simulation and real experiments can be seen at

http://act.rasip.fer.hr/groups amor path.php.

V. CONCLUSION AND FUTURE WORK

In this paper our original integrated approach to real-time

mobile robot control, presented in [15], is extended with

capability of collision-free robot motion in the presence of

moving obstacles. The approach is based on the integration

of the focused D* graph search algorithm for path planning

and dynamic window algorithm for generation of admissible

robot trajectories around the global path. The motion of an

obstacle is regarded as the motion of the occupied moving

cells in a grid map. The predicted trajectory of each moving

cell is used for the collision calculation with the possible

robot trajectories. Our algorithm requires velocity vector and

motion heading for each moving cell. The estimation and

prediction of these three quantities will be elaborated further.
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