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Abstract— This paper addresses the optimal control of non-
holonomic systems through provably correct discretization of
the system dynamics. The essence of the approach lies in
the discretization of the Lagrange-d’Alembert principle which
results in a set of forced discrete Euler-Lagrange equations
and discrete nonholonomic constraints that serve as equality
constraints for the optimization of a given cost functional. The
method is used to investigate optimal trajectories of wheeled
robots.

I. INTRODUCTION

We study motion planning for mechanical systems with

nonholonomic (e.g. rolling) constraints. That is, we consider

the problem of computing the controls necessary to move the

system from an initial state to a goal state while optimizing

some criterion such as the total energy consumed or the

distance travelled while satisfying task constraints such as

obstacles in the environment.

For this purpose, we develop optimization algorithms

based on structure-preserving numerical integrators derived

from discrete mechanics. In particular, we employ a discrete

Lagrange-d’Alembert principle which provides a variational

framework to study mechanical systems with constraints and

external forces. The resulting discrete systems inherit the

structure of the continuous systems and respect the work-

energy balance which is important for numerical accuracy

and stability.

The method is illustrated using two simple car-like models.

Experimental comparison with a standard approach (i.e. di-

rect collocation) demonstrates the computational advantages

of the proposed framework.

A. Related work

Trajectory design and motion control of robotic systems

have been studied from many different perspectives. A par-

ticularly interesting point of view is the geometric approach,

that uses symmetry and reduction techniques (see [1], [2]).

The authors of [3] use reduction by symmetry to simplify

the optimal control problem and provide a framework for

computing motions for general nonholonomic systems. A

related approach, applied to an underwater eel-like robot,

involves finding approximate solutions using truncated basis

of cyclic input functions [4]. Other applications of symmetry

in robotics include motion planning of dynamic variable

inertia mechanical systems [5], improving the precision and

efficiency of randomized kinodynamic planning [6], efficient

motion planning using maneuver primitives [7], [8].

The systems we consider fall in the class of underactuated

nonlinear systems with drift. The motion planning problem

for these systems cannot be solved in closed form and one

has to resort to numerical optimization techniques. One such

approach relies on the differential flatness of systems [9],

[10] or on performing system inversion [11]. Several mo-

tion planners have been implemented in mobile robotics to

optimize trajectories among obstacles. We mention the path

deformation method in [12] that could be extended to sys-

tems with drift; the method based on standard parametrized

optimal control for autonomous navigation [13]; and various

methods applied to wheeled robots [14], [15], [16], [17]; as

well as a nonlinear optimization method for local planning in

a randomized search framework [18] (see [19] for additional

references).

The recent work on Discrete Mechanics and Optimal

Control (DMOC) ([20], [21], [22]) employs a discretization

strategy different from the standard optimization methods

(i.e. collocation, shooting, or multiple shooting, see [23] for

a taxonomy of various methods). It is based on variational

integrators [24] which, unlike standard integration methods,

can preserve energy, momenta, and symplectic structure, or

in the presence of forces, compute the exact change in these

quantities. The approach can be extended to the nonholo-

nomic case to yield nonholonomic integrators (see [25],

[26]). We use such integrators in a DMOC framework as

a basis for this work.

In the context of mobile robotics, our proposed method

may seem related to existing variational approaches such as

[3] and [27], where the continuous equations of motion are

first obtained, enforced as constraints, and subsequently dis-

cretized. However, the main difference is that in the DMOC

framework variational principles determining the system

dynamics are discretized first so as to ensure provably-good

numerical behavior; the resulting discrete equations are then

used as constraints along with a discrete cost function to

form the control problem.

B. The Optimization problem

We consider a finite-dimensional mechanical system with

configuration space Q and a distribution D that describes the

nonholonomic constraints of interest. The distribution D is

a collection of linear subspaces denoted Dq ⊂ TqQ of the

tangent space TqQ for each q ∈ Q. A curve q(t) ∈ Q is said

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA6.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1832



to satisfy the nonholonomic constraint if q̇(t) ∈ Dq(t) for all

t.
The system is required to move from an initial state

(q(0) = q0, q̇(0) = q̇0) to a final state (q(T ) = qT , q̇(T ) =
q̇T ) during a time interval [0, T ] under the influence of a

control force f(t) while minimizing a cost function:

J(q, q̇, f) =

∫ T

0

C(q(t), q̇(t), f(t))dt (1)

The motion must satisfy the nonholonomic Lagrange-

d’Alembert principle (L is the Lagrangian, L : TQ→ R):

δ

∫ T

0

L(q(t), q̇(t))dt +

∫ T

0

f(t) · δq(t) dt = 0 (2)

for variations δq(t) such that δq(0) = δq(T ) = 0 and

δq(t) ∈ Dq(t) for each t ∈ [0, T ]. Additional nonlinear

equality or inequality constraints might be imposed in the

form H(q(t)) ≥ 0.

II. DISCRETIZATION OF NONHOLONOMIC SYSTEMS

In this section we extend the discrete optimal control for-

mulation of [20] to systems with nonholonomic constraints.

The system is discretized by replacing the state space TQ
with Q × Q [24]. Thus, a velocity vector (q, q̇) ∈ TQ is

represented by a pair of points (q0, q1) ∈ Q×Q. A path q :
[0, T ] → Q is replaced by a discrete path qd : {kh}Nk=0 → Q,

Nh = T . Discrete configurations are denoted qk = qd(kh).
Similarly, a continuous force f : [0, T ] → T ∗Q is replaced

by a discrete force fd : {kh}Nk=0 → T ∗Q with corresponding

notation fk = fd(kh). Based on this discretization, the

nonholonomic constraint distribution D ⊂ TQ is replaced

with Dd ⊂ Q × Q such that (qk, qk+1) ∈ Dd for all

k = 0, ..., N − 1.

A. Discrete Nonholonomic Lagrange-d’Alembert Principle

The Lagrangian action integral (2) can then be approx-

imated on a time interval [kh, (k + 1)h] by the discrete

Lagrangian Ld : Q×Q→ R according to

Ld(qk, qk+1) ≈

∫ (k+1)h

kh

L(q(t), q̇(t))dt (3)

The virtual work in (2) can be approximated using

f−

k · δqk + f+
k · δqk+1 ≈

∫ (k+1)h

kh

f(t) · δq(t)dt (4)

where f−

k , f
+
k ∈ T ∗Q are called left and right discrete forces.

The discrete version of the Lagrange-d’Alemebert princi-

ple becomes:

δ
N−1
∑

k=0

Ld(qk, qk+1) +
N−1
∑

k=0

f−

k · δqk + f+
k · δqk+1 = 0 (5)

such that δqk ∈ Dqk
, (qk, qk+1) ∈ Dd for all k = 0, ..., N−1

and δq0 = δqN = 0.

Assume that the space D is defined by m functions

ωa : TQ → R, a = 1, ...,m that are linear in the velocities

and satisfy ωa(q, q̇) = 0. One can always select coordinates

q = (r, s) such that the functions can be expressed as

ωa(q, q̇) = ṡa+Aaα(r, s)ṙα, α = n−m, which is equivalent

to constraining the variations according to δsa+Aaαδr
α = 01.

Forces can be expressed in the corresponding dual basis

as f = (fα, fa) and we assume that fa = 0, i.e. forces

enter only in the r-coordinates. The resulting equations after

substituting the constraint are

d

dt

∂L

∂ṙ
−
∂L

∂r
− f = A(r, s)

(

d

dt

∂L

∂ṡ
−
∂L

∂s

)

(6)

Assume that the functions ωa are approximated using cor-

responding discrete constraint functions ωad : Q × Q → R.

Then (5) becomes equivalent to the discrete nonholonomic

Euler-Lagrange equations:

∂Lk
∂rk

+
∂Lk−1

∂rk
+ f−

k + f+
k−1

= A(rk, sk)

(

∂Lk
∂sk

+
∂Lk−1

∂sk

)

ωad(rk, sk, rk+1, sk+1) = 0,

(7)

for k = 0, ..., N − 1, a = 1, ...,m, where Lk :=
Ld(rk, sk, rk+1, sk+1). The above formulation avoids the use

of Lagrange multipliers.

B. Discrete Optimization Problem

The cost function is approximated on each trajectory

segment (qk, qk+1) using

Cd(qk, qk+1, fk, fk+1) ≈

∫ (k+1)h

kh

C(q, q̇, f)dt (8)

yielding the total cost

Jd(qd, fd) =

N−1
∑

k=0

Cd(qk, qk+1, fk, fk+1)

Velocity boundary conditions q̇(0) = q̇0 and q̇(T ) = q̇T are

enforced using

∂L

∂ṙ
(q0, q̇0) +

∂L0

∂r0
+ f−

0

= A(r0, s0)

(

∂L

∂ṡ
(q0, q̇0) +

∂L0

∂s0

)

∂L

∂ṙ
(qT , q̇T ) −

∂LN−1

∂rN
− f+

N−1

= A(rN , sN )

(

∂L

∂ṡ
(qN , q̇N ) −

∂LN−1

∂sN

)

(9)

In summary, we have the following constrained nonlinear
optimization problem:

Compute: qd, fd

minimizing

N−1
X

k=0

Cd(qk, qk+1, fk, fk+1)

subject to:

q(0) = q0, q(T ) = qT

Equations (7)

Equations (9)

H(qk) ≥ 0,

1Using the summation convention aib
i
:=

X

i

aib
i
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for k = 0, ..., N − 1.

C. Algorithm Construction

In order to construct an optimization algorithm we have to

define the discrete cost function Cd, the discrete Lagrangian

Ld, the constraints ωd and the discrete force fd consistently.

We choose the midpoint rule according to which

Cd(qk, qk+1, fk, fk+1)

= hC(qk+ 1
2
,∆qk, fk+ 1

2
),

Ld(qk, qk+1) = hL(qk+ 1
2
,∆qk),

ωad(qk, qk+1) = ωa(qk+ 1
2
,∆qk),

∫ (k+1)h

kh

f(t) · δq(t)dt ≈ hfk+ 1
2
· δqk+ 1

2

=
h

4
(fk + fk+1) · δqk +

h

4
(fk + fk+1) · δqk+1,

using the notation qk+ 1
2

:= qk+qk+1

2 and ∆qk := qk+1−qk

h
.

The left and right forces then become f−

k = f+
k = h

4 (fk +
fk+1). The midpoint rule is second order accurate. Higher

order integrators using composition methods or symplectic

partitioned Runga-Kutta methods can also be constructed

[24].

III. REDUCED DISCRETIZATION

The discrete equations derived in the previous section

might become singular or the choice of coordinates might

not be globally valid. When symmetries are present such

problems can be avoided by applying reduction. In this

section we use the reduced integrators derived in [25] to

formulate a reduced optimization framework for Chaplygin

systems that are relevant to car-like vehicles.

A. Reduced Lagrange-d’Alembert Equations

Assume that we are given a Lie group G acting to Q.

We can pick local coordinates q = (r, g), q ∈ Q, r ∈ M ,

g ∈ G, where M = Q/G is the shape space. Assume

that the Lagrangian L and constraint distribution D are

invariant under the induced action of G on TQ. Then we can

define the reduced Lagrangian ℓ : TQ/G → R satisfying

L(r, ṙ, ġ, g) = ℓ(r, ṙ, g−1ġ), and the constrained reduced

Lagrangian ℓc : D/G → R, such that ℓ(r, ṙ, g−1ġ) =
ℓc(r, ṙ). The main point is that the Lagrange-D’Alembert

equations on TQ induce well-defined reduced Lagrange-

D’Alembert equations on D/G, vector fields in D are also

G-invariant and define reduced vector fields on D/G [28].

Whenever the group directions (the set of vector fields

obtained by differentiating the group flow) complement the

constraints we have the principle kinematic case or the

Chaplygin case. In this case there is a principal connection

one-form

A(r, g) · (ṙ, ġ) = Adg(g
−1ġ + Aloc(r)ṙ), (10)

where Aloc is the local form of the connection. This con-

nection defines the evolution of the group variables in terms

of the shape variables. It can be derived directly from the

constraints. Since A(q) · q̇ = 0 the constrained Lagrangian

is given by

ℓc(r, ṙ) = ℓ(r, ṙ,−Aloc(r)ṙ)

Assuming that the control forces are restricted to the shape,

i.e. f : TM → T ∗M the continuous equations of motion

are

∂ℓc
∂r

−
d

dt

∂ℓc
∂ṙ

+ f = f̂ (11)

ġ = −gAloc(r)ṙ, (12)

where the forces f̂ : TM → T ∗M arise from the curvature

of Aloc and are defined by

f̂β =
∂l

∂ξb

(

∂Ab
β

∂rα
−
∂Ab

α

∂rβ
− CbacA

a
αA

c
β

)

ṙα, (13)

with ξ = −Aloc(r) · ṙ, Ab
α the components of Aloc, and

Cbac are the structure constants of the Lie algebra defined

by [ea, ec] = Cbaceb (see [1] for details and an example).

Equations (11) are independent of g ∈ G and determine the

unconstrained evolution of the system in the shape space

M . Curves in M can be lifted to Q using (12) to produce

a unique curve in Q [29]. This fact allows us to reduce

the optimal control problem from Q to M and after finding

optimal trajectories in M to lift them back to Q.

Next we apply the discrete Lagrange-d’Alemebert prin-

ciple in the reduced space M . The integral of lc is ap-

proximated by the discrete constrained reduced Lagrangian

L∗

d : M×M → R [25]. Then we obtain the discrete reduced

equations of motion and discretized constraints:

D2L
∗

d(rk−1, rk) +D1L
∗

d(rk, rk+1) + f+
k−1 + f−

k

= f̂+
k−1 + f̂−

k

wd(rk, gk, rk+1, gk+1) = 0,

(14)

and velocity boundary conditions (corresponding to (9))

D2ℓc(r0, ṙ0) +D1L
∗

d(r0, r1) + f−

0 = f̂−

0

D2ℓc(rN , ṙN ) −D2L
∗

d(rN−1, rN ) − f+
N−1 = f̂+

N−1

(15)

which determine the complete evolution of the system.

When constructing a reduced algorithm with the midpoint

rule we set

L∗

d(rk, rk+1) = h lc

(

rk+ 1
2
,∆rk

)

(16)

f̂±

k =
h

2
f̂
(

rk+ 1
2
,∆rk

)

(17)

The equation for f̂±

k was derived assuming linear dependence

of the connection on the base point [25]. While a more

general formulation exists, for the purpose of this paper we

assume that it is a valid approximation. For the car-like

examples that we consider the connection is linear in the

base point and the linearity assumption is satisfied.

Using the exponential map to define the midpoint (along

the flow) between two configurations in G, the constraint

equation in (14) becomes

g−1
k gk+1 − exp(hξk) = 0,
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and the cost function

Cd(rk, rk+1, gk, fk, fk+1)

= hC(rk+ 1
2
,∆rk, gk+ 1

2
, gk+ 1

2
ξk),

where ξk = −Aloc(rk+ 1
2
) · ∆rk and gk+ 1

2
= gk exp(h2 ξk).

B. Reduced Discrete Optimization Problem

The reduced optimization problem can be formulated as
follows

Compute: rd, fd

minimizing

N−1
X

k=0

Cd(rk, rk+1, gk, fk, fk+1)

subject to:

r(0) = r0, g(0) = g0, r(T ) = rT , g(T ) = gT ,

Equations (14)

Equations (15)

H(rk, gk) ≥ 0,

for k = 0, ..., N − 1, rd = {ri}
N
i=0. Group variables gk need

not be included as part of the optimization state vector since

they can be reconstructed from shape trajectories internally

during optimization.

IV. WHEELED VEHICLES APPLICATIONS

A. Models

1) Two wheeled robot: Consider the two wheeled mo-

bile robot [1] controlled by applying torque to each wheel

independently assuming there is roll without slip. The con-

figuration space is Q = S1 × S1 × SE(2) with coordinates

q = (φR, φL, x, y, θ), where (φR, φL) are the rotation angles

of the right and left wheels and (x, y, θ) ∈ SE(2) are

the position and orientation. The robot is controlled with

right and left wheel torques τR and τL respectively. The

Lagrangian is

L(q, q̇) =
1

2
Jw(φ̇2

R + φ̇2
L) +

1

2
Jθ̇2 +

1

2
m(ẋ2 + ẏ2) (18)

where m is the mass, and J and Jw are the moments of

inertia, ρ is the wheel radius and d is the distance from the

wheel to the center of mass which is assumed to coincide

with the center of rotation.
The system is symmetric with respect to actions of the

group G = SE(2). The shape space is described by coor-
dinates r = (φR, φL) ∈ Q/G. The matrix representation of
the local connection in (10):

[Aloc(r)] =

2

4

−
ρ

2
−

ρ

2

0 0
ρ

2ω
−

ρ

2ω

3

5 (19)

The constrained Lagrangian is

ℓc =
1

2
C
(

φ̇2
R + φ̇2

L

)

+Dφ̇Rφ̇L, (20)

where

C =

(

Jω +
mρ2

4
+
Jρ2

4d2

)

, D =

(

mρ2

4
−
Jρ2

4d2

)

(21)

Substituting the Lagrangian and the connection in equa-

tions (14), we see from (13) that the forces f̂ vanish and

the reduced discrete equations of motion become:

C
(

∆φRk − ∆φRk−1

)

+D
(

∆φLk − ∆φLk−1

)

=
h

4
(τRk−1 + 2τRk + τRk+1)

D
(

∆φRk − ∆φRk−1

)

+ C
(

∆φLk − ∆φLk−1

)

=
h

4
(τLk−1 + 2τLk + τLk+1)

xk+1 = xk +
vk
ωk

(sin(θk + hωk) − sin(θk))

yk+1 = yk +
vk
ωk

(− cos(θk + hωk) + cos(θk))

θk+1 = θk + hωk,

where vk = ρ
2 (∆φRk + ∆φLk), ωk = ρ

2d (∆φLk − ∆φRk)

2) Simple Car: The simple car is controlled using rear

wheel torque uψ and torque uσ steering the front wheels. The

configuration space is Q = S1×S1×SE(2) with coordinates

q = (ψ, σ, x, y, θ), where (x, y, θ) ∈ SE(2) are the position

and orientation of the car, ψ is the rolling angle of the rear

wheels, and σ is defined as σ = tan(φ) where φ is the

orientation of the front wheels relative to the car orientation

θ, i.e. the steering angle. The model assumes that the distance

between the left and the right wheels is negligible, such as

in a bicycle model (e.g. [30]). The Lagrangian is

L(q, q̇) =
1

2
Iψ̇2 +

1

2
Jσ̇2 +

1

2
m(ẋ2 + ẏ2) +

1

2
Kθ̇2 (22)

where m is the mass, I and J are the moments of inertia, l is

the distance between front and rear wheel axles, and ρ is the

radius of the wheels. We choose to parametrize the steering

angle in order to avoid a nonlinear term in the constraint

connection as derived below and to avoid the computation

of tan during optimization.
The Lagrangian and constraints (see [1]) are again invari-

ant under action of the group G = SE(2). The shape coor-
dinates are now r = (ψ, σ) ∈M . The matrix representation
of the local connections in (10) is

[Aloc(r)] =

2

4

−ρ 0
0 0

−
ρ

l
σ 0

3

5 (23)

The constrained Lagrangian is

ℓc(r, ṙ) =
1

2

„

I +mρ
2 +

Kρ2σ2

l2

«

ψ̇
2 +

1

2

„

J

(1 + σ2)2

«

σ̇
2

Using (13) one can compute

f̂ =

[

−
Kρ2σψ̇σ̇

l2
,
Kρ2σψ̇2

l2

]

(24)

The resulting discrete equations of motion are found by

expressing the discrete Lagrangian, forces, and constraints

in terms of the corresponding quantities ℓc, Aloc, and f̂ .
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Fig. 1. Differential drive optimized trajectory with N = 32

B. Experiments

The goal is to find a trajectory between an initial and

final state (fig. 1) with minimum control effort (i.e. the

objective function is the sum of the squares of controls). The

task constraints include bounds on the accelerations, bounds

on the velocities, and obstacle avoidance. These conditions

are expressed as inequality constraints. We only consider

obstacles represented by arbitrary polygons and ellipses,

although the method can be extended to any obstacles. The

experimental results described below are averaged over runs

in 10 different environments created by randomly perturbing

the obstacles parameters (e.g. vertices, centers, size).

The optimization is performed using an SQP solver which

requires an initial guess. An A∗ algorithm is used to plan a

shortest distance path in (x, y) space and generate approxi-

mate values for the remaining coordinates. The solver is then

able to transform this path into an executable trajectory and

optimize it further. The resulting solution is not guaranteed

to be globally optimal but there is strong evidence that it is

a good optimum within its homotopy class.

The method is compared against standard direct colloca-

tion with Hermite-Simpson discretization [23] of the con-

tinuous reduced equations. We are intersted in finding how

well the method performs as a function of the discretization

resolution, i.e. the number of time steps N used. The four

criteria tested are: runtime (fig. 2), ratio of convergence to the

optimal objective value (fig. 3), goal error after executing the

trajectory (fig. 4), and average error between computed and

executed trajectories (fig. 5). We use a fourth order Runga-

Kutta solver with 10000 time steps as a ground truth. The

resulting errors provide insight into how well the system

dynamics is preserved by each method.

The runtime of the two algorithms is comparable; DMOC

slightly more efficient at smaller time steps 2. DMOC con-

verges to its optimal objective value faster. DMOC exhibits

less error at bigger time steps and hence the executed paths

2At N = 128 the runtime for DMOC consistently jumps. This condition
was related to sudden large memory allocation by the SQP solver only at
this specific value.
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Fig. 3. Objective function ratio

(by a fine integration) reach the goal closer. Therefore,

computational advantage can be gained by using DMOC at

reduced resolution.

V. CONCLUSIONS AND FUTURE WORK

The paper proposes a new method for solving the motion

planning problem for nonholonomic mechanical systems. It

is based on discretizing the Lagrange-d’Alembert principle

to derive discrete equations of motion serving as equality

constraints in a numerical optimization scheme. Reduction

by symmetry in the principal kinematic case is employed to

simplify the optimal control formulation. Our experiments

for car-like robots suggest that the method is a good alter-

native to standard collocation. It would be uesful to further

optimize the approach based on ideas from, e.g. [9], [27],

[4].

A major limitation of the approach is that it only provides

a locally optimal solution. Nevertheless, it could be employed

as an efficient local optimization method since it has to abil-

ity to converge to a good approximation with relatively few

time steps. Another obvious application is the refinement of

suboptimal trajectories computed from discrete or sampling-

based motion planners.
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