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Abstract— We consider the problem of multiple mobile sensor
agents tracking the position of one or more moving targets. In
our formulation, each agent maintains a target estimate, and
each agent moves so as to maximize the expected information
from its sensor, relative to the current uncertainty in the
estimate. The novelty of our approach is that each agent need
only communicate with one-hop neighbors in a communication
network, resulting in a fully distributed and scalable algorithm,
yet the performance of the system approximates that of a cen-
tralized optimal solution to the same problem. We provide two
fully distributed algorithms based on one-time measurements
and a Kalman filter approach, and we validate the algorithms
with simulations.

I. INTRODUCTION

In this paper we use a group of mobile sensors to coopera-

tively track the location of a dynamic target. Each sensor can

take measurements and fuse its local information with others

to get a better estimate of the target position. Moreover, the

additional mobility of the sensors enables them to move in

such a way as to minimize the uncertainty in the fused sensor

reading. The sensors may be identical, or heterogeneous with

regard to their sensor types.

Recent advancement in wireless communications and elec-

tronics has enabled the development of low-cost sensor

networks. Exemplary applications include target tracking

[21], [13], formation and coverage control [1], [4], [5], [7],

environmental monitoring [11], [17], [20], and many others.

Most approaches to the target tracking problem rely on

stationary sensors, and active sensing aims to leverage the

mobility of the sensors to get better tracking performance,

typically in error estimates, and this requires additional mo-

tion controller design. Given the estimation error covariance

matrix P , we can use any of tr(P ), det(P ) λmax(P ) as the

performance measure. Entropy-based information measures

are also available [9]. A very similar class of problems

is distributed localization, where a group of mobile robots

try to localize themselves by measuring distances to other

agents [16] or landmarks [6]. Empirical tests in [8] showed

the localization accuracy increases dramatically by actively

controlling each robot’s motion direction and sensor heading.
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Fig. 1. Three mobile sensors collaboratively track one moving target. By
taking it own sensory information ui and obtaining the internal estimator
states (vj , wj) from its one-hop neighbors {j, j ∈ Ni}, each agent i
implements a distributed Kalman filter to obtain a near-global estimate of
the target and the associated uncertainty covariance matrix Pi. Each agent
also calculates the gradient of det(Pi) with respect to its own position pi

and moves to reduce the uncertainty in the target estimate.

One approach to active sensing problems is to separate

the estimation process from motion controller design: Given

the estimation task, the optimal sensor configuration is

obtained first. From there the controller design is reduced

to a formation control problem. The optimal configuration is

hard to obtain in general and a special case is solved in [13].

The second approach is online: By communicating, each

sensor obtains a global estimate of the target and then moves

to improve this estimate. For range-bearing sensors that

estimate the target location from current measurement, a

centralized gradient controller is derived in [3]. The range-

only sensor case was discussed in [22].

In this paper we extend the results in [3] in several ways.

First, by constructing a dynamic average consensus estimator
[18], [8], we make the control algorithm in [3] distributedly

implementable: Each agent communicates only with one-hop

neighbors in a communication network, and the amount of

data transmitted is independent of the number of agents.

Another decentralized architecture for data fusion and control

was described by Durrant-Whyte et al. [10], [12], and they

use a general Bayesian framework for data fusion. Second,

we develop a new controller design based on a better sensor

fusion technique, the recently developed distributed Kalman
filter [14]. Third, we allow heterogeneous sensors and derive

motion controllers for range-only sensors.

In the following section, we detail the sensor models,

the general motion controller design method, and the dis-

tributed estimator we use throughout the paper. Then we

describe how to fuse measurements of individual sensors

and give our first controller design in Section III. A better

sensor fusion technique based on the Kalman filter and its
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induced controller are given in Section IV. The simulations

in Section V validate our approach and illustrates the benefits

of incorporating mobility in sensor networks. Finally we

discuss the heterogeneous sensors and multiple targets cases

in Section VI and the summary is provided in Section VII.

II. FORMULATION

A. Measurement Model
We consider n sensors and one target moving in the plane,

having positions p1, · · · , pn ∈ R
2 and xt ∈ R

2, respectively.

The observation made by the i th sensor is given by

zi = Hixt + vi , i = 1, . . . , n , (1)

where the measurement noise vi is a continuous-time Gaus-

sian noise with zero mean. This measurement model can

include several different types of sensors, and in this paper

we focus on range-bearing sensors and range-only sensors

as illustrative examples.
In a standard linear range-finding sensor model [15], [3],

Hi = I2 (the 2 × 2 identity matrix) and its covariance

matrix Ri assumes a diagonal structure in the sensor’s local

range/bearing frame:

Ri =
[

(σi
range)

2 0
0 (σi

bearing)
2

]
. (2)

The range measurement noise variance (σi
range)

2 is commonly

represented by a function fr(ri) of the distance ri from the

target to sensor i. The bearing noise variance (σi
bearing)

2 also

depends on the range and can be modeled as fb(ri). We

use the following simple yet representative forms of these

functions:

(σi
range)

2 = fr(ri) = a2(ri − a1)2 + a0 (3)

(σi
bearing)

2 = fb(ri) = αfr(ri) , (4)

where a0, a1, a2, α are model parameters. This measurement

uncertainty model assumes the existence of a “sweet spot”

location ri = a1 at which the noise is at its minimum value.

In practice, when the target is out of the sensing range, we

can initialize the diagonal entries of Ri to be ∞.
If the sensor being used takes a nonlinear measurement of

the state, we will use its linearized approximate model. For

example, given a range-only sensor i:

zi = ‖xt − pi‖2 + vi (5)

with the Gaussian noise level Ri = fr(ri) (as in (3)), we

can linearize it around the point xt0 = (x0, y0):

z̃i = −Hixt + vi (6)

with

Hi =
[

px
i −x0

2
√

(x0−px
i )2+(y0−py

i )2

py
i −y0

2
√

(x0−px
i )2+(y0−py

i )2

]
=

[
cos(θi0) sin(θi0)

]
(7)

and z̃i = zi − ||xt0 − pi||2 − Hixt0 is our modified

measurement to take into account the linearization effect.

Here both Hi and z̃i can be obtained by sensor i locally. In

this paper, we don’t deal with the sensor i’s self-localization

error and assume pi can be measured perfectly.

i
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j
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Sensor (r-b)

Target

Act. U (r-b)

App. U (r-b)

Sensor (r)

Act. U (r)

Fig. 2. Schematic of the measurement models for range-bearing sensors
(r-b) and range-only sensors (r). For the range-bearing sensor, the segment
of the annulus shows the one-sigma uncertainty of each sensor’s estimate
and the ellipse is the approximation that we use.

B. Gradient Controller Design

We consider two different ways of fusing the local target

position measurements zi and error covariances Ri to obtain

a global target position estimate x̂global and global error

covariance Pglobal. The first method, described in Section III

and based on the work in [3], uses only current measurements

to obtain x̂global and Pglobal. The second method, described in

Section IV, defines x̂global and Pglobal by means of a Kalman

filter. In either case, the matrix Pglobal depends on the sensor

and target locations, which means the sensors can move to

reduce the uncertainty Pglobal. To formulate a proper cost

function, we can use either

J = det(Pglobal) (8)

or

J = tr(Pglobal) (9)

In optimal experiments theory, they are referred to as D-
optimal design and A-optimal design, respectively. For sim-

plicity, we assume all agents are kinematic and fully actuated

so that ṗi = ui, and we use the gradient controller

ui = K initial(·) = −ΓT T

i

⎡
⎢⎢⎣

∂J

∂ri

1
ri

∂J

∂θi

⎤
⎥⎥⎦ , (10)

where Γ > 0 is a gain matrix, θi = ∠(pi − xt) is the angle

from the target to sensor i, and Ti is the rotation matrix

Ti =
[

cos(θi) sin(θi)
− sin(θi) cos(θi)

]
. (11)

We also use Ti to transform Ri, the covariance matrix in the

local frame, to TiRiT
T
i , the covariance matrix in the global

Cartesian frame. In the face of the nonlinear transformation

from polar frames to Cartesian frames, this is a convenient

approximation (Fig. 2). Furthermore, we define

P r
i � ∂Pglobal

∂ri
, P θ

i � ∂Pglobal

∂θi
, (12)
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and use the following facts from matrix calculus [2]:

∂

∂x
f(A(x)) = tr[

∂f

dA

∂A

∂x
] (13)

∂

∂A
det(A) = |A|A−T = |A|A−1 (14)

∂

∂A
tr(A) = I (15)

∂

∂x
A−1 = −A−1(

∂A

∂x
)A−1 (16)

From above we can calculate the gradients in (10) as

∂J

∂ri
= J · tr

[
P−1

globalP
r
i

]
(17)

∂J

∂θi
= J · tr

[
P−1

globalP
θ
i

]
(18)

when we use the D-optimal design (8) or the alternative form

∂J

∂ri
= tr

[
P r

i

]
(19)

∂J

∂θi
= tr

[
P θ

i

]
(20)

when we use the A-optimal design (9).

In general the controller in (17)− (20) is centralized

because Pglobal, P
θ
i , P r

i each contains information from all

sensors. We will obtain the implementable, decentralized

local controller ui = K(·) from (10) by replacing any

unavailable global quantities with local estimates.

C. Distributed Estimator Design

In both the sensor fusion schemes in Sections III and IV,

the sum of the information from each individual sensors

is used to calculate the global information Pglobal (also

P θ
i , P r

i ). This motivates the usage of a PI dynamic average
consensus estimator [8] for our task of estimating the global

information. For n agents, assume each agent i has an input

ui(t) ∈ R
k×r, internal states vi, wi ∈ R

k×r and output

yi = vi. The PI estimator is given by the following equations

(see [8] for details):

v̇i = − γvi − Kp

∑
j∈Ni

[
vi − vj

]
+ Ki

∑
j∈Ni

[
wi − wj

]
+ γui

(21)

ẇi = − Ki

∑
j∈Ni

[
vi − vj

]
. (22)

Here γ > 0 is a design parameter, Ni contains all one-

hop neighbors of agent i in the communication network, and

Kp,Ki are estimator gains. When the network is connected

over time, each estimator output yi will track the global

signal 1
n

∑n
i=1 ui asymptotically (see [8] for more rigorous

discussions). Since each agent only transmits its estimator

states vi, wi, this is a fully scalable distributed design.

The following two sections describe two sensor fusion

schemes to obtain Pglobal. In each one the explicit form of the

derived motion controller depends on the choice of cost func-

tions (D-optimal or A-optimal) and sensor models (range-

bearing, range-only). In Sections III and IV we derive these

equations for range-bearing sensors. The more complicated

case with the range-only sensors are dealt with in Section VI.

III. ONE-TIME MEASUREMENT APPROACH

An instantaneous fusion of current sensor readings leads

to the following relations [3], [15]:

P−1
globalx̂global =

n∑
i=1

HT

i (TiRiT
T

i )−1zi =
n∑

i=1

HT

i TiR
−1
i T T

i zi

(23)

P−1
global =

n∑
i=1

HT

i (TiRiT
T

i )−1Hi =
n∑

i=1

HT

i TiR
−1
i T T

i Hi ,

(24)

We further use the rules in (13) – (16) to find P r
i , P θ

i :

P r
i =

∂

∂ri
(

n∑
i=1

HT

i TiR
−1
i T T

i Hi)−1

= −Pglobal

∂

∂ri
(

n∑
i=1

HT

i TiR
−1
i T T

i Hi)Pglobal

= −Pglobal

∂

∂ri
(HT

i TiR
−1
i T T

i Hi)Pglobal (25)

and similarly

P θ
i = −Pglobal

∂

∂θi
(HT

i TiR
−1
i T T

i Hi)Pglobal. (26)

For range-bearing sensors, we plug in Hi = I2 and (3), (11)

into (25), (26):

P r
i = 2a2(ri − a1)PglobalTiR

−2
i

[
1 0
0 α

]
T T

i Pglobal (27)

P θ
i = Pglobal

(
Ai + AT

i

)
Pglobal (28)

with

Ai =
[

0 −1
1 0

]
TiR

−1
i T T

i . (29)

We implement a decentralized version of the resulting gradi-

ent control law (10) as follows. Each agent runs a PI average

consensus estimator with local matrix input ui = nTiR
−1
i T T

i

(for a total of 3 scalar estimators due to the symmetry of

this 2×2 matrix), but with the unknown quantities ri and θi

replaced by the measurements

ri ≈ |pi − zi| , θi ≈ ∠(pi − zi) . (30)

The inverse of the output of this estimator is Pi, the local

estimate of Pglobal. Each agent runs a second average con-

sensus estimator with local vector input nTiR
−1
i T T

i zi (for a

total of 2 scalar estimators), again with the replacements (30).

The output of this second estimator, when multiplied by Pi,

yields x̂i, the local estimate of x̂global. We now evaluate

the expressions (8), (27), and (28) by replacing Pglobal
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with Pi and using the following filtered versions of the

replacements (30):

ri ≈ |pi − x̂i| , θi ≈ ∠(pi − x̂i) . (31)

These replacements lead to the decentralized version of

the control law (10) with gradients (17), (18) The same

approach applies when we use the control law (19), (20). This

implementation assumes the sensor model parameters a0, a1,

a2, and α are known to each agent.

IV. KALMAN FILTER APPROACH

The approach in Section III fuses sensor readings from

current measurements only. To make use of past measure-

ments as well, we can adopt a Kalman filter approach to

defining x̂global and Pglobal. We begin with a linear target

model

ẋt = Fxt + Gut + w , (32)

where ut is an exogenous input and w is a continuous-time

Gaussian noise with zero mean and covariance matrix Q. We

consider the centralized Kalman-Bucy filter [19]:

Ṗglobal = FPglobal + PglobalF
T + Q − nPglobalCPglobal (33)

˙̂xglobal = Fx̂global + Gut + nPglobal(y − Cx̂global) , (34)

where C and y are the fused measurements

C =
1
n

n∑
i=1

HT

i TiR
−1
i T T

i HI , y =
1
n

n∑
i=1

HT

i TiR
−1
i T T

i zi

(35)

and initial conditions are given by the one-time measure-

ments (23) and (24). The partial derivatives in (12) can be

obtained by taking partial derivatives on both sides of (33):

Ṗ r
i = FP r

i + P r
i F T − nP r

i CPglobal − nPglobalCP r
i

+ Pglobal

∂

∂ri
(HT

i TiR
−1
i T T

i Hi)Pglobal (36)

Ṗ θ
i = FP θ

i + P θ
i F T − nP θ

i CPglobal − nPglobalCP θ
i

+ Pglobal

∂

∂θi
(HT

i TiR
−1
i T T

i Hi)Pglobal (37)

For range-bearing sensors, we plug in Hi = I2 and (3), (11)

into (36), (37):

Ṗ r
i = FP r

i + P r
i F T − nP r

i CPglobal − nPglobalCP r
i

+ 2a2(ri − a1)PglobalTiR
−2
i

[
1 0
0 α

]
T T

i Pglobal

(38)

Ṗ θ
i = FP θ

i + P θ
i F T − nP θ

i CPglobal − nPglobalCP θ
i

+ Pglobal

(
Ai + AT

i

)
Pglobal (39)

with initial conditions calculated according to the one-time

measurements (27) and (28).

We implement a decentralized version of the resulting

gradient control law (10) as follows. Each agent runs two

average consensus estimators, one with local matrix input

TiR
−1
i T T

i and local output Ci, and the other with local

vector input TiR
−1
i T T

i zi and local output yi. Each agent

85 90 95 100 105 110
75

80

85

90

95

100

105

110

Fig. 3. Trajectories of sensors with a moving target starting from
(100, 100). The solid lines denote the Kalman filter scheme and the dashed
lines denote the one-time measurement scheme.

also maintains estimates Pi and x̂i of Pglobal and x̂global

(respectively) by means of the differential equations

Ṗi = FPi + PiF
T + Q − nPiCiPi (40)

˙̂xi = Fx̂i + Gut + nPi(yi − Cix̂i) (41)

with initial conditions

Pi(0) = (TiRiT
T

i )(0) , x̂i(0) = zi(0) . (42)

Finally, each agent maintains local copies of the gradients P r
i

and P θ
i (which we again name P r

i and P θ
i with a slight abuse

of notation) by means of the differential equations

Ṗ r
i =

∂

∂ri
(FPi + PiF

T + Q − nPiCiPi)

= FP r
i + P r

i F T − nP r
i CiPi − nPiCiP

r
i

+ 2a2(ri − a1)PiTiR
−2
i

[
1 0
0 α

]
T T

i Pi (43)

Ṗ θ
i =

∂

∂θi
(FPi + PiF

T + Q − nPiCiPi)

= FP θ
i + P θ

i F T − nP θ
i CiPi − nPiCiP

θ
i

+ Pi

(
Ai + AT

i

)
Pi (44)

with initial conditions given by (27) and (28) but with Pi(0)
replacing Pglobal(0). In all of these equations we use the

replacements (31), and we arrive at an implementable version

of the local controller (10). This implementation assumes

that F , G, Q, ut, n, and the sensor model parameters a0,

a1, a2, and α are known to each agent.

V. SIMULATION RESULTS

We use three range-bearing sensors starting from

(88.73, 106.76), (89.05, 75.98), (99.94, 77.93) and a moving

target starting from (100, 100). The dynamic model of the

target is ẋt = ut + w with ut =
[

0.1 0.1
]T

and

Q = diag(0.05 0.05). The sensor model parameters are

a0 = 0.3528, a1 = 15.625, a2 = 0.0008, and α = 5.
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Fig. 4. Comparison of the individual belief uncertainty matrices Pi. The
centralized versions Pglobal for each scheme are shown as dotted lines.
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Fig. 5. Comparison between static sensors (Γ=0) and mobile sensors (Γ =
3I, 5I).

Here we use a radius based communication model. The

communication radius is set at r = 50 to guarantee the

connectedness of the network. We choose a controller gain

of Γ = 20I .

Figure 3 shows the actual trajectories of the sensors. In

both sensor fusion schemes, the sensors space themselves

from others by 60 degrees (relative to the target). Previous

analysis shows this is the optimal collaborative configuration

to do a one-measurement sensor fusion [3]. In Figure 4 we

compare the performance of these decentralized algorithms

with each other and with the centralized versions, where

each sensor has access to the correct centralized computation

of Pglobal. In both cases, the decentralized schemes recover

the results of their centralized counterparts after an initial

transient.

Figure 5 compares the performance of static and mobile

sensor fusion schemes. Sensors start from the same positions,

and in this simulation we changed the parameter a2 of

the sensor model to 0.5 to increase the spatial influence

on the measurement noise level. We see that the moving

sensors more quickly obtain accurate estimates of the target

position. For control gains Γ > 5I , we start to see oscillatory

behaviors in sensor motions and the dynamics of sensor 1’s

estimate looks almost the same as the case when Γ = 5I .

VI. HETEROGENEOUS SENSORS AND MULTIPLE

TARGETS

A. Heterogeneous Sensors

Here we address the cases where range-bearing sensors

need to collaborate with range-only sensors for the estimation

task. The control laws for the range-bearing sensors remain

as they are in (27), (28), (38), (39). All we need to do is to

derive the controllers for those range-only sensors. We derive

the explicit form of P r
i , P θ

i for the one-time measurement

case, and the Kalman filter case can be done in a similar

manner.

From the schematic of the linearized measurement model

(Fig. 6), we have:

cos θi0 =
a + ri cos θi√

(a + ri cos θi)2 + (ri sin θi − b)2
(45)

sin θi0 =
ri sin θi − b√

(a + ri cos θi)2 + (ri sin θi − b)2
(46)

Then based on (25) we have

P r
i = Pglobal(

2a2(ri − a1)
a2(ri − a1)2 + a0

HT

i Hi

−R−1
i

[
ζ η
η −ζ

]
)Pglobal (47)

with

ζ =
−2 cos θi0 sin θi0

||pi − xt0||2 (sin θi cos θi0 − sin θi0 cos θi)

η =
cos2 θi0 − sin2 θi0

||pi − xt0||2 (sin θi cos θi0 − sin θi0 cos θi)

and similarly

P θ
i = − 1

Ri
Pglobal

[
ζ2 η2

η2 −ζ2

]
Pglobal (48)

with

ζ2 =
−2ri cos θi0 sin θi0

||pi − xt0||2 (sin θi sin θi0 + cos θi cos θi0)

η2 =
ri cos(2θi0)
||pi − xt0||2 (sin θi sin θi0 + cos θi cos θi0).

Now we can finish the distributed design by replacing Pglobal

with Pi and using the approximation (30) or (31).

For range-only sensors, singularity issues can arise when

implementing these control algorithms. This is because we

need to use the invert the estimator output to calculate

Pi and the estimator input ui = HT
i TiR

−1
i T T

i Hi has 0
determinant. One solution is to let the estimator run a short

time before inverting its output to calculate the control effort;

the problematic matrix will become nonsingular when a

range-only sensor fuses information with other sensors.

B. Extension to Multiple Targets

Here we only consider the case when each sensor is

capable of taking multiple measurements at a time and able

to distinguish different targets. Otherwise some dynamic

sensor scheduling and target association algorithms need to

be developed, which is outside the scope of this paper.
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Fig. 6. The linearized measurement model for range-only sensors.
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Fig. 7. Two range-bearing sensors (green circle) and one range-only sensor
(magenta circle) collaborate to track two moving targets (red square).

Assume we have M targets in total. For each target j, the

previous calculation gives a control vector uij for sensor i,
and we can simply add them up in a weighted manner:

ui =
M∑

j=1

wijuij , wij > 0,
M∑

j=1

wij = 1 (49)

This approach will retain the distributed nature of the al-

gorithm. In essence, this approach is the same as in [3],

which took an algebraic approach by redefining the target

state: Xt =
[

x1
t . . . xM

t

]
and assume the measurement

noise for each target is uncorrelated from others. In this

approach the number of consensus estimators being used is

proportional to the number of targets, and future research

effort is needed to deal with this communication constraint.

Here is an illustrative example: two different range-bearing

sensors collaborate with a range-only sensor to track the

trajectories of two moving targets. Mobile sensors start from

(70.7, 100.8), (100.0, 86.0), (86.0, 85.9) and their measure-

ment models are given below:

aj
0 aj

1 aj
2 αj

j = 1 0.1528 15.625 0.0008 5
j = 2 0.0166 10.800 0.0010 3
j = 3 0.1100 15.396 0.001 n/a

We set the control gain Γ = 50I , estimator gain Kp =
50I,Ki = 0.5I . The range-only sensor measurement model

is linearized around the point (100, 100). Figure 7 shows

how sensors divide into groups to track individual targets.

VII. CONCLUSION

We proposed two distributed solutions for the active

sensing problem. By communicating and fusing information

with nearest neighbors each sensor gets a global estimate of

the target and a local velocity vector field which the mobile

sensor can follow to maximize its sensory information. This

approach can be extended to deal with the multiple target and

heterogeneous sensors cases. Future work includes a stability

analysis of the full feedback system and incorporating the

sensor localization inaccuracy in the problem formulation.
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