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Abstract— We tackle a Fish-Catching task under a visual
feedback hand-eye system with catching net. The fishes change
escaping trajectory or speed up when being threatened as
the net attached at hand approaches to them. Furthermore,
as the time of tracking and catching process flows, the fish
can somewhat get accustomed to the hand motion pattern and
gradually find out new strategies on how to escape from the
bothering net. For example, the fish can swim slowly along
the pool edge where the net is forbidden to enter or keep
a reasonable distance from the net as if it konws the visual
servoing system bears steady state error by constant speed
escaping. For the sake of such innate ability being widely existed
in animal’s behavior, the catching operation becomes tough and
some effective intelligent method needs to be conceived to go
beyond the fish’s intelligence. The purpose of this research is
to construct intelligent system to be able to exceed the fish’s
intelligence to survive. Then we embed chaotic motion into
the hand motion of robot, and we have shown the chaotic net
motion can overcome the fish escaping strategies.

I. INTRODUCTION

In recent years, visual tracking and servoing in which
visual information is used to direct the end-effector of a
manipulator toward a target object has been studied in some
researches [1],[2]. A new trend of machine intelligence [3]
to improve dynamical behavior that differs from the classical
AI has been applied intensively to the field of robotics. Typi-
cally, the animal world has been conceptual sources of inspi-
ration for machine intelligence. For the purpose of studying
animal behavior and intelligence, the model of interaction
between animals and machines is proposed in researches like
[4]. In these days, the technique about hierarchical organized
control hardware and the multilevel multi-sensor based on
fusion technique to obtain fused decisions has been described
in [5]. Another crucial characteristic of machine intelligence
is that the robot should be able to use input information from
sensor to know how to behave in a changing environment and
furthermore can learn from the environment for safety like
avoiding obstacle. Behavior acquisition has been achieved
and the simulated robot can learn to follow a light and
to avoid hot dangerous objects shown in [7]. As known
generally that the robot intelligence has reached a relatively
high level, still the word intelligence is an abstract term,
so the measurement of the intelligence level of a robot has
become necessary. A practical and systematic strategy for
measuring machine intelligence quotient (MIQ) of human-
machine cooperative systems is proposed in [6].
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In our system, we will evaluate the intelligence degree by
the result of competition between fishes and the robot. We
can declare the system combined with chaos be smarter than
the fish when the robot can overcome the fish’s escaping
strategy even after the fish finds out how to escape. As we
did not find the research about the intelligence competition
between animal and robot, we mainly dedicate ourselves to
constructing a smart system that is more intelligent than
the fish. So we not only employ the inspiration of animal
behavior for robot intellectualization, we can also conceive
a robot that can exceed the animal intelligence. By evolution-
ary algorithms [8] Visual Servoing and Object Recognizing
based on the input image from a hand-eye camera has been
studied in our laboratory [9], and we succeeded in catching
a fish by a net attached at the hand based on the real-time
visual recognition under the method of Gazing GA [10] to
enhance the real-time searching ability.

When tracking a swimming fish, we have learned that it
is not effective for fish catching to simply pursue the current
fish by visual servoing with velocity feedback control. In
the actual problem the effective tracking can be impossible
because the fish can sometimes alter motion pattern suddenly
under some emotional reasons of fear, or it can take some
strategy to try to get rid of the bothering net that keeps
chasing it. Those behaviors are thought to be caused by
emotional factor and they can also be treated as a kind of
innate intelligence though not in a high level. Based on the
behavior observation in the real Fish-Catching experiment,
the fish mostly swims stick to the pool edge for avoiding
the net after being caught for a while. That is a serious
problem for the Fish-Catching task because it is prohibited
for the net to enter into the corner with a clearance of 2[cm]
to avoid crashing to the pool wall. That shows the fishes
have found the effective way to avoid being caught without
wasting surviving power, so effective intelligent method is
expected to be conceived in order to cope with the fish
escaping strategy.

In this presentation we adopt the chaos model obtained
from signal transfer in cell structure [11],[12]. We embed
chaos into the Robot Dynamics in order to supplement the
deficiency of our fish-catching system, because intelligent
composite motion control [13] becomes crucial in the catch-
ing fish process. The Chaotic motion is added to increase
the possibility of catching fish according to the fish motion
state, conceiving a kind of idea with probabilistic chaotic
motion, in other words we have tried a new strategy to make
the system smart enough to exceed the fish intelligence. The
reasons to use chaos are first that it relates to biology and
exists in process for life, secondly that the reproductivity
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Fig. 1. Brock diagram of the control system

meaning that the chaotic random process can be represented
explicitly and regenerated after it has been found that the trial
process was effective, leads to remembering an effective idea
that happens to be checked casually by chaos. Details will
be given in the section of BVP Model.

II. FISH TRACKING AND CATCHING

The problem of recognition of a fish and detection of its
position/orientation is converted to a searching problem of
x(t), y(t), θ(t) in order to maximize F (ϕ(x(t), y(t), θ(t))),
where ϕ(x(t), y(t), θ(t)) represents correlation function of a
new image and matching model to a fish at time t. F (ϕ(t))
is used as a fitness function of GA. To recognize a target
in a dynamic image input by video rate, 33 [fps], the
recognition system must have real-time nature, that is, the
searching model must converge to the fish in the successively
input raw images. An evolutionary recognition process for
dynamic images is realized by such method whose model-
based matching by evolving process in GA is applied at
least only one time to one raw image input successively
by video rate. We named it as “1-Step GA” [9]. When the
converging speed of the model to the target in the dynamic
images should be faster than the swimming speed of the fish
in the dynamic images, then the position indicated by the
highest genes represent the fish’s position in the successively
input images in real-time. We have confirmed that the above
time-variant optimization problem to solve ϕ(t) maximizing
F (ϕ(t)) could be solved by “1-Step GA”. We employed the
combined method, which utilizes both the global search and
the local search techniques of a GA, to perform a tracking
and catching experiment of a swimming fish by using the
experimental system depicted as a block diagram shown in
Fig.1. The camera-to-fish distance is 450 [mm]. The size
of the water pool is 300 (width)×400 (length)×100 (depth)
[mm], and the net is 80×100 [mm]. Catching the fish is
executed by pulling up the net when the fish is within an
area of 80×60 [mm] at the center of the net attached at the
robot hand and detected by a hand-eye CCD camera at the
center of image view.

The aforementioned real-time recognition system using the
shape of the fish as the knowledge base is depicted in the
upper side of the block diagram in Fig.1. In the figure, ∆r =
[∆W Xi

GA, ∆W Y i
GA]T is the X-Y deviation from the camera

center to the fish expressed in the world coordinates, and the
camera center also stands for the center of the catching net.
The desired hand velocity at the i-th control period ṙi

d is
calculated as

ṙi
d = KP ∆ri + KV (∆ri − ∆ri−1) (1)

where ∆ri denotes the net current position vector from the
camera center to the fish position observed in real time by 1-
Step GA [9]. KP and KV given are positive definite matrix
to determine PD gain. Now we add chaos to eq.(1), and we
also need to redefine the meaning of ṙi

d.
Here ri

d designates the place robot hand should move
towards. In order to determine the net destination, we think
it is necessary to consider the fish motion state. Based on
the fish current position, velocity and recognition result, two
kinds of motion pattern can be taken and those are shown
below. When the fish is recognized successfully, the net
mounted at hand will chase the fish directly and ∆rfish

denotes the recognized fish position deviation vector from the
net center to the fish within the camera frame. When the fish
stays in a corner of the pool, the net will do chaotic motion
automatically and ∆rchaos denotes the vector towards the
next point in chaotic trajectory. Therefore the new definition
of ∆ri arisen in eq.(1) right side is shown as below:

∆ri = k1 · ∆ri
fish + k2 · ∆ri

chaos (2)

Here ∆ri
fish =

[
∆xi

fish ∆yi
fish

]T
, and ∆ri

chaos =[
∆xi

chaos ∆yi
chaos

]T
that is obtained by solution of

chaos differential equation in eq.(7) and a coefficient d.
Therefore the hand motion pattern can be determined by the
switch value k1 and k2. k1 = 1 and k2 = 0 indicate the
motion command signal to net is to track the fish. k1 = 0
and k2 = 1 indicate the net will do chaotic motion under
certain condition satisfied either to lure the fish to come out
of the corner or threaten the fish. The desired joint variable
q̇d is determined by inverse kinematics from ṙd by using the
Jacobian matrix J(q), and is expressed by

q̇d = J+(q)ṙd (3)

where J+(q) is the pseudoinverse matrix of Jacobian matrix
J(q). The robot used in this experimental system is a 7-Link
manipulator, Mitsubishi Heavy Industries PA-10 robot. The
control system, based on a PI control of PA-10 is expressed
as

τ = KSP (q̇d − q̇) + KSI

∫ t

0

(q̇d − q̇)dt (4)

where q̇d−q̇ is the velocity error of the joint angle, KSP and
KSI are symmetric positive definite matrixes to determine
PI gain. The orientation of the fish is measured in real time,
but in the tracking and catching experiment, the measured
orientation information is not used for the orientation control
of the net as shown in the above equation. The manipulator
servo update rate is 100[Hz].

In order to describe the details of the dynamical control
flow, we show the intelligent motion control process in Fig.2.
By 1-step GA recognition method [9], the fish position and

WeA3.4

86



1-step GA recognition

Fish in corner with 

limited speed

Wr
i
fish

Wv
i
fish

Judge fish status

Save the net position

Solve the chaotic equation

k=

"
k1

k2

#
=

"
1

0

#

Årichaos=

"
Åxichaos
Åyichaos

#
=

"
dÉxichaos
dÉyichaos

#

Åri=k1Årifish+k2År
i
chaos

_rid=kpÅr
i+kv(ÅriÄÅriÄ1)

úi=kSP(_qdÄ _q)+kSI
Rt
0
(_qdÄ _q)dt

_qid=J
+(q) _Vrd

Move the hand toWrinet

Y

N

k=

"
k1

k2

#
=

"
0

1

#
b1

b2

AAAA

BBBB

CCCC

DDDD

EEEE

richaos

Wr
i
neto

Fig. 2. Intelligent motion control process

velocity information can be available, with which the fish
status can be judged in real time. When the condition of
fish being in corner with a certain limited speed satisfied,
the motion control process enters into b1 branch with k1 =
0, k2 = 1, otherwise enters into b2 branch with k1 = 1, k2 =
0, which determine the net motion type shown in Eq.(2).
Before chaotic motion taken in b1 branch, the current net
position must be saved in advance for next net position
calculation in Eq.(5):

W ri
net =

[
W xi

net
W yi

net

]
=

[
W x

i
neto

W y
i
neto

]
+ ∆ri (5)

where the chaos equation Eq.(7) is solved shown in block
B in accordance with the current time passing, so the used
chaos solution is not repeated. Then we set the saved net
position as the new origin of chaotic motion shown as
W r

i
neto

in Eq.(5). The chaotic motion coordinate in camera
frame is calculated as in block C, where d is a coefficient to
adjust the chaos oscillation size with a value of 18 and can
be regulated based on the vertical distance between camera
and the pool. Then by the kinematics calculation process
shown in block D and E, we can finally obtain each joint
of the manipulator: τ i. At last the hand is made to move to
W ri

net, which is the net position in world frame and can be
calculated as follow:

III. PROBLEM OF FISH-CATCHING

In order to check the system reliability in real fish-catching
experiment, we kept catching several fishes continuously for
35 minutes with steady condition of k1 = 1 and k2 = 0
shown in Eq.2 throughout the whole process. We released 8
fishes (with length about 40[mm]) in the pool in advance,
and once the fish got caught it would be released to the
same pool at once. The result of this experiment is shown in
Fig.3, in which vertical axis represents the number of caught
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Fig. 3. Result of catching number

(a) Motion (1) of a fish (b) Motion (2) of a fish

Fig. 4. Fish motion pattern

fishes and horizontal axis represents the catching time. We
had expected that the capturing operation would become
smoother as time flew on consideration that the fishes may
get tired and their swimming speed can slow down. To our
astonishment, the Fish-Catching number decreased gradually.

The reason of decreased catching number may lie in the
fish learning ability or emotional factor stated before. For
example, the fish can learn how to run away around the net
shown in Fig.4(a) by circular motion with about constant
distance from the net. Also, the fish can keep swimming
within the narrow strip area along the pool edge where it is
prohibited for the net to enter shown in Fig.4(b). In order to
solve the problem that may happen as above, more intelligent
system needs to track and catch the fish effectively, in other
words it comes to the problem on how to use the item rchaos

effectively to exceed the fish intelligence.

IV. THE PROPOSED SYSTEM

In order to tackle the problem arisen in experiments stated
in the previous section, we have proposed one new fish-
catching system shown in Fig.5 to compensate the defects
of the previous system. Within the dotted line part in Fig.5,
there is one newly proposed Chaos System that are used to
increase the intelligence degree of the whole system. When
the preset conditions are satisfied, the chaos motion result
will be combined and input into the Visual Servoing System.
As mentioned before, when the fish motion is affected
by emotional factor or the fish conceives new strategy to
avoid being caught by net, reliable tracking and catching
operation to overcome the fish adaptive ability can become
impossible without new machine adaptation going beyond
the fish strategies.

Let us pay attention to the details of the proposed system
flowchart in Fig.5 including a generator of chaos to make
this system possess a kind of idea of tracking motion of
the net. The CCD camera acting as hand-eye is mounted on
the manipulator and the block of 1-Step GA Recognition is
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Fig. 5. The proposed system flow

used to perform recognizing the fish after hand-eye taking
the image into the recognition block every 33ms. Then
according to the recognized result, the next block called
On-Line Fish Motion Detection System can deduce fish
position and velocity information and after this there are
two data channels that contain fish position and velocity
signals respectively. The position and velocity signals flow
into another branch in which there exists top block called
Situation Estimate System used to estimate the fish motion
state based on the value of position, velocity and distance
error. In other words, that block is used to judge conditions
like the fish speeding up suddenly, staying within a corner
or keeping a constant distance against the net. Also in the
same branch the Chaos System is used to generate chaos
motion trajectory and Trigger u(t) Generator is used to
control the degree of chaos influence to the net motion. The
data branch that only contains position signal is also used to
regulate the net position by comparing its value with fish real
position. Then the distance error can be obtained and it flows
into Robot Controller that sends control signal to Amplifier.
Finally, Robot Dynamics block performs manipulator motion
control based on the inputting control signal.

V. BVP MODEL

In our research, we will embed chaos into the net motion
to hold down the fish intelligence. Here we would like
to show the reason why chaos is adopted for intelligence
realization of robot. Firstly, the chaotic regulation relates to
biology: Chaotic abnormal excitement are revealed in real
experiment in 1982, where the vegetable cell and the nerve
of mollusk had been periodically stimulated with electric
current. Furthermore in 1984, the periodical electric current
had also been exerted to the gigantic axon of squid and
apparent chaotic response had also been obtained. In the
later 1980s, some relationship existing between chaos and
neural system had also been proved: In order to investigate
the exciting pattern of sea cucumber motion nerve, Mpitosos
research group have shown that the frequency fluctuation
of the continuous discharge that has relationship with the
motion rhythm is subjected to the chaotic regulation [11].
The phenomenon of chaotic motion can be frequently seen
in living body. For example when you stare at one point still
without blinking, it appears that your eyeballs have stopped

-0.8

-0.4

0

0.4

0.8

1.2

-2 -1 0 1 2 3

Absolutely Refractory

Active

Regenerative

R
ela

tiv
ely

 R
efra

ctory

Resting Point P (1.20, -0.624)

X

Y

Fig. 6. Chaos trajectory

w
T

A

Fig. 7. The stimulus signal

motion somewhat, but in fact the eyeballs are still making an
infinitesimal movement that is called chaotic vibration. Sec-
ondly chaos is reproductive random phenomenon: chaos time
development never repeats past oscillation pattern, it means
that it is random process. Regardless of this randomness the
generating process could be represented simply with explicit
mathematical formulation, and this leads to reproductivity
of the time development by giving some initial conditions.
We consider this reproductivity can be effective for robotic
intelligence because robot control system can remember the
chaotic process by memorizing a few conditions of the chaos
generation such as the shape of equation and some initial
conditions, this means the robot can remember what is the
most effective process to overcome something confusing
problem in a given dynamic environment after some chaotic
behaviors have been tried. In contrast, pure random process
like whitenoise does not have governing equation and it is
a mathematical concept, then the time developing process
could not be used afterward when it had been found that the
past random process had some meaningfulness or effective-
ness against the dynamic environment.

In order to clarify the existence of periodic response or
chaotic response in the real mechanism of nerve membrane
excitement, the analysis by use of Hodgkin-Huxley model
has been performed. BVP model is a simplification of
the Hodgkin-Huxley model and its differential equation is
easy to solve in mathematics. Though the solution of the
BVP model is not necessarily in complete coincidence with
the real experiment data, the behavior of BVP equation
has successfully regenerated the characteristics of the nerve
membrane excitement in the qualitative analysis [11]. Based
on the analysis above we make a trial to apply BVP model
for mimicking the animal behavior in this research.

The BVP equation can be deduced from the following
differential equation.

ẍ + c(x2 − 1)ẋ + x = 0(c > 0) (6)

Here ẋ signifies the differential of x with respect to time.
By some transformation, the full BVP model form can be
finally acquired by adding a stimulus item z and the BVP
equation is acquired as follow:

ẋ = c(x − x3

3
+ y + z)

ẏ = −x + by − a

c
(7)

here the solution x and y have the same meaning with xi
chaos

and yi
chaos shown in block C in Fig.2, and ∆ri

chaos =[
d ∗ xi

chaos d ∗ yi
chaos

]T , which is given to eq.(2). Here
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we will give biological definition about x and y arisen from
BVP differential equation. The item x denotes the value of
reversal sign of membrane voltage in cell and y signifies
the refractory nature. The item z denotes stimulus signal.
Parameters a, b and c are confined as follow based on [12]:

1 − 2b

3
< a < 1, 0 < b < 1, b < c2 (8)

Fig.6 shows one example about the solution trajectory of
BVP differential equation in x-y potential plane, and the
nerve exciting process can also be obviously observed from
this figure. In this chaotic locus, we adopt pulse signal as the
stimulus. When proper stimulus signal shown in Fig.7 comes,
nerve excitement can happen. The respond process will
start from Resting Point P , then pass through Regenerative
part, Active part, Absolutely Refractory part, then Relatively
Refractory part, and finally return back to Resting Point P
again. In other words, the responsive trajectory has such
characteristic that although the nerve cell is in a state of
stillness originally, it will get excited once accepting a proper
instant pulse signal and return to the stationary state in the
end. The coordinate of resting point P is (1.20,-0.624) as
one characteristic of BVP solution.

In order to apply chaos to the current intelligent system
appropriately, the relationship between chaotic response and
stimulus need to be examined. One proposed method called
Rungekutta that possess relatively optimal performance in
solving differential equation has been adopted to the BVP
differential equation solution procedure. Now we merely let
parameters A and T in BVP equation vary with item W fixed
to analyze the respond pattern. In the actual simulation by
C program, if the amplitude A is strong enough and the T
is long enough there will surely be a response once stimulus
signal comes. On the contrary, if amplitude A is set weak
enough or T short enough, there will not be any respond
to stimulus no matter how frequent the stimulus comes.
The response patterns with different A and T are shown in
Fig.8 corresponding with Table 1 that includes parameters of
stimulus signal and 4 responsive types.

VI. CATCHING-FISH EXPERIMENT

In order to examine the new system, we have tried the
Fish-Catching experiment and finally shown better Fish-
Catching strategy can be created out against the fish escaping
strategy. We try to imitate the animal judging pattern(mind)
by chaos signal and it is considered that the time when the
fish feels like getting out and the time when chaotic motion
is taken can be matched, then the fish tends to be deceived
that the scaring net is going further away and it can be caught
by the net immediately once it swims out of the corner.

The following experiment was done in order to check
the efficiency of chaos as an method for intelligence real-
ization. We took a close observation into the fish tracking
and catching experiment. This experiment, with net motion
embedded with chaos, lasted for nearly 40s till the fish got
caught successfully. During the first 9s, the net mounted at
hand sometimes moved round the pool regularly to find out
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the swimming fish and chased the fish once it appears in
the camera vision view. After 9s passed, the fish began to
swim slowly along the edge of the pool where it is forbidden
for the net to enter. In order to observe clearly how the
chaotic motion would act effectively towards that kind of fish
escape strategy, we had taken a series of pictures during the
remaining 31s shown in Fig.9. The picture with t = 9s shows
the fish began to swim slowly along the pool edge. After
judging the current situation that the fish swam stick to the
pool edge, the net took chaotic motion during time interval
from t = 10s to t = 31s. The pictures from t = 31s to
t = 36s show the process of the fish swimming out of corner
and the visual servoing system lost the fish who exceeded
the hand-eye view area when t = 36s. When the condition
that the fish becomes out of the current camera vision area is
satisfied, the net is designated to move towards the position
that possibly be the next fish place after the fish got lost.
So the fish fell into the vision span again and the net finally
arrived at the place in front of the fish shown in picture with
t=38s. The fish was finally caught at t = 40s once it fell into
the net range. The net is preset in the origin of this camera
frame and it will be pulled up rapidly when the fish swims
into the rectangular area 80×60[mm] round the net center.

In order to show the optimal performance with chaos
adoption to the experimental system, we also took a series of
pictures every 3s when we do not use chaotic motion and the
fish swims stick to the pool edge slowly. From the Fig.10 we
can see the net only followed the fish outside the prohibited
area. No matter how much time flows, the fish still stayed
within the thin strip area along the pool edge without daring
to swim out. So the result is quite different from Fig.9 with
chaos use and the catching operation ended with failure in
Fig.10.

Fig.11(a) shows the x and y values of net trajectory in
world frame ΣW respectively versus time based on the data
from experiment Fig.9. We can observe the net motion detail
clearly within 40s, and divide the net motion process into
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Fig. 9. The catching fish process by use of chaos

Fig. 10. The catching fish process without chaos

three stages p1,p2,p3, which have different function to be
stated later. Purely periodic chaos motion is fairly obvious
between C1 and C2 in horizontal axis. E is the end point
of net trajectory standing for the time when the net caught
the fish successfully. For the intuitive convenience, we also
show the net locus in x-y plane under ΣW in Fig.11(b). In
this figure, point E(−143, 107) has the same meaning with
point E shown in Fig.11(a). The net chaotic motion locus is
drawn in the upper-left corner of (b). In chaotic trajectory we
will treat resting point P shown in Fig.6 as the base point
and make it always point to pool edge in real experiment
for coincidence of the chaotic motion in each pool edge.
For example, when the chaotic motion happened near the
upside pool edge in this experiment, the chaotic trajectory
became upside down like in Fig.11(b) that is different from
the standard chaotic locus shown in Fig.6. The chaotic locus
will also be cut off when chaos trajectory of the solution has
exceeded the safe bound. In Fig.11(b), the left and above
part of the chaos locus was cut off and restricted in the
actual chaotic motion. The real net size is also drawn at
the right side and the net center corresponds with the real
net trajectory in the Fig.11(b).

Fig.12 shows the fish trajectory under world frame ΣW in
the real experiment. The shaded region represents the pool
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edge from the top view. Within the pool, the fish swims
around and is being chased by the net mounted at robot
hand. The real pool size is about 400×300[mm], but we can
also observe obviously that the data x and y have exceeded
the limit size a little from the real experimental result. The
reason lay on the offset error that is caused by the positional
difference between pool center and origin of world frame
ΣW . When the two items above are not matched perfectly,
the offset error can happen. In this experiment the new pool
center is at o1(−11, 18) compared with the origin of world
frame. The actual fish motion process starts from point S
and ends at point E shown in Fig.12.

Fig.13 shows the distance between the fish and the net
center. Considering the size of fish and net, we set the
condition that when the fish has fallen into the range of
80 × 60[mm] from net center we can pull the net upwards
promptly. We can see from the figure that the net is raised
up and the fish is caught at 40s because the fish has fallen
into the dangerous area of net (32.3mm from the net center).
Observing from the distance change in Fig.13 that describes
the deviation from the net center to the fish we can also see
when it enters into p3 stage the distance between fish and net
becomes larger suddenly. That phenomenon means the fish
begins to speed up to swim out of the corner to avoid the
scaring net, but unfortunately the net immediately chased it
up and finally caught the fish successfully.

Fig.14 shows the fitness representing a correlation value
used for calculating matching level of the fish in images with
the model during 40s catching-fish experiment. Whether the
fish is spotted or not is judged by the fitness value of 1-Step
GA recognition and the fish can be considered recognized
successfully if the fitness value was over 0.68.

In order to further check whether the new proposed fish-
catching system is more effective than the original one, we
also kept catching 8 fishes in pool continuously with the
same condition as experiment in Fig.3. We recorded the fish-
catching number with 5-minute span. As analyzed before,
the fish will generally get tired while being continuously
chased and caught, but the fishes became adaptive to the net
motion pattern, so the fish-catching number kept decreasing
in the former experiment shown in Fig.3. But after we
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embedded the chaotic motion to net movement this time and
the catching number of fish does not go down as shown
in Fig.15. Although the fish-catching number is somewhat
uncertain with time, the average number is about 11 and the
decreasing tendency has stopped.

We used two different fish groups for two times’ catching-
and-releasing experiment shown in Fig.3 and Fig.15 respec-
tively. The fish-catching number recorded every 5 minutes
keeps decreasing with time flows in the first experiment,
while the average fish-catching number can generally keep
above a certain level in the second one. But we still doubt that
whether it is the chaotic effect that prevents the fish-catching
number decreasing because different fish groups may have
different feature that affects the experiment result.

Now we tried another experiment with the same condition
with the one in Fig.3 to examine whether the chaos adoption
can prevent the decrease of the Fish-Catching number by
using one 8-fish group that is different from the fishes used
in former experiments shown in Fig.3 and Fig.15. The contin-
uous catching-and-releasing operation lasts for 100 minutes,
with mere visual servoing during the first 50 minutes and
with chaos added in the remaining 50 minutes. The result is
shown in Fig.16, in which the horizontal axis represents time
and vertical axis represents the Fish-Catching number every
5 minutes. In order to observe the trend of Fish-Catching
number, we adopt the linear Least-Squares approximation to
fish-catching decreasing tendency, two linear functions can
be generated as shown in Fig.16. In order to make it obvious
to observe the trend of catching-number, we make separate
analyses towards the two 50-minute periods. From the two
approximated curve (denoted as n1(t), n2(t)) generated from
Least-Squares method, we can see the Fish-catching number
gradually decreased without chaotic motion used, but after
50-minute catching operation it can generally keep above
the level of 11 fishes after chaos adoption. Altogether, the
effectivity of chaotic motion embedded into the catching-
net has been justified through the two experiments shown in
Fig.15 and Fig.16 respectively from two different aspects.
Therefore, the chaotic motion can supply the assurance to
make the catching-fish operation go forward smoothly even
the fishes think out some escaping strategies.

As the numerical analysis for the animal intelligence
degree has so far not been performed, we want to make
a trial give the numerical definition for animal intelligence.
The inclination of n1 corresponding with the tendency of
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fish catching-number during the first 50 minutes is −0.3079,
and the inclination of n2 coinciding with the remaining 50
minutes is −0.0109. In order to give a material description
about the intelligence competition between robot and ani-
mals, we define the inclination as the Intelligence Degree
Indicator (IDI) for the fish group on the condition that the
fishes swimming in pool are chased and caught continuously
by the catching net mounted at the robot hand. It is obvious
that the smaller IDI value tends to be the higher intelligence
level that the fish group can possess because the decrease in
fish-catching number just shows that fishes have gradually
become adaptive to the net. Furthermore, we consider the
relationship between the robot and fishes can be figuratively
described as the relationship between the predator and preys.
The preys (fishes) can gradually generate adaptive ability
(such as escaping strategies) to avoid the threatening predator
(robot) for surviving because of the predator’s continuous
chasing and catching. From Fig.16, we can see the robot
with chaotic motion used has effectively held down the
fish learning ability in the longtime intelligence competition
process between them because the IDI has varied from
−0.3079 to −0.0109. Therefore the chaotic modification
can overcome the fish intelligence and is useful for the
contribution into the robotic intelligence realization.

VII. CONCLUSION

We propose a new method for intelligence realization by
adopting chaos to cope with the the fish learning ability to
escape from net. We suggest one more intelligent system than
the traditional one in order to exceed the fish ingelligence and
the effectivity of the system is testified in real experiments.
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