
 
 

 

  

Abstract— A Rao-Blackwellized Particle Filter approach is 
an effective means to estimate the full SLAM posterior. The 
approach provides for the use of raw sensor measurements 
directly in SLAM, thus obviating the need to extract landmarks 
using complex feature extraction methods and data association. 
 In this paper a solution framework based on Rao-
Blackwellized Particle Filters (RB) and Genetic Algorithms 
(GA) is proposed for recovering the full SLAM posterior using 
raw exteroceptive sensor measurements, i.e. without 
landmarks. The resultant Rao-Blackwellized Genetic 
Algorithmic Filter (RBGAF) permits the uses of any arbitrary 
measurement model unlike FastSLAM with scan matching. 
Since the proposed method represents the environmental map 
state for each robot trajectory using a population of 
chromosomes as opposed to grids, RBGAF is much more 
memory efficient than DP-SLAM. Memory efficiency is further 
enhanced through the exploitation of dynamic data structures 
for representing the maps and the robot trajectories. This 
makes the proposed RBGAF very suitable for large scale 
SLAM in 3D environments. Further, the proposed method’s 
provision for adaptation of chromosome lifetime/group sizes 
and its ability to incorporate alternative map representations 
makes it adaptable to varied environments and different 
sensors. Simulation and experimental results obtained in an 
outdoor environment using a laser measurement system are 
presented to demonstrate the method’s effectiveness. 

I. INTRODUCTION 
HE practical objective of simultaneous localization and 
mapping (SLAM) algorithms is to estimate the joint 

posterior of robot pose and environmental map consistently 
and efficiently. Murphy, Doucette and colleagues [1] 
introduced the Rao-Blackwellized particle filter. In this 
approach particles are used to represent the posterior over 
some variables, together with other parametric posterior 
density functions to represent all other variables. This 
provides for the factorization of the SLAM problem into 
many separate problems. The framework has since been 
extended and implemented by many researchers.  

Montemerlo [2] proposed a Rao-Blackwellized Particle 
Filter (RBPF) approach known as FastSLAM to solve for 
the full SLAM posterior. Here particles are used to represent 
the posterior over robot paths. The conditional independence 
of landmarks given the robot pose is exploited to factor the 
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mapping problem into separate problems, one for each 
landmark in the map. The map features are estimated using 
Extended Kalman Filters (EKF). This well-known algorithm 
has since been proven to be a very efficient means of 
solving the SLAM problem. However, FastSLAM requires 
reliable feature extraction and data association algorithms. 
This drawback was later overcome by Hahnel [3]. Hahnel 
uses the raw laser scans – instead of landmarks – in 
FastSLAM to avoid feature extraction. Consecutive scans 
were matched to find the change in robot pose. A parametric 
model was used to determine experimentally the uncertainty 
associated with scan matching, and hence the uncertainty in 
the predicted robot poses. It restricts the implementation of 
various measurement models and it is imperative that the 
pose estimation errors from matching scans are independent 
of the number of observations. It may work provided the 
experimental environment and the actual environments are 
very much alike and the number of observations are similar 
during actual navigation.  

Grisetti [4] suggested ‘adaptive proposal distribution’ and 
selective re-sampling techniques to reduce the number of 
particles used in FastSLAM with scan matching. However, 
the advantages of particle reduction is somewhat 
outweighed by the method’s requirement for high-resolution 
grids to represent the maps.   

Another Rao-Blackwellized approach to SLAM using 
grid maps is due to Eliazar [5], known as DP-SLAM. Unlike 
in [4], [5] requires one single grid map. However, in a grid-
based approach the memory consumption is quadratic to the 
length in 2D space and cubic in 3D space.  In the extreme 
case, if one is to exploit the accurate measurements obtained 
by perfect sensors, the grid resolution must be extremely 
high and the consequent memory requirements infinitely 
large, unless artificial noise is added to ‘waste’ sensor 
accuracy. In [5], distributed particle mapping is used to 
greatly reduce the memory consumption and computational 
cost of copying multiple grid maps. However, in sparse 
environments a grid map is mostly under utilized due to the 
sparsity of measurement returns. In sparse 3D space memory 
inefficiency would be very significant making these methods 
inapplicable. Furthermore, in real SLAM implementations, 
the computational cost must be within reasonable limits. 

Apart from sample size, sample impoverishment and 
particle depletion are major issues with particle filter based 
approaches [6] [7]. Heuristic methods are introduced in [8] 
to mitigate these problems. Genetic algorithms (GA) have 
also proved to be effective in this regard. Similarities 
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between GA and particle filters were observed long ago [9]. 
Techniques in GA have also been applied to mitigate 
problems in robot navigation with particle filters. For 
example, crossover operation (modified particle filters) [10], 
tournament selection [6], and species [7] are applied on 
particle filters. In [7], chromosomes represent environmental 
map, but the map is still constructed by features 
(landmarks).  

In this paper, GA techniques and the Rao-Blackwellized 
particle filters are fused together. Environmental maps are 
represented by tree-structured groups of child-chromosomes, 
while robot trajectories can still be represented by ancestry 
trees as in [5]. Child-chromosomes enable the full use of 
sensor accuracy without increasing memory consumption; 
tree-structured groups further reduce memory required to 
represent the big grid maps by stripping all null space away. 
Unlike [3], any measurement model can be implemented 
based on mathematically sound posterior estimation 
algorithms. The proposed method’s built in adaptive 
chromosome lifetime/group sizes and its ability to 
incorporate alternative map representations makes it 
adaptable to varied environments and different sensors.  

The rest of the paper is constructed as follows: Section II 
introduce Rao-Blackwellized Particle Filters. Section III and 
section IV describe Rao-Blackwellized Particle Filter SLAM 
and propose the RBGAF-SLAM algorithm. Section V gives 
a detailed discussion for the computational complexity and 
memory consumption of DP-SLAM and RBGAF-SLAM. 
Section VI provides our simulation and experimental results. 
Section VII gives the conclusions. 

II. RAO-BLACKWELLIZED PARTICLE FILTERS 
One of the major drawbacks of particle filters (PF) is that 

sampling in high-dimensional spaces can be inefficient. In 
some cases, however, the model has “tractable 
substructure”, which can be analytically marginalized out. 
Marginalizing out these variables is an example of the 
techniques called Rao-Blackwellization. Rao-Blackwellized 
Particle Filters (RBPF) can be implemented in SLAM.  

If we were able to sample N i.i.d. random samples 
(particles), ( ) ( )

0: 1 0: 1{( , ), 1,..., }i i
t tr g i N− − =  at time 1t − , 

approximately distributed according to the distribution 
( ) ( )

0: 1 0: 1 1: 1( , | )i i
t t tp r g y− − − , RBPF allow us to compute N 

particles ( ) ( )
0: 0:( , )i i

t tr g  approximately distributed according to 

the posterior ( ) ( )
0: 0: 1:( , | )i i

t t tp r g y , at time t . The detailed 
descriptions of Rao-Blackwellized particle filters has been 
introduced in [1]. 

III. RAO-BLACKWELLIZED PARTICLE FILTERS SLAM 

A. Rao-Blackwellized Particle Filters SLAM 
Rao-Blackwellized Particle Filters are an effective means 

to solve the full posterior of the robot pose. Each particle of 

( ) ( )
1:{( , ), 1,..., }i i

t tx m i P= consists of one robot trajectory 
( )
1:

i
tx and one associated environmental map ( )i

tm . To update 

the whole particle set ( ) ( )
1:{( , ), 1,..., }i i

t tx m i P= , both robot 

trajectory ( )
1:

i
tx  and map ( )i

tm  will be resampled (or 
selected) in pairs. The procedures of simultaneous 
localization and mapping with RBPF are shown in Fig. 1. 
The key idea of the approach is to solve the recursive Bayes 
filter update by the equation: 

1: 1: 0: 1( , | , )t t tp x m z u − =  

1: 1: 0: 1 1: 1: 0: 1( | , , ) ( | , )t t t t t tp m x z u p x z u− − . 
A particle filter is used to represent robot trajectory 

1:tx and associate it with a map m , conditioned on each 
sample of the particle filter. The importance weights of the 
samples are therefore computed by the likelihoods of the 
measurements 1:tz  in the maximum likelihood map 
constructed by the corresponding robot trajectory. This 
particular particle has taken. 0: 1tu −  as the control. 

 
Fig. 1. Graphical model of concurrent mapping and localization 

B. Naïve SLAM 
In [5], naïve SLAM based on the Rao-Blackwellized 

Particle Filter is introduced. Each particle consists of one 
robot trajectory and an associated environmental map in the 
form of an occupancy grid. Naïve SLAM follows: 

Take sensor measurements and control inputs 1: 1:,t tz u  
for each particle i=1:P; 
Predict new robot pose and update robot trajectory based 

on ( ) ( )
1: 1: 1 1: 1:( | , , )i i

t t t tp x x z u−  
Update the occupancy grid map based on observation and 

new robot pose ( ) ( )
1: 1:( | , , )i i

t t t tp m x z u  
for time q=1:t; 

Calculate the particle likelihoods at time q: 
( ) ( ) ( )

1:( , | , )i i i
q q t q qL L x m z u=  

end_for; 
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Calculate weights ( ) ( )

1

t
i i

t q
q

w L
=

= ∏  

end_for; 
Resample new particle sets ( ) ( )

1:( , )i i
t tx m based on weights 

( )i
tw , denoted as: 

( ) ( ) ( )
1:( , )i i i

t t tx m w∼  
Repeat 
In the remainder of this paper, the tilde symbol ~ denotes 

resampling (or selection) operations. 

C.  Important issues to be considered 
This approach samples approximately at every point in 

time the full posterior over robot poses and maps. To do 
this, four key issues must be considered. 

• Represent and update P possible robot trajectory 
(hypothesis). 

• Represent maps and update environment map 
conditioned on robot pose and sensor 
measurements, respectively. 

• Calculate the likelihood, having environment 
map, trajectory and measurements. 

• Resample Rao-Balckwellised particles based on 
weights calculated. 

It has been pointed out that although naïve SLAM is 
mathematically sound, it is usually not practical. Grid maps 
consume large memory space, and naïve slam requires 
copying multiple grid maps during the resampling stage. 
This could lead to copying gigabytes of memory, which is 
impractical for real time operations, unless the number of 
particles (trajectory/map pairs) is very small.  

IV. RBGAF-SLAM 
To achieve efficient Rao-Blackwellized SLAM and 

overcome the shortcomings in [3][4][5], this paper presents 
Rao-Blackwellized Genetic Algorithmic Filter SLAM. The 
key idea is to bring Genetic algorithm in RBPF so that 
environment maps are represented by sets of i.i.d. particles 
(child-chromosomes). In RBGAF-SLAM, each particle of 

( ) ( )
1:{( , ), 1,..., }i i

t tx m i P= consists of one robot trajectory 
( )
1:

i
tx and one associated environmental map ( )i

tm . The 

environmental map ( )i
tm  is represented by a number of 

child-chromosomes, separated in sub-groups. The jth child-
chromosomes in the ith particle (trajectory/map pair) at time 
t is then denoted as ( , )i j

tm . 

A. Robot trajectory representation and updating 
The robot trajectory representations and updating methods 

used are similar to [5]. New poses are added and the 
ancestry trees are extended based on the proposal 
distribution (e.g. motion model) before the resampling 

process. 

B. Environment map representation 
In our approach, the environment is represented by tree-

structured groups of child chromosomes. Fig. 2 and Fig. 3 
show an example of how the environment map is 
represented by tree-structured groups of child-chromosomes. 
Chromosomes are separated due to their locations and stored 
in different sub-groups. Each sub-group is generated when 
the first observation is made within the particular 
representation of geometric space.  

 
Fig. 2. Environmental map 

 

 
Fig. 3. Tree structured groups 

The map representation enables the full use of sensor 
accuracy without increasing memory consumption as the 
case in occupancy grids. 

C. Environment map chromosomes generation 
For each particle i, map chromosomes are generated based 

on sensor measurements and robot pose.  
Generate tK  chromosomes where the number t ztK bn∝ . 

ztn  is the number of observations at time t and b is a 
constant chosen according to the computational resources. 
The sub-groups are only generated when observations are 
obtained within its space. If no chromosomes are to be 
generated in that sub-group, the sub-group is left empty to 
save memory space.  

D.  Environment map updating 
The weight of each map chromosome (j=1 to n) is 

calculated based on its position ( , )i j
tm and corresponding 
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robot pose ( )i
tx with sensor measurement tz at time t. 

Map chromosomes are then updated by tournament 
selection within their sub-group. The total number of 
chromosomes is controlled by chromosome compression. 

E. Chromosomes compression 
It is very important to control the number of particles. Our 

solution is to compress extra particles at the map resampling 
stage. It checks child chromosomes when updating 
environmental map (tournament selection): 

If ( , 1) ( , 2)( , )i j i j
t tdist m m ε< , Compress chromosomes as 

( , 1) ( , 2) ( , )( , ) 2i j i j i j
t t tm m m x→ ,  

in which, ( , ) ( , 1) ( , 2)( , )i j i j i j
t t tm average m m=  and records 

the count number 2c = . Similarly, the child chromosome 
with count c will be treated as c chromosomes. Record the 
empty memory slots by a pointer array so that new generated 
chromosomes will be inserted into these memory slots. 
Therefore, a maximum number of chromosomes in one 
group will be assured. 

F.  Resampling 
For particle i, the likelihood is then 

( ) ( ) ( )( | , )i i i
ikk

P P z x m= ∏ , 

where ikz  is the measurement between the sensor reading 
q and particle i, m is the corresponding environmental map. 

After the weights are calculated according to the total 
posterior for each particle ( ) ( )

0:( , )i i
t tx m , the complete 

chromosome sets are re-sampled. GA techniques are applied 
to the particles as shown in [6] [7]. The techniques include 
crossover, mutation, tournament selection and lifespan 
estimation. Resampling on the particles representing 
environment maps is not necessary for every time interval 
and can be processed adaptively to reduce computational 
cost. 

G. RBGAF-SLAM 
The algorithm is designed as follows: 
Take sensor measurements and controls 1: 1:,t tz u  
For each particle (trajectory/map pair) i=1:P do: 

Estimate new robot pose and update robot trajectory 
based on ( ) ( )

1: 1: 1 1: 1:( | , , )i i
t t t tp x x z u−  

Generate j=1:k new map chromosomes 
( , ) ( ) ( )( | , )i j i i
t t t tm p m x z� ∼  

Insert new chromosomes into map 
( ) ( ) ( )

1: 1
i i i

t t tm m m−← + �  
Calculate weights for all map chromosomes j=1:k 

( , ) ( , ) ( )
1: 1:( | , , )i j i j i

t t t t tw p m x z u∼  

Tournament selection, select: ( , ) ( , )i j i j
t tm w∼  

End_for; 
If resampling particle (trajectory/map pairs) sets: 
For each particle i=1:P do 

Calculate weights: for all map chromosomes j=1:N 
( , ) ( ) ( , )( | , , )i j i i j
q q q q tL L x z u m=  

Calculate likelihood at time q: ( ) ( , )

1

N
i i j

q q
j

L L
=

=∑  

end_for; 

Calculate weights for i=1:P do: ( ) ( )

1

t
i i

t q
q

W L
=

= ∏  

Apply tournament selection, select: ( )
1:( , ) i

t t tm x W∼  
End_if; 
Repeat 

V. COMPUTATIONAL COMPLEXITY 

A.  Naïve SLAM  
If the map is an occupancy grid of size M and P particles 

are maintained, ignoring the cost of localization, O(MP) 
operations must be performed merely copying maps. 
Practically, this approach is naïve in that computational 
resources are not sufficient to complete this task in most of 
the cases. Suppose the laser sweeps out an area of 
intersecting A occupancy grids, it can be found out that 
A<<M. Therefore, DP-SLAM gives a more efficient way of 
solving this problem. 

B. DP-SLAM 
Instead of associating maps with particles, DP-SLAM 

associates particles with maps. It maintains just a single 
occupancy grid; each grid square stores a balanced tree. The 
tree is keyed on the Ids of the particles that have made 
changes to the occupancy of the square. 

Let D be the depth of the ancestry tree for robot 
trajectories, the computational cost of DP-SLAM can be 
estimated as: 

O (ADPlgP) operations for localization. 
O (APlgP) operations to insert new data into the tree. 
Ancestry tree maintenance with amortized cost O 

(ADPlgP) 
Because in most of the environments, M>>A and 

M>APlogP, DP-SLAM will be more efficient compared to 
Naïve SLAM. 

C.  RBGAF-SLAM 
In RBGAF-SLAM, P particles are maintained. For each 

particle, a group of child-chromosomes are associated with 
one robot trajectory. To represent the sensor measurement, n 
child-chromosomes are required. The number of tree-
structured groups is small, having at most 2 to 3 layers. The 
computational cost of searching particular group is 
negligible. Then, the following computational complexity 
can be estimated.  
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For localization, each particle needs to make O(nDPlgP) 
accesses to the map. Furthermore, the cost of copying 
environment maps during the resampling stage can also be 
estimated as O(nP). The cost of updating the ancestry tree is 
at most O(DlgP), and can be considered as O(lgP)<<O(nP) 
as usual case. To resample the environment map, O(nP) 
tournament selections are needed.   

D.  Memory consumption 
In DP-SLAM, when initialising just a single grid map, the 

memory consumption is at least O(M). To store the entire 
ancestry tree, the memory consumption is O(ADlgP). If 
A<<M, O(M) will be the dominating term. In RBGAF-
SLAM, to store one single ancestry tree, the memory 
consumption is O (DlgP); to store all the environment maps, 
the memory consumption is O(nP). O(DlgP) is negligible 
compared to O(nP) since n is large. 

 In an environment where A<<M, especially 3D space, 
O(M) dominates O(ADlgP) in memory consumption. On the 
other hand, the actual number of objects observed within 3D 
environment could be very few. For example, the resolution 
of current laser range finders measurements in distances is 
about 5cm; therefore, a 400x400x20m grid map requires 

92 5 1 0x  cells for one single map, which is impractical!! 
The memory consumption of RBGAF-SLAM, instead, 
depends on the number of observations but not the 
dimension of the environment. Therefore, RBGAF-SLAM 
will be much more efficient in memory consumption in 3D 
environment.  

E. Summary 

TABLE I.   COMPARISON BETWEEN SLAM ALGORITHMS 

Algorithm 

Raw 
Sensor 
Data 

Model 
Sensor 
noise 

Posterior 
Estimation 

Updating 
time 

Memory 
Consumpt-
ion 

EKF NO YES Gaussian Moderate Moderate 

FastSLAM NO YES Gaussian Moderate Moderate 
Scan-
matching 
FastSLAM YES N.A. Experimental Moderate Low 

DP-SLAM YES YES ANY High High 
RBGAF-
SLAM YES YES ANY High Moderate 

 
In RBGAF-SLAM, our analysis shows that the amortized 

complexity is O(nPDlgP). O(nP) memory space is required. 
As discussed, the following table shows the 
advantages/disadvantages of various SLAM algorithms 
based on Rao-Blackwellized particle filters and EKF-
SLAM. 

VI. SIMULATION AND EXPERIMENTAL RESULTS 
The simulator represents the environment by 1000x600, 

2-D space, in which the robot starts at the position of 
(200,200), moving rightwards. At the initial stage, 300 

particles/trajectories are generated with child-chromosome 
map associated with each. It is assumed that both bearing 
and range to objects are made by an exteroceptive sensor. A 
compass is assumed to provide the orientation information 
of the vehicle. The noise is assumed to be uniform in the 
interval -3 to +3 degrees. Wheel encoders have errors with 
standard derivation 0.5, while the true speed is at a constant 
of 1 unit/time interval. The environmental map is segmented 
into 50x50 squares (groups). The mutation rate (pm), range 
(r) and the crossover rate (pc) are 0.02, 2, and 0.2 
respectively. 

Fig. 4 shows SLAM simulation in an environment with 
objects of arbitrary shapes and sizes after the robot has 
completed a cycle. The area denoted by white is free or 
empty space and black represents objects that are observed 
by sensors. The final map is represented by about 1000 
chromosomes. Therefore, altogether, about 1000x300 child-
chromosomes are generated.   

 
Fig. 4. Simulation results: one complete cycle 

 
Fig. 5 shows the Euclidian positioning error between the 

estimated robot pose to the real pose and the 3σ  bound 
respecting to the time. Positioning error is small and always 
lies inside the bound. SLAM consistency is maintained. 

 
Fig. 5. Errors of SLAM simulation 

 
A Segbot robot (Fig. 6) equipped with laser range finder 

was tested in the car park of Nanyang Technological 
University (NTU). By processing the data with RBGAF-
SLAM algorithm, both the robot pose and environment map 
are obtained with satisfactory accuracy. One final map 
consists of about 800 child-chromosomes; memory 
consumption is far less than a grid map. Robot trajectories 
are estimated by 200 particles, associated with one map 
each.  
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Fig. 6. Experimental environment and Segbot 

 
Fig. 7. SLAM in real environment 

 
In Fig. 7, blue line shows the robot trajectory estimated by 

Odometry, the red line shows the final robot trajectory 
estimated and black area shows the mapped environment 
after one complete loop (about 700 updates). 

In Fig. 8, the final experimental result of applying 
RBGAFSLAM on a 1.1km test run with the data set 
collected from NTU golf cart platform by Mr. Lee, etc. The 
test run was implemented on the NTU campus, and the loop 
closing error is quite small as we expected, compared to the 
campus map. 

 
Fig. 8.Complete 1.1km loop in NTU 

VII. CONCLUSIONS  
In this paper, an efficient algorithm for SLAM based on 

Rao-Blackwellized particle filters and Genetic algorithm 
filter (RBGAF) was presented for recovering the full SLAM 
posterior using raw exteroceptive sensor measurements. The 
use of raw sensor measurements directly obviates the need 
for complex feature extraction and data association.  The 
algorithmic facilitates the use of any arbitrary measurement 

model unlike FastSLAM with scan matching. In RBGAF, 
environmental maps are represented by tree-structured 
groups of child-chromosomes. Child-chromosomes enable 
the full use of sensor accuracy without increasing memory 
consumption, much more memory efficient as compared to 
DP-SLAM. This advantage makes the proposed 
methodology very attractive especially in 3D environments. 
Furthermore, chromosome lifetime and group size can be 
adaptively adjusted and implemented to control the 
computational cost below an upper bound; its ability to 
incorporate alternative map representations makes it 
adaptable to varied environments and different sensors.  

ACKNOWLEDGMENT 
We  thank Mr. Lee Kwang Wee for providing the 1.1km 

test data set. We also thank Mr. Tan Chai Soon of the NTU 
ME-Workshop for his work on the segbot hardware set-up. 

REFERENCES 
[1] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-

blackwellized particle filtering for dynamic Bayesian networks. In 
Proc. Of the Conf. On Uncertainty in Artificial Intelligence (UAI), 
2000. 

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A 
factored solution to the simultaneous localization and mapping 
problem. In AAAI-02, Edmonton, Canada, 2002. 

[3] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, An Efficient 
FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic 
Environment from Raw Laser Range Measurements, International 
Conf. on Intelligent Robots and Systems, vol. 1, Page(s): 206 – 211, 
27-31, Oct 2003. 

[4] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based 
SLAM with Rao-Blackwellised particle filters by adaptive proposals 
and selective resampling, International Conf. On Robotics and 
Automation, Barcelona, Spain, 2005. 

[5] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous 
localization and mapping without predetermined landmarks. In Proc. 
of the International Joint Conf. on Artificial Intelligence, 2003. 

[6] N. M. Kwok, Gu Fang and Weizhen Zhou, Evolutionary Particle 
Filter: Re-Sampling from the Genetic Algorithm Perspective, IEEE 
International Conference on Intelligent Robots and Systems, 2005. 

[7] Rong Hual L, Binghong H, Coevolutionary Particle filter for 
Simultaneously localization and mapping, Proceeding of NLP-KE’, 
2005. 

[8] Sebastian Thrun, Dieter Fox, Wolfram Burgard, Probabilistic 
Robotics, Summer School 2004, pg77-85, 2000. 

[9] D. E. Goldberg, “Genetic algorithms in search, optimization and 
machine learning,” Addison-Wesley Pub. Co., Massachusetts, 1989. 

[10] N.M. Kwok and G. Dissanayake, Modified particle filter approach for 
bearing only SLAM, Proceeding on Australasian Conference on 
Robotics and Automation, 2003. 

 

 

ThC1.3

2432


