
Abstract—The problem of estimating external forces exerted on

a robotic manipulator with harmonic drive gearing without a

force-torque sensor is considered. Manipulator dynamics

together with motor current feedback is used to estimate

external joint torques, which are transformed into estimated

external end effector forces using knowledge of the

manipulator’s kinematics. Adaptive control is used to tune the

parameters of the robot’s modeled dynamics, while adaptive

radial basis function (RBF) “neural” networks are used to learn

the friction model. Compliance control is implemented on a two

degree of freedom manipulator based on the force estimates.

Results are compared to compliance control using a six-axis

force-torque sensor mounted on the manipulator.

  I.  INTRODUCTION

HE most traditional robotic manipulator control

schemes are those that attempt to control strictly

position. Such schemes ultimately require that a manipulator

track a time varying joint trajectory specified for each of its

degrees of freedom. Position control is an intuitive and often

effective means by which to accomplish tasks. Its major

drawback is that a manipulator will attempt to track its

desired trajectory even if that brings damage to itself and

objects in its way. 

T

As a result, force control schemes have been developed to

deal with controlling interactions between the manipulator

and its environment. Compliance control attempts to

combine aspects of both position and force control by

enforcing a mass-spring-damper relationship between

external force and the manipulator’s desired position,

velocity and acceleration. 

Robotic manipulators typically use force-torque sensors to

realize force or compliance control; however, force-torque

sensors have several well-known drawbacks in the form of

their cost, size and the complexity they introduce into a

manipulator’s mechanical and electrical design. The latter

point is due to the constraint that they be placed as close as

possible to the end effector for best results. Another, less

often considered drawback is that force-torque sensors

saturate due to high water pressure, rendering them useless in

deep-sea robotic sampling tasks. For such environments, a

measure of safety can be provided using force estimation

instead. 

Harmonic drives are often used in manipulators due to

their lack of backlash and the high gear ratio they enable.

However, harmonic drives also suffer from difficult-to-

model friction, especially in a static situation. Static friction,

also known as stiction, is a major source of error in force

estimation due to the difficulty in modeling its behavior. This

work will attempt to demonstrate that force estimation is

possible in such systems despite the effects of stiction.

II.  PREVIOUS WORK

 Force estimation as applied to robotic manipulators has

been a topic of interest since the early 1990s. The authors of

[10] proposed a decoupled disturbance observer based

approach. In [5], Hacksel and Salcudean presented a

coupled-force observer based on accurate knowledge of a

robot’s dynamics. Both observer-based approaches

demonstrated good results on direct drive manipulators with

negligible friction dynamics. 

More recently, dynamics learning has been used in force

estimation. In [16], the authors used a neural network to

learn the entire dynamical model of their 3 DOF haptic

device offline. Their system contained little friction. In [17],

the authors showed that force sensorless hybrid

force/position control was possible in a geared, though not

harmonically driven, manipulator. They used a simplified

model of robot dynamics, consisting of a gravity term and

learned friction terms. Adaptive neural networks were used

for online friction learning though adaptation of the modeled

dynamics was not performed.

In [14], motor current was used to estimate external forces

for robots with harmonic drive gearing. The approach

involved subtracting modeled dynamics from motor torque,

assumed to be proportional to motor current, to form the

estimated external torque. The estimated torque thus

obtained contained significant unmodeled position-

dependent friction. Filtering the estimated external torque in

the position domain greatly improved the estimates. The

filtering was done offline however, where the entire position
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history of the estimated external torque was known.  

All of these techniques have relied on unchanging

conditions in the manipulator’s dynamics. In reality, factors

such as end effector loading can significantly alter the

parameters of the robot’s modeled dynamics. In addition,

because friction changes with loading and temperature,

unmodeled dynamics such as friction that were learned and

then frozen can prove to be inaccurate over extended running

times. Both points lead to a desire to relearn the

manipulator’s dynamics at certain points in time chosen by

either an operator or higher-level autonomy. The force

estimation technique introduced in this work includes

friction learning as well as adaptation to enable relearning

during such changes in dynamics. 

III.  ADAPTATION AND LEARNING

The dynamics of an N degree of freedom (DOF) geared

robotic manipulator are described by

  ext = H q  G
2
IM q̈  Cq , q̇ q̇

 g q  f q̇
(1)

where ττττ is the N x 1 vector of commanded joint torques

given by the control law (described below), ττττext is the N x 1

vector of external torques and q is the N x 1 vector of actual

joint angles; (H(q) + G2IM) is the N x N effective inertia

matrix, where IM and G are the N x N diagonal matrices of

rotor inertias and gear ratios corresponding to each DOF,

respectively, and H is the N x N ungeared inertia matrix; C
is the N x N Christoffel matrix of Coriolis and centripetal

force terms [3] and g is the N x 1 gravity vector; f is the N x

1 vector describing the friction dynamics. 

The following control law was used for adaptation and

learning [13]. 

 =  H q   G
2 IM q̈r  Cq , q̇q̇r

 g q  f vq̇ � Kd s

= Y q , q̇ , q̇r , q̈r a  f vq̇  � Kd s

    (2)

The ‘^’ symbol in (2) denotes estimates of terms. Y is an N

x M matrix containing the known functions in the modeled

dynamics that are parameterized by M constants, arranged in

the M x 1 vector a. Several variables used in (2) are defined

as follows

q̇r ≡ q̇�q � qd 

s ≡ q̇�q̇d  q�qd
                                      (3)

where qd is the N x 1 vector of desired joint angles and Λ is

a positive definite matrix, usually diagonal, revealing –Kd s
as the standard Proportional-Derivative (PD) term when

Λ=Kd
-1Kp, and Kp is the proportional gain.  

The friction terms are implemented as adaptive RBF

networks based on [7]. In [12], the approximation abilities of

such functions were investigated and bounds on error were

given based on the number of nodes in the network and the

spacing between them. The basis function chosen for the

neural network, y, is the “hat”  function, defined as

yx ≡{1�∣x∣, ∣x∣ 1

0, otherwise
                                       (4)

Using y, the RBF network is defined for the jth joint as

f v, jq̇ = ∑
k=k

MIN

k=kMAX

ck , j y h q̇ j�k            (5)

Each joint's network contains (kMAX - kMIN + 1) total nodes.

The parameter h determines the spacing between

consecutive nodes. Node k’s center is located at h-1k and the

node is zero outside of h-1k ± h-1. As a result just two nodes

determine the network’s output to an input velocity within its

range. This choice of basis function reduces computation

time in the both the coefficient update and output evaluation

calculations. 

The estimates of a and ck,j are updated as follows

̇a =�Y
T

s

̇ck, j =� yh q̇ j�k s j

                                           (6)

where Γ is an M x M matrix of learning gains for the

adaptation and γ is the scalar learning gain for the neural

networks. The adaptation laws use s , a modified version

of the tracking error s. The components of this modified

error measure are

s j=sj�sat s j/, j=1,. .. ,N                          (7)

where sat( ) is the saturation function defined as follows

sat x ≡ {x , ∣x∣1

1, ∣x∣≥1
                                                  (8)

Subtracting the scaled saturation function from s forms a

deadzone that assures that the adaptation does not cause

instability by trying to achieve perfect s = 0 tracking. The

value of φ chosen was 0.001 in training.

IV.  FORCE ESTIMATION

Equations (2), (4), and (6) determine the adaptation plus

friction learning control law used during the training phase

of the force estimation process. An important point is that

during training, zero external force is assumed to be acting

on the manipulator. After the training phase, the control law

stops updating its estimates of a and ck,j and the system goes

into estimation mode. In practice, switching control laws

between training mode and estimation mode can be

implemented by setting a flag to enable the update law (6). If

the updates were to continue in estimation mode, the friction

learning neural networks would learn the joint torques

needed to overcome the external torque in addition to the

actual friction torque of the system, causing incorrect

estimation. 

To form the estimate of external torque acting on the

manipulator's joints, equation (1) is solved for τext using the

estimate of the manipulator's dynamics formed in training

mode using control law (2). The estimate becomes

ext =  H qG
2 IM q̈ Cq , q̇q̇

 g qf v q̇ � actual .
(9)
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Instead of the command torque τ, the measured motor

current, im, was converted to torque using knowledge of the

gear ratios, contained in G and the motor constants,

contained in the diagonal matrix Km, forming

actual = G Km im                                       (10)

Using knowledge of the manipulator's kinematics, namely

the Jacobian matrix, the external torque estimate can be

converted to estimated external force/moment at the

manipulator's end effector (referred to simply as estimated

force elsewhere in this paper).

f ext=J
T�1 ext            (11)

In the case of N < 6 or N > 6 the inverse of the transpose

Jacobian is replaced with either the right or left pseudo-

inverse respectively [11]. Note that the resulting estimated

force is in the same reference frame as the Jacobian matrix.

Equations (9) and (11) together describe how to use the

dynamical model, learned using the control law in equation

(2), together with motor current feedback and kinematics

knowledge to estimate force. 

Note that the motor current contains high frequency noise

due to the motor driver switching frequency and the encoder

differencing used in joint velocity calculation that is injected

into the commanded torque via the PD term. The noise was

reduced by a digital low pass filter implemented on the

torque estimates generated by (9), before applying (11). The

filter chosen was a fifth order elliptic filter [9] with a

passband of 20 Hz. The same filter was applied to the twice

differenced encoder measurements to form the actual

acceleration used in (7). The filters effectively limited the

bandwidth of the the force estimates to 20 Hz.

V.  COMPLIANCE CONTROL

The compliance controller chosen was the admittance

control scheme used in [4], a variation of the “position-based

impedance control” scheme introduced by [8]. Conceptually,

admittance controllers accept sensed external force and react

by modifying the manipulator's desired trajectory

f ext = Ms ̈x  Cs ̇x  Ks x        (12)

where x ≡ xd � xn , xn is the nominal desired Cartesian

position, and xd is the modified desired Cartesian position

due to the enforcement of the desired system's impedance.

The desired impedance is specified by the mass, spring, and

damping matrices Ms, Cs, and Ks respectively. Because the

modified desired trajectory is formed in Cartesian space

rather than joint space, the following numerical inverse

kinematics algorithm, the iterative Jacobian pseudo-inverse

method [15], was used:

qdk1=qd k J qd k
�1 xd�f qd k (13)

where k is the iteration number and J-1
is the inverse

Jacobian, which is replaced by the pseudo-inverse for N ≠ 6.

The algorithm consists of iterating k until the forward

kinematics of the estimated qd yields the desired

Cartesian position xd at each time step. 

The corresponding joint velocity and acceleration are

computed numerically as follows

q̇d[n] =
qd[n]�qd[n�1]

 t
(14)

q̈d[n] =
q̇d[n]�q̇d[n�1]

 t
  (15)

where ∆t is the sample period, and n is the time sample

index. In training mode the modified desired trajectory due

to the compliance control was not used; instead, the desired

trajectory was specified directly in joint space. The desired

trajectory may also be specified in Cartesian space and

converted into joint space. During estimation mode the

desired trajectory was still specified in joint space though it

was converted into Cartesian space for the compliance

controller's sake as follows

xn = Lqn  (16)

ẋn = J q̇n       (17)

ẍn =
d ẋn

dt
      (18)

where L is the manipulator's forward kinematics. Numerical

differentiation was used to calculate (18) as in (14) and (15).

A block diagram of the compliance and position

controllers is shown in Fig. 4. Note that the control law (2) is

unaware of the modification to its desired trajectory by the

compliance control stage just as the compliance control stage

is unaware of the use of force estimation instead of actual

force sensing. This last point can be made explicit by

substituting f ext from (11) instead of f ext in (12). 

VI.  EXPERIMENTAL SETUP

The force estimation based compliance control scheme

was implemented on a two DOF pitch-roll manipulator

developed at the Space Systems Laboratory of the University

of Maryland [1]. Each DOF is harmonically driven, where

the pitch and roll gear ratios are 161 and 160, respectively. A

100+ hour run-in test was performed on both DOFs that

helped reduce the friction in the gearing. The incremental

quadrature encoders embedded in the manipulator each had

36,000 counts per revolution before gearing. The

manipulator's motors are both brushless and driven by

Advanced Motion Control (AMC) Models B15A8 and

B30A8 brushless motor drivers. The AMC drivers provide

motor current information that was directly used in (10). A

JR3 force-torque sensor was mounted near the end effector

as shown in Fig. 1.

A National Instruments NI PCI-6025e data acquisition

(DAQ) board was used to communicate between the

computer and the manipulator. The control program was

written in C and run on a Dell Dimension 8400 PC with a 3.6

GHz processor and 1 GB of RAM. The computer was

running distributed TimeSys real-time Linux kernel 2.6.16.9.

The DAQ board was used with a Comedi driver, which is a

set of open source Linux drivers for various commercial

DAQ boards. The computer communicated with the force-
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torque sensor through a JR3 PCI board using a Linux driver

written by Mario Plats at UJI (Spain). The fully integrated

system is shown in Fig. 2.

Fig. 1. The manipulator with frame definitions. Frame 1 is the pitch DOF

frame, frame 2 is the roll DOF frame. World frame origin is the same as

frame 1's, both at the center of joint 1. JR3 force-torque sensor shown is

used to confirm force estimates.

Fig. 2. System integration.

VII. EXPERIMENTAL RESULTS

Initial experiments were conducted to compare the force

estimates against readings from a force-torque sensor.

Because the manipulator is a 2 DOF non-planar type, the 3 x

1 estimated force vector has only two true directions of

estimation, which vary according to the manipulator's

configuration. All force estimates were 3 x 1 vectors

generated using the translational part of the Jacobian for (11)

and (13). To compare the estimated force with the force-

torque sensor's readings, the sensor's 3 DOF reading was

limited to the manipulator's two degrees of freedom using the

following transformation:

f ext=J J
T

J �1
J

Tf ext       (19)

where f ext is the sensor's 3 x 1 force vector and

J J
T

J�1
J

T is a 3 x 3 matrix with rank at most 2. It is

the result of transforming the force vector to joint torque

using the transpose Jacobian, then using (11) with the right

pseudo-inverse of the transpose Jacobian because N < 6.

Note that before (19) was applied it, the force-torque sensor's

readings were transformed from the sensor frame, which

depends on both joint positions, to the world frame shown in

Fig. 1. All force estimates are made in the world frame as

well.

Thanks to the real-time kernel, the position control and

compliance control frequencies were both 3 kHz, though the

compliance controller may be run at a lower rate in more

complex systems. The high running rate of the position

control reduced time delay and improved velocity estimates,

allowing high PD gains to be used during estimation mode.

Lower PD gains were used in training mode as they provided

the adaptation and friction learning with larger and cleaner

error signals, enabling better learning using (6). High PD

gains in estimation mode were found to be the most effective

method of reducing stiction during zero commanded joint

velocity. Gains were experimentally chosen to be as high as

possible without causing instability. Other methods of

reducing stiction were attempted including: adding a

dithering signal to the commanded torque, dithering the

desired trajectory, and modifying the velocity signal in the

low velocity regime [6]. These approaches caused

undesirable amounts of motor chatter near zero commanded

joint velocity.

The desired trajectory used during training mode

consisted of sinusoidal desired joint positions, velocities and

accelerations. Training was performed for ten minutes before

switching to estimation mode. In estimation mode a

threshold of 1 Nm was placed on the estimated external

torques before the application of (11). 

Estimates in Fig. 3 are shown for when the manipulator

was stationary in the joint configuration shown in Fig. 1.

Compliance was not enabled. Despite being in the stiction

regime, the force errors in all three world frame directions

were usually 5 N (15% of maximum sensed force) or less

during contact though there were spikes of up to 8 N (21% of

maximum sensed force).

Estimates in Fig. 5 are shown for when the compliance

was enabled and the compliance values were 

Ms = 667 I3

Cs = 333 I3

K s = 40 I3

where I3 is the 3 x 3 identity matrix. The damping ratio is

approximately 1 using these values. Force errors were

usually 10 N (26% of maximum sensed force) or less during

contact though there were spikes of up to 15 N (39% of

maximum sensed force).  

VIII. CONCLUSION

This work represents an initial attempt to use force

estimates instead of direct force sensing for compliance

control in harmonically-driven manipulators. The force

estimation scheme presented relies on adaptation to tune the

parameters of the modeled dynamics as well as learning of

unmodeled dynamics such as friction using RBF neural

networks. High PD gains were used to reduce stiction during

zero commanded joint velocity. When compliance control

based on force estimates was enabled, noise in the estimates

(due to unmodeled stiction, motor current, and velocity

estimation) led to a noisy commanded trajectory about zero
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velocity. This lead to increased estimation errors from

repeated zero velocity crossings, during which friction is

hardest to model. 
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Fig. 3. Force estimates versus force/torque sensor data, transformed using (16), in all three world frame directions when manipulator is stationary in

joint configuration shown in Fig. 1. External forces were applied by hand  on the end effector. Compliance control was turned off.
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Fig. 4. Block diagram of adaptive, friction learning position controller, force estimation and compliance control  based on the force estimates. 

Fig. 5. Force estimates versus force-torque sensor data in all three world frame directions when manipulator nominal position is stationary in joint

configuration shown in Fig. 1. Modified desired joint position is shown for both joints due to the activated compliance control.
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