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Abstract— Consider the task of searching a region for the
presence or absence of a target using a team of multiple
searchers. This paper formulates this search problem as a
sequential probabilistic decision, which enables analysis and
design of efficient and robust search control strategies. Im-
perfect detections of the target’s possible locations are made
by each search agent and shared with teammates. This in-
formation is used to update the evolving decision variable
which represents the belief that the target is present in the
region. The sequential decision-theoretic formulation presented
in this paper provides an analytic framework to evaluate team
search systems, as it includes a performance metric (time
until decision), a measure of uncertainty (decision confidence
thresholds) and imperfect information gathering (detection
error). Strategies for cooperative search are evaluated in this
context, and comparisons between homogeneous and hybrid
search strategies are investigated in numerical studies.

I. INTRODUCTION

As autonomous robots are increasingly employed for in-
telligent information-gathering tasks, decision-making capa-
bilities in these systems become more relevant and essential
for efficient completion of assigned tasks as well as potential
interaction with their human counterparts. One such task is
probabilistic search of a region for the presence or absence of
a target. There is renewed interest in probabilistic search due
to advances in autonomy that enable robots to realize various
new search-related objectives. Search applications include
traditional scenarios such as search-and-rescue missions and
surveillance for intruder detection, but also extend to other
arenas such as modeling of animal foraging or hunting
behavior and search-driven visual attention.

The classical theory of search was introduced by Koop-
man [1] for the search of naval vessels (e.g., submarines)
during World War II, and furthered by many others [2],
[3], [4] in the context of operations research. The advent
of ubiquitous sensing and inexpensive computing capabili-
ties is facilitating a natural progression from human-guided
search to autonomous search using intelligent mobile robots.
Searching problems also arise in other research communities,
including signal detection [5], machine learning [6], and hu-
man visual attention [7] research. Furthermore, teams of mo-
bile search agents endowed with communication and coor-
dination capabilities can cooperatively conduct autonomous
search, taking advantage of the benefits of multi-robot sys-
tems, such as increased reliability and performance in the
collective objective [8], [9], [10], [11].

However, much of previous research literature on search
falls short in addressing various components of the proba-
bilistic search task. In particular, previous methods to opti-
mize search plans using only prior information, such as those
found in classical search theory, lack the benefit of feedback,
which is essential when dealing with dynamic environments
(e.g., moving targets). Also, notions of the time or effort
necessary to complete the search task are largely missing
in robotic search literature, even though such metrics are
relevant for many situations such as rescue or recognition
tasks. Additionally, most prior works employ a limited model
of uncertainty in observations, where only missed detections
of the target are considered, neglecting possibly incorrect
positive measurements. Finally, search termination criteria
are often fixed arbitrarily without consideration for how they
are related to other factors such as detection characteristics
and search time.

In contrast, the work presented in this paper incorporates
search control strategies which update the agents’ search
plans iteratively (as in [12]) in order to adapt to possible
changes in the search environment. Further, by casting the
search task as a sequential decision, the time till a decision
is made regarding the presence or absence of the target be-
comes meaningful and serves as a performance metric when
comparing various search methodologies. Also, a general
model for imperfect observations is employed, such that both
missed detections and false alarms are easily accounted for.
An additional strength of the decision-theoretic framework
is the relationship that exists between the time till decision
metric, the search termination thresholds (which correspond
to confidence measures), and the amount of uncertainty in
the information-gathering (i.e., detection error rates). These
advantages to the approach taken in this paper help facilitate
the analysis and design of efficient and practical search
control strategies.

The main contributions of this work are the decision-
theoretic formulation of a multi-agent probabilistic search
problem, including an analytic expression governing the
evolution of the decision. Additionally, the advantages of
this framework for notions of heterogeneous search tasks for
teams of intelligent agents are also developed. This paper is
organized as follows, beginning with a formal statement and
construction of the considered search problem in Section II.
The evolution of the search decision process is developed
and presented in Section III, followed by investigation of the
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role of team search control strategies via numerical studies in
Section IV. Section V summarizes the results and discusses
future avenues of research.

II. PROBLEM DESCRIPTION AND FORMULATION

Consider a bounded search region, A, which is discretized
into |A| cells. Such cellular partitions of environments may
arise naturally due to the structure of the search region,
for example, different rooms within a building, or may
represent abstract decompositions of the space due to sensing
constraints, such as visibility or finite detection radius. In
this paper, let A be a rectangular environment, such that
its discrete representation is given by a regular lattice or
grid. Note, however, that the approach in this paper applies
more generally to any bounded region and for any discrete
partitioning of that region.

Denote the target of interest as x, which is assumed
to be present in A with probability, 0 < δ ≤ 1. The
parameter δ is the aggregate or cumulative probability of
the target distribution, and represents the searchers’ initial
“guess” as to the target’s presence in the search region
prior to commencing the search. This target probability
distribution is initially prescribed by prior information, if
any is available, on the target’s whereabouts. For example,
imperfect knowledge of the target’s preferences for specific
locations or perhaps the physical presence of obstacles or
terrain features in the search region can be used to shape the
prior target probability distribution. As depicted in Fig. 1,

Fig. 1. Illustration of the rectangular search region A with multiple
searchers (blue squares) and a target (red disc). The discrete surface,
depicted by the collection of gray bars, represents the assumed prior target
probability distribution.

the search region is given by a discrete grid, in which the
target may or may not be present. In the numerical studies
presented in this paper, the target is assumed to be present
and located at position (i, j) = (4, 3). Three searchers are
located initially at s0 = (8, 8), s1 = (8, 2), and s2 = (8, 5),
equipped with identical detectors with false alarm and missed
detection error rates given by, respectively, αi = 0.20 and
βi = 0.10, for i = 1, 2, 3. Their initial aggregate probability
value is given by δ = 0.50, which corresponds to a 50%
belief that the target is initially within the search region.

The multi-agent search objective posed in this paper is to
utilize a team of M search agents, si, for i = 1, . . . ,M , to
determine the presence of the target x in search region A.

This objective can be characterized by a binary hypothesis
test – the search decision – between hypotheses H = 1
and H = 0 (i.e., the target’s presence or absence in A,
respectively). The searchers’ search trajectories through the
region are to be designed to reduce the time required to
reach a decision. The search objective described above is
an example of an information-gathering task [12], [6], in
that information regarding the presence (and location) of the
target is accumulated as search agents maneuver through the
search region. The motion of each search agent is prescribed
by its respective dynamics model, such that agents are able to
either move to another adjacent cell or remain in the current
location at each time step.

The searcher uses its sensor to detect the presence or
absence of the target within the cell it is investigating. Let
d
(a)
i (t) ∈ {0, 1} denote the binary detection measurements

by search agent i in the ath cell at discrete time t. The
team’s task is confounded by the fact that observations
are imperfect, that is, the agents’ detectors may incorrectly
register the presence or absence of a target within the
observed cell, called false alarm and missed detection errors,
respectively [13].

In much of the autonomous search literature, however,
false alarm errors are generally neglected, as the search task
in these cases is considered complete upon the first positive
detection of the target [14], [8], [2]. Clearly, these approaches
would prematurely terminate the search in more realistic
scenarios where incorrect positive detections are possible.
In contrast, the decision-theoretic framework presented in
this paper neatly and easily addresses errors of both kind,
capturing the ith search agent’s probability of false alarms
and missed detections by αi and βi, respectively:

Pr[d(a)
i |x] :


Pr[d(a)

i = 0 |x = a] = βi

Pr[d(a)
i = 1 |x = a] = 1− βi

Pr[d(a)
i = 0 |x 6= a] = 1− αi

Pr[d(a)
i = 1 |x 6= a] = αi.

The time index, t, is dropped for succinctness when no
ambiguity exists.

Additional notation used in this paper is as follows. The
history of detections obtained by the ith search agent from
the start of the search till time t is given by Di(1 : t) =
{di(1), . . . , di(t)}. Denote the set of all M agents’ detection
histories as D(1 : t), and let D(t) be the set of all M
detections from all search agents at time t, i.e., D(t) =
{d1(t), . . . , dM (t)}.

A. Multi-agent Bayesian Filtering

Probabilistic methods are most appropriate for evaluat-
ing the evolution of most information-gathering tasks, as
they account for the probabilistic representations of imper-
fect information. However, traditional tools for recursive
estimation of states, such as the Kalman filter, are ill-
suited for scenarios requiring the propagation and update
of non-Gaussian distributions. Alternatively, the generalized
Bayesian filter [15], [16] employs the Chapman-Kolmogorov
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and Bayes relations as “prediction” and “correction” steps
that recursively incorporate arbitrary distributions.

Fusion of multiple observations in the context of Bayesian
filtering has been widely used in a variety of multi-robot
applications [17], [10]. The combination of detections from
multiple searchers in a Bayesian filter is briefly reviewed in
the following section. Additionally, a closed-form expression
governing the evolution of the decision is derived, which
is attainable due to the structure of the search as a deci-
sion. This analytic formula, which aids in the fundamental
analysis and efficient implementation of the proposed search
strategies, is one of the main contributions of this paper.

Prediction of Target Dynamics: The discrete analog to
the Chapman-Kolmogorov equation represents the propaga-
tion of the belief probability distribution to account for the
target model dynamics, which has the effect of increasing
the uncertainty in the target’s location and presence in the
search region.

Pr[x(t)=a|D(1 : t− 1)] =∑
m

p(m,a) Pr[x(t−1) = m|D(1 : t−1)],

where p(m,a) 4
= Pr[x(t) = a|x(t−1) = m] represents the

discrete state transition probability of the target moving to
cell a given that it was previously in cell m. The transition
probability matrix given by P

4
= [p(m,a)] reflects the discrete

structure of the region and captures the uncertainty that is
present in the environment and the target motions. Such
a characterization of the target motion, such as a random
walk or even more complex dynamics [18], can often be
constructed in a straightforward manner, and in this way,
the target’s discrete trajectory through the search region can
be seamlessly accounted for in the evolution of the belief
distribution.

Update for Multiple Observations: At each time step,
the team of searching agents provides M detection measure-
ments, D(t), to be aggregated and used to update the ath cell
belief value. Bayes’ rule can be applied to these conditionally
independent observations, such that
Pr[x(t) = a |D(1 : t) ]

= Pr[x(t) = a|D(1 : t− 1),D(t) ]

=
Pr[D(t)|x(t)=a,D(1 : t−1)]

Pr[D(t)|D(1 : t− 1)]
Pr[x(t)=a |D(1 : t−1)],

where Pr[x(t) = a |D(1 : t− 1)] is determined from the
prediction step, Pr[D(t)|D(1 : t − 1)] is the normalizing
marginalization of the observations, and

Pr[D(t)|x(t)=a,D(1 : t−1)]
= Pr[d1(t), . . . , dM (t)|x(t)=a,D(1 : t−1)]

=
M∏
i=1

Pr[di(t)|x(t)=a].

Note that by considering the search in a decision-theoretic
context, the likelihood function, Pr[di(t)|x(t) = a], repre-
sents the general detection model described previously, easily
capturing both missed detections and false alarms.

The independence of detections taken in different cells
holds true given that observing in one location does not affect
another search agent’s observation somewhere else in the
search region. Further, simultaneous detection measurements
(that is, within the same cell) are assumed to be probabilisti-
cally independent in that each observation does not interfere
with the other sensors’ respective sensor characteristics (i.e.,
detection error rates), which is reasonable for practical de-
tection modalities.

III. EVOLUTION OF THE SEARCH DECISION

Given the Bayesian filtering of detection measurements
described in the previous section, the search can be read-
ily defined as a decision process. As more information is
gathered (in the form of positive and negative detections),
the belief that the target is present in the search region
also evolves with each discrete observation. This sequential
notion of decision-making stems from the seminal work
by [19], [20] in formulating the Sequential Probability Ratio
Test (SPRT), where information is accumulated over time
until one of two decision boundaries (corresponding to the
acceptance or rejection of the hypothesis) is reached. The
discrete observation structure of the SPRT lends itself to the
discrete time search application treated in this paper. Note,
however, that this is not a limitation, as the mathematically
equivalent, continuous analog of the SPRT, called the drift
diffusion model for decision making [21], can be applied
for continuous search problems, and is the subject of future
investigation.

The belief function, B(t), is given by the cumulative mass
function of the target distribution, representing the aggregate
probability of the target’s presence within the search region:

B(t)
4
= Pr[H = 1|D(1 : t)] =

|A|∑
a=1

Pr[x(t) = a|D(1 : t)].

The individual cell belief probabilities are computed using
the propagation-update rules of the Bayesian filter described
previously, and in practical implementations, the update step
is often the computationally limiting component of such
filters [10], [17]. A closed-form expression for the belief
evolution is presented below.

Analytic expression for the belief evolution: Based on
the approach in [12], the formulation for multiple search
agents is a straightforward extension of the analysis for single
observations by substituting a vector of conditionally inde-
pendent observations. The aggregate belief function requires
the marginalization of the observations, given by:

Pr[D(t)|D(1 : t− 1)] =∑
H={0,1}

Pr[D(t)|H, D(1 : t− 1)] Pr[H|D(1 : t− 1)].

Once again employing the conditional independence of the
M detections, the above expression can be examined by
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noting that

Pr[D(t)|H =1,D(1 : t−1)]
= Pr[d1(t), . . . , dM(t)|H =1,D(1 : t−1)]

=
M∏
i=1

Pr[di(t)|H = 1, D(1 : t− 1)],

where the likelihood of an observation given the affirmative
hypothesis is

Pr[di(t)|H = 1, D(1 : t− 1)]

=
∑|A|

a′=1Pr[d(a)
i |x=a′,D(1 : t−1)]Pr[x=a′|D(1 : t−1)]∑|A|

a′=1 Pr[x=a′|D(1 : t−1)]
,

and conversely for the null hypothesis that

Pr[D(t)|H = 0,D(1 : t− 1)]
= Pr[d1(t), . . . , dM (t)|H = 0,D(1 : t− 1)]

⇒
M∏
i=1

Pr[di(t)|x 6= a′,D(1 : t− 1)], ∀a′.

Following [12] and utilizing the above expansions, the
modified expression for updating individual cell belief prob-
abilities is:

Pr[x(t) = a|D(1 : t)] =
Pr[D(t)|x = a,D(1 : t− 1)] Pr[x = a|D(1 : t− 1)][
Pr[D(t)|x=a′,D(1 : t−1)] Pr[x=a′|D(1 : t−1)]
+Pr[D(t)|H =0,D(1 : t−1)](1−Pr[x=a′|D(1 : t−1)])

] .

Further manipulation leads to the final expression for the
aggregate belief evolution:

B(t) =
∆(t)

∆(t) + (α)l(1− α)Mt−l(1− δ)
, (1)

where l is the number of positive (d = 1) detection observa-
tions over all M agents up till time t and

∆(t)
4
=

t∏
j=2

Pr[D(j)|H = 1,D(1 :j−1)]

× Pr[D(1)|H = 1] Pr[H = 1].

The intuition behind expression (1) is simply that the belief
evolves according to the probability of receiving correct
positive detections divided by the total probability of total
(correct plus false alarm) positive detections.

Benefit of multi-agents, even without feedback: The
use of multiple searching agents is beneficial for search,
even in the absence of feedback about the current belief
distribution [22]. This fact is simply due to the increased
amount of information that is accumulated at each time step,
in the form of either multiple simultaneous observations in
a single cell or the greater size of the searched area.

The improvement due to multi-agent search in the context
of the search decision is evident by observing the reduction
in the decision time with increasing number of searchers,
as illustrated in Fig. 2 for open-loop strategies such as

random walking search and parallel sweeping search. In
these nonadaptive settings, the search performance is tightly
related to the re-visitation rate, or the number of times the
target cell is revisited, during the course of the search. In this
manner, the decision rate, that is, how quickly the decision
evolves, is an interesting aspect of this search-as-a-decision
problem to be investigated in future efforts.

(a)

(b)
Fig. 2. Comparison in illustrative simulation trials of search decision
performance improvement for increasing number of search agents employ-
ing (a) random walking, or (b) parallel sweeping search. Simulations were
conducted using the setup illustrated in Fig. 1.

IV. MULTI-AGENT SEARCH STRATEGIES
UNDER FEEDBACK

The use of feedback about the current belief distribution
to generate updated search trajectories greatly improves the
performance of the search task [12], and is known as adaptive
or semiadaptive search [2]. The optimization of the search on
a grid is provably complex [23], and the computational cost
of approximations must be considered in their evaluations.

Implementations of (semi)adaptive strategies intuitively
will outperform those of naı̈ve ones, such as the random walk
or parallel searches illustrated previously, as they employ
updated information in computation of search paths. The use
of multiple agents amplifies this advantage in reducing the
time until the search decision is made as compared to single
agent search [12]. The effect of increasing numbers of more
simultaneous searchers is shown in Fig. 3.

Hybrid Search Teams: An additional advantage of search
with multiple agents is that the search task can be dis-
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(a)

(b)

Fig. 3. Performance in illustrative simulation trials of (a) “Drosophila-
inspired” and (b) “saccadic” search strategies using multiple search agents.
Increasing the number of searchers reduces the time till a decision is made.

tributed heterogeneously, that is, different agents can employ
different strategies for generating their respective search
plans. A wide range of applications call for deployments
of hybrid teams with varying detection and motion capa-
bilities. For example, fast-moving unmanned aerial vehicles,
which typically yield low to mid-resolution information, can
be combined with slower but higher resolution, ground-
based counterparts to search for, inspect possible hits, and
eliminate identified hostile targets. In the decision-theoretic
framework developed thus far, the overall search decision
task remains the same (i.e., “Is the target present?”), and
the evolution of the belief also easily incorporates detections
from differing information-gathering modalities. Note that
the heterogeneity may be manifest at the sensing level with
varying detection error rates (e.g., different sensor suites
onboard different robots) or at the strategic level with task-
or resource-dependent assignment of search trajectories (e.g.,
fast-moving UAV’s handle broad search while slower UGV’s
perform inspections). Hybrid search in the latter case is
demonstrated via the following example.

Consider the application example of a building under
surveillance by a distributed sensor network, where each cell
or room in the complex has a camera. A security guard is
able to choose which camera is turned on and displayed on
his screen, while another guard patrols on foot to areas of
potential intrusion. One agent using the “saccadic” strategy,

where observations are taken in the cell containing maximal
belief, can be combined with another search agent employ-
ing the “Drosophila-inspired” search strategy from [12] (in
which a searcher only updates its search plan periodically)
to model the search of the informed walking guard. The
simulation for this example hybrid search team is shown
in Fig 4. The two search agents depicted in 4 conduct a

(a) (b)

(c) (d)

(e) (f)
Fig. 4. Simulation snapshots of a hybrid search team’s path through
the search region. Searchers 0 and 1 employ the Drosophila-inspired and
“saccadic” search strategies, respectively. (a)-(d) Search agent 1 is able to
jump to cells with high belief, while search agent 0 maneuvers through the
region. (e) Searcher 1 has identified the cell likely to contain the target, and
(f) search agent 0 converges on this cell upon updating its search plan.

distributed search of the region, in that their observations are
used jointly to update the target belief distribution. Search
agent 1, not limited by motion constraints, ensures that
disjoint sections of the search region are observed, whereas
its teammate augments the search by exploring cells along its
search trajectory. This combination of search methodologies
provides a balance between the narrow but fast search of
the “saccadic” strategy and the slower yet more exploratory
nature of the “Drosophila-inspired” one.

An illustration of this combined benefit can be seen in
the belief evolution for the hybrid team, shown in Fig. 5,
against the performance of homogeneous search teams using
one of either the “saccadic” or the “Drosophila-inspired”
strategies. Given identical simulation settings (i.e., initial
starting locations and agent detection error rates), the two-
agent hybrid search strategy outperforms the comparable
teams employing only a single strategy. This (perhaps sur-
prising) result is caused by the fact that, in the latter cases
of homogeneous teams, the search agents begin to examine
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the same cells at the same time. Although this may improve
the combined “virtual” detector at this location, the added
benefit of observing different cells is lost in these cases.

Fig. 5. Comparisons from illustrative simulation trials of the performance
of the hybrid search using saccadic and Drosophila-inspired strategies,
compared to the respective single strategy search teams.

V. CONCLUSIONS AND FUTURE WORK
This paper investigated the problem of searching for a

dynamic target in a given search region using multiple
search agents. Extending the decision-theoretic framework
of [12] to incorporate a team of searchers, the advantage
of distributed search was demonstrated by reducing the
time until a decision regarding the target’s presence or
absence is made. Further, the ability to employ hybrid search
strategies, where search agents use different methods for
generating their search plans, highlighted another benefit of
the formulation presented herein. Such hybrid searches can
be useful for heterogeneous teams, including human-in-the-
loop applications.

Avenues for further research are abundant, including ex-
tension to multi-target scenarios, such as in [10]. In this
case, more sophisticated target tracking [24] and task as-
signment [25] methodologies may be required. Also, for
situations where a specific target is of interest among many
false targets, an additional recognition or identification phase
is necessary to distinguish between desired and decoy ob-
jects [26], [27]. This feature might be particularly relevant
for security or surveillance applications in practical settings
(such as identification of a person in a crowded airport). The
sequential decision-theoretic framework presented in this pa-
per offers the possibility to address these two stage decision
problems by introducing intermediate decision thresholds
corresponding to the explore and the exploit search modes.

Another possibly illuminating direction is to employ
graph-theoretic representations of the search region, such
that connections between the search as a decision, as
posed in this paper, and search on graphs can be made.
The wealth of available tools and relevant issues, such
as re-contamination of previously searched cells [28],
may provide a way, coupled with the decision-theoretic
framework, to generalize the discrete search problem
described in this paper.
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