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Abstract— Consistency of object dynamics, which is related
to reliable predictability, is an important factor for generating
object manipulation motions. This paper proposes a technique
to generate autonomous motions based on consistency of object
dynamics. The technique resolves two issues: construction of an
object dynamics prediction model and evaluation of consistency.
The authors utilize Recurrent Neural Network with Parametric
Bias to self-organize the dynamics, and link static images to the
self-organized dynamics using a hierarchical neural network
to deal with the first issue. For evaluation of consistency,
the authors have set an evaluation function based on object
dynamics relative to robot motor dynamics. Experiments have
shown that the method is capable of predicting 90% of unknown
object dynamics. Motion generation experiments have proved
that the technique is capable of generating autonomous pushing
motions that generate consistent rolling motions.

I. INTRODUCTION

Recently, motion generation based on affordance [1] is
attracting many researchers’ attentions. Affordance is a fea-
ture of an object or environment that implies how to interact
with the object or environment. Currently, most works on
affordance are performed for mobility, which generate mo-
tions based on traversability [2] [3]. These studies evaluate
the traversability of an object to classify the robot’s motions
into two groups, traversable or not traversable, to select a
traversable motion as the afforded motion.

As compared to affordance based mobility, only few works
exist for affordance based object manipulation, despite that
it is fundamental to human life. Stoytchev has addressed
extension of reach as a criteria for generating tool manip-
ulation motions [4]. This is one of the four factors that Beck
proposes for which most animals use tools [5]. However,
a more fundamental criteria exists for object manipulation:
The object must be handled as predicted. This capability
is referred to as Reliable Predictability by Hawkins [6], a
neuroscientist who proposes that perception and behavior
are based on predictability of environmental changes. The
authors focus on Reliable Predictability as a criteria to
generate motions.

Reliable predictability is tightly connected to consistency
of environmental changes. Humans are more capable of
predicting consistent results than inconsistent ones. It is
predictable that a door with a doorknob will open when
pushed/pulled on the doorknob. A plain door with no feature
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contains no predictable information since it may open either
from the left or right. Therefore, the authors evaluate consis-
tency of environmental changes as a measure for Reliable
Predictability. Hawkins also proposes that humans act to
generate predictable, or consistent results.

The aim of our work is to generate consistent object
manipulation results from the object image based on the
robot’s active sensing [7] experiences. The work contains
two issues:

1) Creation of a model to predict object dynamics from
robot motions.

2) Evaluation of consistency for object dynamics.

The authors have dealt with the first issue by using a Recur-
rent Neural Network (RNN) for learning the object and robot
dynamics. As robots possess hardware limitations (moving
the robot too much would lead to damage of hardware), it
is necessary for the robot to adapt to unknown environments
from few training data. The generalization capability of RNN
is one of the capabilities that meet this requirement. For
dealing with the second issue, the authors have used the
prediction model to search for the most consistent object
dynamics relative to small variations in robot dynamics. The
detected object-robot dynamics is linked to the initial object
image through a hierarchical neural network. This provides
the capability to generate consistent motions from the object
image for known and unknown objects. In this paper, the
authors have evaluated the prediction capability of the model
and motion generation capability of the technique using the
pushing motion of a humanoid robot.

A related work conducted by Fitzpatrick trains the robot to
generate rolling motions of objects or to mimic an observed
behavior [8]. The robot is trained using various objects
learning the ⟨object, action⟩ pair for motion generation. The
main difference of our approach is in the generalization
capability of neural networks which enables the robot to
generate motions for untrained objects. The objective of our
approach also differs. Fitzpatrick’s approach generates goal-
oriented behaviors, where our approach generates the most
predictable, or consistent, behavior.

The rest of the paper is composed as follows. Section
II describes the proposed model and technique. Section III
describes the experiment using a humanoid robot. Section
IV describes the results and discussions for the prediction
experiment. Section V describes the results and discussions
for the motion generation experiment. Conclusions and future
works are presented in Section VI.
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II. OVERVIEW OF TECHNIQUE

This section describes the overview of the model and
technique.

A. RNNPB Model

The authors utilize Recurrent Neural Network with Para-
metric Bias (RNNPB) [9] shown in the upper half of Fig.
1 for learning dynamics. RNNPB is an extension to the
Jordan-type RNN [10] which contains Parametric Bias (PB)
nodes in the input layer. In order to deal with sequential data
(dynamics), RNNPB is set as a predictor which calculates the
next state S(t + 1) from the current state S(t).

The role of the PB nodes is to learn multiple sequential
data in a single model. While RNN calculates a unique output
from the input and context value, RNNPB is capable of
altering its output by changing the values of the PB nodes
(PB values). This capability provides RNNPB to learn and
generate multiple sequences. Therefore, RNNPB is often
called a distributed representation of multiple RNNs.

RNNPB is a supervised learning system requiring teaching
signals as is the Jordan-type RNN. The training phase
consists of weight optimization and self-organization of
PB values using back propagation through time (BPTT)
algorithm [11]. For updating PB values, the back-propagated
errors of the weights are accumulated along the sequences.
Denoting the step length of a sequence as T , the update
equations for PB during the training phase are

∆ρ = ε ·
T∑

t=1

δbp
t (1)

p = sigmoid(ρ). (2)

First, the delta force for updating the internal values of PB p
is calculated by (1). The delta error δbp

t in (1) is calculated
by back propagating the output errors from the output nodes
to the PB nodes. The new PB value p is calculated by (2)
applying the sigmoid function to the internal value ρ which
is updated using the delta force. ε is a learning constant.

Training of RNNPB self-organizes the PB of each se-
quence according to their similarities, forming the PB space
which creates clusters of similar sequences. In other words,
the training encodes the sequences into PB values. Therefore,
the sequences could also be reconstructed from the PB values
by recursively inputting the output S(t + 1) back into the
input S(t). This process called Association calculates the
whole sequence from an initial state S(0) and a PB value.

B. Predicting Object Dynamics from Robot Motion

Training the model for prediction of object dynamics
consists of two phases. The first phase trains RNNPB using
object motion data acquired from active sensing experiences
with training objects. The input of RNNPB is the current
object feature and the output is the object feature in the next
state. The second phase trains a hierarchical neural network
using the initial object image and robot motion as the input,
and self-organized PB value as the output. The construction
of the system is shown in Fig. 1. The inputs of the system are

Current Object 

X(t+1)

Context Loop
X(t)

Static Image      Robot Motor Value

RNNPB

Feature State S(t) 

Next Object 
Feature State S(t+1) 

Hierarchical Neural Network

PB

Input 

Output 

Fig. 1. Configuration of Prediction System

object image and robot motion. The output is the predicted
object dynamics.

Prediction of environmental change is an output of a
nonlinear function inputting various factors that affect the
change. The model encodes object dynamics into PB values,
and uses the hierarchical neural network as a nonlinear
function which inputs object image and robot motion. For
example, as a cylinder would roll when pushed by its side,
the shape of an object (cylinder) and robot motion (push by
its side) are two large factors that affect object dynamics
(roll). Object shape is represented by raw object image,
which is input into the hierarchical neural network. Object
features used for training RNNPB are obtained from se-
quential object images acquired during active sensing. These
features represent the description of the object dynamics
itself. In this paper, object features input into RNNPB are
predesigned as we focus more on the capability of the
model to predict object dynamics. Ultimately, the input of
the hierarchical neural network and RNNPB would be united
as the object image.

Prediction of object dynamics is done by inputting only
the initial frame of object image and robot motion into the
hierarchical neural network to calculate the PB value. The
PB value is then used to associate the whole sequence of
object motion.

C. Motion Generation based on Object Dynamics Consis-
tency

The model for generating motion based on object dynam-
ics consistency is similar to the model in Fig. 1. The two
differences are

1) Robot motion is trained using RNNPB, not hierarchical
neural network.

2) There is an additional phase that searches for consistent
object dynamics.

Considering the first difference, the motion generation sys-
tem inputs the initial object image, and outputs robot motion.
As introduced in the description of the prediction system,
the input of the system is input into the hierarchical neural
network and the output of the system is input/output into

1609



the RNNPB. Therefore the robot motion is shifted from the
input of the hierarchical neural network to the input/output
of RNNPB. This also provides the system to generate more
dynamical motions compared to when the robot motion was
input into the hierarchical neural network, since RNNPB
is used for learning dynamical sequences. Therefore, the
inputs/outputs of RNNPB are robot joint angle and object
feature, and the input of the hierarchical neural network is
the static image.

The first phase trains RNNPB using object/robot motion
data acquired from active sensing experiences with training
objects. The joint angle of the robot is input with the object
feature into the RNNPB. The training forms the PB space,
based on similarity of object/robot dynamics.

The second phase searches through the PB space based on
a consistency evaluation function. The evaluation function is
set as

E(p) =
δO2

δp
, (3)

where O is the associated object dynamics and p is the
PB value. Equation (3) evaluates the fluctuation of object
dynamics relative to fluctuation of PB (robot motion). The
local minimum of (3), which indicates the PB encoding
object dynamics with little deviation when the robot motion
fluctuates, is sought by Steepest Descent Method. In other
words, the PB of the local minimum encodes the most
consistent object dynamics in its vicinity in the PB space.

For solving (3), we discretize the function for numerical
calculation, as it is difficult to be solved analytically. The
discretization of (3) derives

E =
1
µ

∑
i,j,t

(O(p1, p2, t) − O(p1 + iµ, p2 + jµ, t))2

(i, j = −1, 0, 1) (i · j = 0), (4)

where t is the step number of the sequence and µ is the
discretization width. Equation (4) is written for two PB
nodes.

The PB to be sought is the one encoding the most
consistent object dynamics. Steepest Descent Method is an
initial value dependent method which possesses many local
minimums. We evaluate the wideness of the PB space to
determine a unique PB. During the training of RNNPB,
consistent patterns are distributed widely in the PB space,
as the update equations (1) and (2) are conducted for every
pattern. Therefore, the PB to be sought is the one with the
largest number of points to converge from equally divided
initial points. In this method, we divide the PB space defined
in [0, 1] into lattice points, and use each lattice point as initial
points to converge into a local minimum. The PB with the
largest number of initial points to converge is the PB (p∗)
encoding the robot motion which generates consistent object
dynamics. The overview of the technique is shown in Fig.
2.

The third phase trains a hierarchical neural network to link
the static object image to the PB value derived in the second
phase.

For motion generation, the object image is input into the
hierarchical neural network to calculate the PB value. The
robot motion is associated by inputting the PB value into
RNNPB.

III. EXPERIMENTAL SETUP

The authors have used the humanoid robot Robovie-IIs
[12] (Fig. 3), which is a refined version of Robovie-II [13],
for evaluation of the method. Robovie-IIs has three DOF
(degrees of freedom) on the neck and four DOF on each
arm. It also has two CCD cameras on the head for processing
visual information, one of which was used in the experiment.

The authors have conducted two experiments using the
pushing motion of the robot: one for evaluating the prediction
capability and one for evaluating the motion generation
capability. The training procedures of the experiments are
as follows.

1) Acquire motion sequences of object features (center
position and inclination of the principal axis of inertia
of the object) from images while the robot pushes
training objects.

2) Train RNNPB using motion sequences.
3) Search for consistent object dynamics. (for Motion

Generation Experiment)
4) Train hierarchical neural network.

The objects used for the prediction experiment and motion
generation experiment are each shown in Fig. 4 and Fig. 5,
respectively.

A. Experiment 1 (Object Dynamics Prediction Experiment)

This experiment evaluates the prediction capability of the
method with practical objects shown in Fig 4. The robot
pushed the objects placed in various orientations at five
different heights to generate rolling, falling over, sliding,

PB1

PB2

1. Divide PB Space

into Lattice Points

2. Converge Each Lattice

Point to Local Minimum

PB1

PB2

Steepest Descent Method

3. Select Point with Largest Number of Converging Points
PB1

PB2

p*

PB1

PB2

Fig. 2. Overview of Consistency Evaluation
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Fig. 3. Humanoid Robot Robovie-IIs

and bouncing motions of the objects. A total of 115 mo-
tion sequences were acquired (each consisting of 15 steps
acquired at 10 frames/sec). 77 motion sequences were used
for training the neural networks. The other 38 were used for
prediction evaluation.

As the input/output for RNNPB, the center position (x, y)
and the inclination of the principal axis of inertia (θ) of the
object are used, extracted from sequentially acquired images.
These data are normalized ([0, 1] for center position, [0.25,
0.75] for inclination of the principal axis of inertia) before
being input into RNNPB. Considering the case of the ball,
which has no principal axis of inertia, θ was set to 0.05.
RNNPB was trained by iterating the calculation 1,000,000
times.

The input of the hierarchical neural network consists of the
grayscale initial view of the object from the robot (Resolution
50 × 40) and the robot shoulder pitch angle (1 DOF). The
background was eliminated before inputting the image. These
input data are also normalized ([0,1]). The hierarchical neural
network was trained by iterating the calculation 30,000 times.

The construction of the neural networks are shown in Table
I and Table II.

B. Experiment 2 (Motion Generation Experiment)

This experiment consists of evaluation with cylindrical
objects. The robot altered its shoulder pitch angle and elbow
pitch angle to generate planar pushing motions. The snack
container and pen case were each put in five orientations
with the robot to push from five different angles to generate
50 motion sequences. During data acquisition, the objects
generated consistent rolling motions when pushed along the

Fig. 4. Objects used for Prediction
Experiment

snack container

pen case

steel can

coin box

Fig. 5. Objects used for Mo-
tion Generation Experiment, Train-
ing Objects (Left) and Target Objects
(Right)

shorter principal axis of inertia. A total of 33 rolling motions
were exhibited, out of the 50 patterns. No consistent object
motions were discovered for other robot motions. Therefore,
the object dynamics to be generated for the experiment is
the rolling motion of the object.

The input of RNNPB consists of the same object features
as the previous experiment, and the robot joint angles (2
DOF) acquired at 2.5 frames/sec. The robot joint angles are
normalized ([0, 1]) before input into RNNPB. The RNNPB
was trained by iterating the calculation 1,000,000 times.

For consistency evaluation, the authors divided the PB
space into 10× 10 areas. The inner 8× 8 lattice points were
used as initial points. The outer lattice points were neglected
since the derivative may by miscalculated due to undefined
area (pi < 0, pi > 1). The discretization width µ was set to
0.001.

The input of the hierarchical neural network consists
of a reducted grayscale image of the object (Resolution
23 × 22) acquired from the camera just before the robot
pushes the object. The background was also eliminated as in
the previous experiment. The images are normalized ([0,1])
before being input. The hierarchical neural network was
trained by iterating the calculation 30,000 times.

The construction of the neural networks are shown in Table
I and Table II.

For evaluation of motion generation the robot pushed the
objects placed in the same initial position at random postures.
The initial image of the object is input into the hierarchical
neural network to calculate the PB, which is used to generate
the motion.

IV. RESULTS OF PREDICTION EXPERIMENT
(EXPERIMENT 1)

This experiment evaluates the prediction capability of the
technique with a variety of practical objects. Training was
conducted with 77 motion sequences: 35 sliding motions, 14
rolling motion, 19 falling motion, and 9 bouncing motions.
The unknown target sequences consist of 10 sliding motions,
4 rolling motions, 8 falling motions, and 16 bouncing mo-
tions. As the authors have examined a few prediction results
with sliding, rolling, and falling motions in the previous work

TABLE I
CONSTRUCTION OF RNNPB

Experiment 1 Experiment 2
No. of Input/Output Nodes 3 5
No. of Middle Nodes 40 15
No. of Context Nodes 40 15
No. of PB Nodes 3 2
Learning Constant ε 0.01 0.03

TABLE II
CONSTRUCTION OF HIERARCHICAL NEURAL NETWORK

Experiment 1 Experiment 2
No. of Input Nodes 50 × 40 + 1 23 × 22
No. of Middle Nodes 20 10
No. of Output Nodes 3 2
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[14], in which all the prediction have been successful, a
larger number of bouncing motions have been included into
unknown target sequences.

A. Dynamics Prediction Results

Fig. 6, Fig. 7, Fig. 8 and Fig. 9 show some examples of
successfully predicted falling, sliding, rolling, and bouncing
motion sequences. The “association” process calculates the
motion trajectory of the center postion (x, y) and inclination
of the principal axis of inertia θ. If θ > 0.1, a rectangle is
formed using the predicted (x, y) and θ. In other words, the
rectangle represents the predicted trajectory of the principal
axis of inertia of the object. If θ < 0.1, we assume the
prediction as bouncing motion of a ball, and draw a circle
around (x, y).

The authors compared the predicted object motions with
actual object motions. Table III shows the number of success-
ful prediction for unknown target sequences. As the model
creates predictions based on trained data, it is incapable of
accurately predicting the actual sequences. Therefore, the
authors have set the success of each prediction as follows.

1) Slide : Stop after center position shifts right
2) Roll : Center position shifts continuously right
3) Fall : Inclination of principal axis of inertia rotates

about 90o

4) Bounce : Center position oscillates up and down while
shifting right

Considering sequences used for training, every predicted
sequence accurately corresponded to the actual sequence.
From Table III, the technique was capable of predicting
more than 90% of the total unknown target sequences.
Misprediction for the sliding pattern was predicted as fall
over, which is discussed in the next subsection. The two
unsuccessful predictions for the rolling patterns resembled a
combination of several dynamics.

B. Discussions

The results in Table III have shown that the prediction
capability of the method is stronger with dynamical object

Fig. 6. Falling Prediction Fig. 7. Sliding Prediction

Fig. 8. Rolling Prediction Fig. 9. Bouncing Prediction

motions, such as fall over or bounce. Here, we discuss the
factors that had led to failure in prediction for sliding and
rolling motions.

The most prominent factor is in the predefined object
features. In this experiment, the authors have used the center
point and inclination of the principal axis of inertia for sim-
plicity of object dynamics description. However, the sliding
motion and rolling motion possess fairly similar dynamical
properties when these object features are used: the difference
exists only in the magnitude of the movement of the center
position. In this paper, the authors predefined object features
to evaluate the prediction capability of the model. Future
works contain automatic object feature extraction based on
object dynamics generated during active sensing and the task
which the robot is to perform.

Another factor exists in unobservable properties of the
object. For example, Fig. 10 shows the initial image of the
object where the robot mistakened the sliding motion as
falling motion. The prediction was for a robot motion that
pushes the very bottom of the object. It is notable that even a
human would mistaken the object dynamics as falling over.

V. RESULTS OF MOTION GENERATION EXPERIMENTS
(EXPERIMENT 2)

This section describes the results of motion generation
experiments with cylindical objects. The authors performed
20 motion generation experiments with objects shown in Fig.
5: five experiments for each of the four objects placed in
random postures.

A. Generated PB Space

Figure 11 shows the PB space formed by training the
RNNPB. PB values of training data, which were self-
organized during training, are indicated as red triangles and
green squares. Red triangles indicate PB values for rolling
sequences of the objects. Green squares indicate those of
sequences other than rolling. The distributions of PB values

TABLE III
PREDICTION RESULTS FOR TARGET SEQUENCES

Object Motion Successful Prediction Total
Slide 9 10
Roll 2 4
Fall Over 8 8
Bounce 16 16
Total 35 38

Fig. 10. Initial Object Image for Sliding Prediction Failure
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are affected greatly by the number of times each motion
has been observed as stated in Section II-C. Since the robot
observed consistent (rolling) motions more than inconsistent
ones, the distribution of PB values for rolling motions are
wider compared to others.

Motion generation is done by first, calculating the PB
value by inputting the initial image into the hierarchical
neural network, and then associating the robot motion for
generation. Black circles in Fig. 11 indicate the 20 PB values
calculated by the hierarchical neural network during the
experiment. It is notable that the circles reside mainly in the
area where red triangles exist. These points are concentrated
in the center of the PB space. This is a result of self-
organization of PB values that the training has created a wide
local minimum in the center of the PB space.

B. Generated Robot Motions

Figure 12 shows the results of the 20 experiments. (a)-(j)
are motion generation results with training objects and (k)-(t)
are those with target objects. The five arrows in each image

Snack Container Steel Can

Pen Case Money Box

Fig. 12. Generated Robot Motions

represent the direction the object has rolled. From the results,
it is notable that the method was capable of generating robot
motions that would yield a consistent object rolling motion
depending on the orientation of the object.

C. Discussions

This section presents the discussions considering the ex-
perimental results.

1) Predefined Object Features: Training RNNPB gener-
ates clusters of similar dynamics in the PB space. How-
ever, in this experiment, the PB values of rolling motions
were bisected into two clusters. A major factor includes
predefinition of object features as the center position and the
inclination of the principal axis of inertia. The inclination of
the principal axis of inertia is defined [−π, π]. Therefore it
inverts when it reaches the limit. This has also resulted in
an overlapping region of PB for rolling motions and other
motions. Therefore, an automatic feature extraction method
based on the robot’s experience is required to achieve a more
accurate description of object dynamics.

2) Perceived Affordance: In regard to real affordance [1]
proposed by Gibson, which implies that the environment
provides various action possibilities, perceived affordance
[15] focuses on the actual behavior that one would take
based on his/her experience. From the experiments, the
robot generated pushing motions that yield consistent rolling
motions of the object, adapting to the size and posture of
the object. As consistency is closely related to Reliable
Predictability the results denote that the model is capable
of generating predictable motions. These results are due
to active sensing experiences, where the robot has equally
pushed the robot from various directions. Since the method
evaluates the wideness of the PB space, the robot would
generate a motion that the robot has observed more, when
it randomly generates active sensing motions. While the
authors have focused on Reliable Predictability as a criteria
for generating motions, works exist which apply other criteria
for motion generation as denoted in Section I. The results
in this paper with other works imply the capability of the
technique to functionalize perceived affordance to the robot’s
ability.

3) Scalability of the Method: We evaluate the scalability
of the method based on three criteria.

(A) Scalability for Object Dynamics
(B) Scalability for Object Shape
(C) Scalability for Robot Motion
Considering scalability for object dynamics, the authors

have shown that the model is capable of predicting Falling,
Sliding, Rolling, and Bouncing motions. These motions
cover most of the dynamics which objects can generate
when being pushed. However, the current model uses the
center position and inclination of principle axis of inertia
as features to describe object dynamics. In order to deal
with more complicated object motions, the model should be
refined so that these features are automatically extracted to
best describe object dynamics.
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Considering scalability for object shape, the authors have
used object image as input for the hierarchical neural network
to give the robot capability to recognize the object shape.
From the results of Experiment 1, the model was capable of
predicting dynamics of various object shapes. Future works
contain evaluation of the model’s ability to generate motions
with complicated object shapes.

Considering scalability for robot motion, RNNPB is ca-
pable of learning complicated robot dynamics as it could
learn object dynamics. However, learning different motions
(such as pushing and grasping) with the same model will
associate the two motions in the PB space. This will also
affect the motion searching phase, which should also be
evaluated to express the effectivity of the method. In order
to distinguish different motions, the model should contain a
selective module in the upper level which selects the robot
motion, and train different RNNPB for each motion. Creation
and evaluation of such model is still left as future work.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed an autonomous robot motion genera-
tion technique based on Reliable Predictability. As Reliable
Predictability is tightly connected to consistency of environ-
mental changes, the authors have evaluated consistency of
object dynamics for generating motions.

The method utilizes RNNPB, Steepest Descent Method,
and a hierarchical neural network to solve the two issues of
the technique. The first issue, creating a prediction model,
was resolved by first training the RNNPB with object dynam-
ics, and then attaching a hierarchical neural network to link
static object images and robot motion to object dynamics.
The method was capable of predicting 90% of the total
unknown sequences, denoting the effectivity of the method.

The second issue, evaluation of object dynamics con-
sistency, was resolved by using the prediction model to
associate the object dynamics, relative to robot motions.
First, RNNPB was trained using robot and object dynamics.
Next, a consistency evaluation function was set using the
derivative of the object dynamics relative to PB. Steepest
Descent Method was used to calculate the local minimum
from lattice points. The method evaluates the spatial spread
of the PB space, and selects the PB value with the largest
number of lattice points to converge. Lastly, the PB value is
linked with the initial object image. For motion generation,
the object image is input into the hierarchical neural network
to calculate the PB value. The PB value is input into
RNNPB to associate robot motion. The robot was capable of
generating robot motion that would yield consistent rolling
motions for cylindrical objects, denoting the effectivity of
the technique.

Future works include evaluation of the technique with
other objects and robot motions, and an automatic feature
extraction method for the input/output of RNNPB. In this
paper, the center position and inclination of the principal
axis of inertia was incapable of completely distinguishing
object rolling motions from other motions, though the gener-
alization capability made it possible to generate robot motion

which yields object rolling motion. We plan to use the output
errors of RNNPB to automatically extract dynamic object
features based on the robot’s experience. This would provide
the capability to apply to more complex object shape and
dynamics. Further on, we would move on to investigate
the effectivity of the method with other robot motions.
We believe that these works combined with related studies
from the field would lead to functionalization of perceived
affordance to the robot’s ability.
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