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Abstract— Physical human-robot interaction requires the de-
velopment of safe and dependable robots. This involves the
mechanical design of lightweight and compliant manipula-
tors and the definition of motion control laws that allow to
combine compliant behavior in reaction to possible collisions,
while preserving accuracy and performance of rigid robots
in free space. In this framework, great attention has been
given to robots manipulators with relevant elasticity at the
joints/transmissions. While the modeling and control of robots
with elastic joints of finite but constant stiffness is a well-
established topic, few results are available for the case of robot
structures with variable joint stiffness –mostly limited to the
1-dof case. We present here a basic control study for a general
class of multi-dof manipulators with variable joint stiffness,
taking into account different possible modalities for changing
the joint stiffness on the fly by an additional set of commands.
It is shown that nonlinear control laws, based either on static or
dynamic state feedback, are able to exactly linearize the closed-
loop equations and allow to simultaneously impose a desired
behavior to the robot motion and to the joint stiffness in an
decoupled way. Illustrative simulations results are presented.

Index Terms— Robot Manipulators, Elastic Joints, Variable
Stiffness, Feedback Linearization, Nonlinear Systems.

I. INTRODUCTION

One of the current challenges in robotics is the intro-
duction of robots in the human environment and, as a
consequence, the human-robot interaction/cooperation. The
motivations of the growing interest on these topics can be
found on the possibility of employing robots for human
everyday activities, for operations in dangerous environments
or for the assistance to elder or handicapped people. The
main requirements for the introduction of robots in the
human environment are safety and dependability of the
robotic system [1], [2]. In [3] it has been shown how these
requirements exclude the use of standard industrial robots
for the interaction with humans, because of the intrinsic
limitations on the safety of these devices due to the inertia of
the links and to the magnitude of the torque that the actuators
can apply.

A new generation of lightweight robots has been de-
veloped to overcome many of the limitations of standard
industrial manipulators in terms of performance, portability
and dexterity [4], [5]. In [6] it has been shown how these
devices can ensure a safe interaction with an unknown
environment and with humans. Anyway, these goals have
been achieved with a significant increment of the cost of the
overall robotic device, due to the use of composite materials
and high-performance sensors and actuators.

As an alternative way to make robots intrinsically safe,
it has been shown in [2] how the safety of robotic arms
can be improved, besides maintaining a low level of inertia,
introducing also an high compliance at the mechanical level
both in the joints of the robot and in the interface between
the robot and the environment. In order to obtain also an
adequate level of both static and dynamic performances, the
use of variable stiffness devices allows to satisfy all the
requirements for a safe and accurate interaction with humans
and unknown environments. With the aim of verifying the
effectiveness of this approach, even if limited to the single
joint case, several variable stiffness devices, and in particular
antagonistic actuated joints, have been developed [3], [7], [8].

In this paper, the feedback linearization problem of robotic
manipulators with variable joint stiffness has been analyzed.
The feedback linearization of robot with elastic joints is
a well-known problem, extensively treated by several re-
searchers in its original formulation [9]–[11] or in the revised
version in which the dynamic coupling between the joints
and the links are considered [12], [13]. In [14], [15] the
interaction of elastic joint robots with the external environ-
ment are analyzed. In all these works, the joint stiffness has
been considered as constant parameters. More recently, some
modifications to the classic problem have been proposed,
such as in [16] where the effects of joint damping on the
solution of the feedback linearization problem are discussed,
or in [17] where the feedback linearization of antagonistic
actuated robotic arms is carried out. This paper aims to show
how the full state linearization and simultaneous control
of both the position and the stiffness of the joints can be
achieved via static or dynamic feedback for the general
dynamic model of a robotic manipulator with variable joint
stiffness. We suppose that the mechanical stiffness of the
joint can be modulated by means of external control inputs.

II. DYNAMIC MODEL OF ROBOTS WITH VARIABLE JOINT

STIFFNESS

Our starting point is the general dynamic model of robot
manipulators with n elastic joints of finite, but constant
stiffness. The model is composed by the dynamics of 2n
rigid bodies (n links and n actuators), coupled through the
elastic joints. Let q ∈ Rn and θ ∈ Rn be, respectively, the
generalized coordinates of the driven links and of the driving
actuators. Under the simplifying modeling assumption used
in [9] (namely, in the contribution to the robot kinetic energy,
the angular velocity of the motors is due only to their own
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spinning), the dynamic model can be written as [9]:

M(q) q̈ + N(q, q̇) + K (q − θ) = 0 (1)

B θ̈ + K (θ − q) = τ, (2)

where M(q) is the inertia matrix of the robot links, vector
N(q, q̇) contains the centrifugal, Coriolis, and gravity forces,
K = diag{k1, . . . , kn} > 0 is the joint stiffness matrix,
B = diag{b1, . . . , bn} is the inertia matrix of the actuators,
and τ ∈ Rn are the motor torques. Damping at the joints
can be also included —see, e.g., [16]. In the following, we
will also use the equivalent notation

K (q − θ) = Φk, (3)

with matrix

Φ = diag{(q1 − θ1), (q2 − θ2), . . . , (qn − θn)} (4)

and vector k =
[
k1 . . . kn

]T ∈ Rn.
In this paper, the joint stiffness matrix K in eqs. (1–2)

will not be considered constant but, in general, a function of
time:

K = K(t). (5)

The range of values that joint stiffness can assume depends
largely on the technological implementation of variable
stiffness. In [7], joint stiffness can be varied in the range
5.73 · 10−4 ÷ 4.01 · 10−2; in [8], it can be varied from
13.2 up to more than 400; finally, in [3] the feasible range
is 0.2 · 103 ÷ 2.2 · 103 (all units are [Nm rad−1]).

Without loss of generality, we assume that all joints will
have variable stiffness. Moreover, it is K(t) > 0 for all t,
since it has no physical meaning to consider negative stiff-
ness while if the stiffness drops to zero the joint/transmission
would lead to an unactuated system.

Different causes may account for such stiffness variability.
Joint stiffness can vary in response to extra command inputs
to the robot system, as a function of the system configuration,
or from a combination of the two. Therefore, different
stiffness functions and behaviors can be defined depending
on the system implementation.

The simplest situation is when the joint stiffness ki can be
directly changed by means of a (suitably scaled) additional
command τki , for i = 1, . . . , n. In vector form,

k = τk. (6)

This situation is considered, e.g., in the paradigmatic 1-dof
case of two masses connected through a spring of variable
stiffness in [1], [2]. Therefore, the overall available input u
and the robot state x are:

u =
[

τ
τk

]
∈ R

2n, x =




q
q̇
θ

θ̇


 ∈ R

4n.

Indeed, the dynamics of change of the stiffness parameters
of the joints (or, more in general, of the transmissions) may
not be neglected. In this case, also in view of the mechanical
nature of the system, we can model the variation of joint

stiffness as a second-order dynamic system of the general
form

k̈ = φ(x, k, k̇, τk), (7)

in which the dependence include also the stiffness and their
time derivatives. In this case, equations (1–2) should be
complemented by (7) in order to represent the complete
dynamic model of a robot with variable joint stiffness. This
model covers a situation where the additional actuation τk

modifies the motion transmission configuration so to change
its stiffness, e.g., by pre-compressing nonlinear springs or
by moving some mechanical parts. A slight generalization
of this model can be used also to describe the case of antag-
onistic variable stiffness devices, such as those considered
in [3], [7], [8], [17] –see the Appendix.

As a result, the state vector of the robot is extended and
becomes:

xe =
[

qT q̇T θT θ̇T kT k̇T
]T ∈ R

6n, (8)

so that eq. (7) can be rewritten as:

k̈ = φ(xe, τk). (9)

We note that for n = 1, the number of state variable will be
equal to that needed to describe the dynamics of the variable
stiffness actuating device in [3].

In all cases, the objective will be to simultaneously control
the following set of outputs

y =
[

q
k

]
∈ R

2n,

namely the link positions (and thus, through the robot direct
kinematics, the end-effector pose) and the joint stiffness.
The implications on feedback linearization and decoupling
control of the different models of joint stiffness variation
will be investigated in Sec. IV.

III. INVERSE DYNAMICS OF VARIABLE STIFFNESS

ROBOTS

For robot manipulators having elastic joints with variable
stiffness, we consider here the problem of determining the
expression of the actuation commands τd and τk,d needed
to perform an assigned motion task, with a predefined and
simultaneous variation of the stiffness at the joints. These
commands can be then used for defining the feedforward
action in a control scheme.

We assume that the motion is specified in terms of a
desired smooth trajectory q = qd(t) for the link variables
(possibly coming from the kinematic inversion of a Cartesian
trajectory) and that a desired time evolution of the joint
stiffness matrix K = Kd(t) (or, equivalently, of the vector
k = kd(t)) is also given. These ‘reference output trajectories’
may be the outcome of some optimization process, like the
safe brachistochrone solution in [2].

For illustration, the procedure is detailed using the simple
model (6) for joint stiffness actuation. Therefore, we have
simply τk,d = kd(t) and only the computation of the nominal
motor torque τd is of actual interest.
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Note first that we can differentiate eq. (1) twice with
respect to time, without introducing derivatives of the input
torque τ . We have thus

M(q) q[3] + Ṁ(q) q̈ + Ṅ(q, q̇) + K̇ (q − θ) + K (q̇ − θ̇) = 0,
(10)

and

M(q) q[4] + 2 Ṁ(q) q[3] + M̈(q) q̈ + N̈(q, q̇) +
+ K (q̈ − θ̈) + 2 K̇ (q̇ − θ̇) + K̈ (q − θ) = 0. (11)

From eq. (1), evaluated along the desired output trajectory,
we obtain the reference motion for the motor position:

θd = qd + K−1
d (M(qd)q̈d + N(qd, q̇d)) . (12)

Evaluating now (10) along the desired trajectory, and using
eq. (12) for eliminating the presence of θd, yields for the
reference motor velocity

θ̇d = q̇d + K−1
d

(
M(qd)q

[3]
d + Ṁ(qd)q̈d + Ṅ(qd, q̇d)

− K̇dK
−1
d (M(qd)q̈d + N(qd, q̇d))

)
.

(13)
In the final step, by solving eq. (2) with respect to θ̈

θ̈ = B−1 [τ − K(θ − q)] , (14)

and substituting it into eq. (11), we obtain an expression
involving the motor torque τ , which appears pre-multiplied
by matrix KB−1 that is always non-singular. Therefore, we
can evaluate this expression along the desired trajectory and
solve for the reference motor torque as:

τd = M(qd)q̈d +N(qd, q̇d)+BK−1
d αd

(
qd, q̇d, q̈d, q

[3]
d , q

[4]
d

)
(15)

with

αd = M(qd) q
[4]
d + 2 Ṁ(qd) q

[3]
d

+ (M̈(qd) + Kd)q̈d + N̈(qd, q̇d)

− 2K̇dK
−1
d (M(qd)q

[3]
d + Ṁ(qd)q̈d + Ṅ(qd, q̇d))

−
(
K̈dK

−1
d + 2K̇dK

−1
d K̇d

)
(M(qd)q̈d + N(qd, q̇d))

(16)
where again eqs. (12) and (13) have been used to eliminate
the explicit dependence on θd and θ̇d. In the above expres-
sions, the contribution due to the rigid robot dynamics, to the
joint elasticity, and to the time-varying nature of the latter
can be clearly recognized.

As a result of this analysis, some minimal smoothness
requirements are imposed on the desired link motion qd(t)
and on the desired stiffness profile Kd(t) in order to achieve
their exact reproducibility on a time interval [0, T ] of interest
by the application of (15). For this, it is in fact necessary that

qd(t) ∈ C
4 and kd(t) ∈ C

2.

The considered model does not take into account dissipative
effects or hard nonlinearities. If one wishes to include these
in the inverse dynamics computation, if should be noted
that the link dynamics (1) needs to be differentiated twice

whereas the motor dynamics (2) is never differentiated.
Therefore, discontinuous models of friction or actuator dead-
zones on the motor side can be considered without problems.
On the other hand, any such discontinuous phenomena acting
on the link side should be approximated by a smooth
model. Furthermore, in the presence of actuator saturations,
it is possible to keep the command torques τd within the
saturation limits by a suitable time scaling of the manipulator
trajectory [18].

IV. FEEDBACK LINEARIZATION OF ROBOTS WITH

VARIABLE JOINT STIFFNESS

The analysis on the feedback linearization control [19]
of robots with joints of constant elasticity carried out in
previous works [9], [12], [16] is considered as a starting
point to develop a general approach to the solution of the
feedback linearization problem for robots with variable joint
stiffness.

It is necessary to assume that the joint stiffness are
measurable quantities. This last assumption is not restrictive
because, if practical implementations of variable stiffness
devices are considered [3], [7], [8], the joint stiffness is
directly related to the system state variables. Then, the
knowledge of the system state allows to compute the joint
stiffness.

Preliminarly, we note that feedback linearization is cer-
tainly not the simplest control strategy for the considered
system. However, it allows to prescribe linear tracking
performance with arbitrary dynamics and to obtain exact
trajectory reproduction in the nominal case.

A. Static Feedback Linearization

In this section, we assume that the joint stiffness depend
on the (relative) positions of both the joints and the actuators
[17]. We suppose also that there is no coupling between the
stiffness of the joints or, in other words, that the stiffness of
the i-th joint is influenced only by the position of the joint
itself, by the position of the i-th actuator and by the input
τki that is used to modulate the stiffness. It is then possible
to write k as generic nonlinear functions of the system state
variables q and θ:

k̈i = βi(qi, θi) + γi(qi, θi) τki , i = 1, . . . , n

or, in a more compact form:

k̈ = β(q, θ) + γ(q, θ) τk (17)

where k is the vector of the joint stiffness. Note that this last
equation is the form of eq. (9), then all the consideration
made in the previous section for this stiffness model are
valid.

Eq. (17), together with eq. (1) and (2), and recalling the
definition of K = diag{k1, . . . , kn}, define the complete
model of the robotic manipulator with configuration depen-
dent joint stiffness.

The stiffness ki has been written as a second order
differential equation (see eq. (17)) to highlight the fact that
this model represent the dynamics of a mechanism, actuated
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by the input τki , that modifies the configuration of the joint
to changes its stiffness, i.e. by pre-compressing nonlinear
springs or by moving some mechanical parts.

From eq. (17) it is possible to see that the vector relative
degree of the output ki is two, while for the output q, eq. (10)
remains unchanged and, by considering also eq. (17), eq. (11)
can be rewritten as:

M q[4] + 2 Ṁ q[3] + M̈ q̈ + N̈

+ K
(
q̈ − B−1 [τ − K(θ − q)]

)
+ 2 K̇ (q̇ − θ̇) + Φ (β + γ τk) = 0 (18)

where both the inputs τ and τk appears, so we can conclude
that the vector relative degrees of q is four. Then, by recalling
the state definition (8), we can state that the condition for
the solution of the feedback linearization problem on the sum
of the relative degrees of the output information is satisfied,
since the vector state dimension is 6 while the vector relative
degrees of q and k are 4 and 2 respectively.

Then, the overall system can be written in a more compact
form: [

q[4]

k̈

]
=

[
α(xe)
β(q, θ)

]
+ Q(xe)

[
τ
τk

]
(19)

where

α(xe) = −M−1
[
2 Ṁ q[3] + (M̈ + K) q̈ + N̈

+KB−1K (θ − q) + 2 K̇ (q̇ − θ̇) + Φ β
]

(20)

and Q(xe) is the so called decoupling matrix:

Q(xe) =
[

M−1KB−1 M−1Φ γ(q, θ)
0n×n γ(q, θ)

]
(21)

To achieve non interacting control of both the positions and
the stiffness of the joints of the robot, the decoupling matrix
Q(xe) must be non singular. From eq. (21) it is possible to
see that this last condition is satisfied if both the diagonal
matrices K and γ(q, θ) are non singular, or in other words:

ki > 0
γi(qi, θi) �= 0

}
∀ i = 1, . . . , n (22)

If these conditions are satisfied, by defining the static control
law:[

τ
τk

]
= Q−1(xe)

(
−

[
α(xe)
β(q, θ)

]
+

[
vq

vk

])
(23)

we obtain the full linearized form of the overall system:[
q[4]

k̈

]
=

[
vq

vk

]

where vq and vk are the new inputs of the linearized system
used to control, respectively, the positions and the stiffness
of the joints of the manipulator.

Note that the linearization law (23) is an algebraic function
of the state xe and of the auxiliary inputs vq and vk. To
highlight this fact, the expression α(xe) in eq. (20) can be
rewritten by substituting q̈ and q[3] from eq. (1) and (10).
Another important remark is that discontinuous phenomena

in the motor dynamics (2), e.g., due to dry friction, as well as
general nonlinearities in the joint stiffness dynamics (17) can
be handled within this control design, since no differentiation
of these relations is required.

B. Dynamic Feedback Linearization

By taking into account the following very simple stiffness
variation model:

ki = τki (24)

the full state linearization problem cannot be solved by
means of a static state feedback, because the vector relative
degree of the stiffness output becomes zero, and then the
condition on the sum of the vector relative degrees of the
output information is not longer satisfied.

By rewriting eq. (1) and (24), recalling the definition (4),
in the following form:[

q̈
k

]
=

[ −M−1N
0n×n

]
+

[
0n×n −M−1Φ
0n×n In×n

] [
τ
τk

]
(25)

it is possible to see that the decoupling matrix of the system
is singular, so it is not possible to achieve neither the non-
interacting control and the full state linearization of this
system via static state feedback.

From the structure of the decoupling matrix, one can see
that a dynamic extension on the input τk is needed to satisfy
the condition on the vector relative degree of the outputs.
Then, we define the auxiliary control input uk by adding a
chain of two integrators on the input τk (see also Fig. 1):

τ̈k = uk

In this way the vector relative degree of k is 2, while, for
what concerns q, by differentiating eq. (1) twice with respect
to time we can write:

M q[4] + 2 Ṁ q[3] + M̈ q̈ + N̈

+ K
(
q̈ − B−1 [τ − K(θ − q)]

)
+ 2 Φ̇ τ̇k + Φ uk = 0 (26)

in which both the input τ and the input uk appear. This
allows to state that the vector relative degree of q is 4. By
substituting τk and τ̇k with k and k̇ respectively, the system
can be then rewritten as:[

q[4]

k̈

]
=

[
α(xe)
0n×n

]
+ Q(xe)

[
τ
uk

]
(27)

where

Q(xe) =
[

M−1KB−1 −M−1Φ
0n×n In×n

]
(28)

α(xe) = −M−1
[
2 Ṁ q[3] + (M̈ + K) q̈

+ N̈ + 2 Φ̇ τ̇k + KB−1K (θ − q)
]
, (29)

from which it follows that the decoupling matrix is non-
singular if K is non-singular, or, in other words, if the joint
stiffness are strictly positive. This condition has been already
considered before to maintain the physical meaning of the
dynamic model of the manipulator.
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xe

[qT q̇T θT θ̇T ]T

z

τkτ̇k
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∫ ∫vc
zd
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−

q
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Ψ
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Linearization
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Manipulator

Setpoint
Generator Dynamic Extension

Fig. 1. Scheme of the feedback linearization controller with dynamic extension.

Since the state, and then the dimension of state space,
is not changed with respect to the previous analysis, it
follows that the conditions for the solution of the full state
linearization and non-interacting control problem on both the
relative degrees of the outputs and the non-singularity of the
decoupling matrix are now satisfied.

By defining the control law:[
τ
uk

]
= Q−1(xe)

(
−

[
α(xe)
0n×n

]
+

[
vq

vk

])
(30)

we obtain the linearized form of the (27):[
q[4]

k̈

]
=

[
vq

vk

]

Note that, also in this case, the linearization law (30) is an
algebraic function of the state xe and of the auxiliary inputs
vq and vk. To highlight this fact, the expression α(xe) in
eq. (29) can be rewritten by substituting q̈ and q[3] from
eq. (1) and (10). With respect to the previous case, the state
linearization has been now achieved by means of dynamic
feedback because of the introduction of the double integrator
(dynamic extension) on the stiffness control input τk.

C. Control Strategy

The state feedback linearization defined in the previous
sections allows to control both the positions and the stiffness
of the joint of the robot by means of two totally independent
linear controllers, composed by a static state feedback plus
feedforward action:

vq = q
[4]
d +

3∑
i=0

Pqi(q
[i]
d − q[i]) (31)

vk = k̈d + Pk1(k̇d − k̇) + Pk0(kd − k) (32)

with diagonal gain matrices Pk1 , Pk0 , Pqi , i = 0, . . . , 3 such
that:

λ4 + λ3pq3j
+ λ2pq2j

+ λpq1j
+ pq0j

= 0 (33)

λ2 + λpk1j
+ pk0j

= 0 (34)

with j = 1, . . . , n, are Hurwitz polynomials, where pqij
and

pkij
are the j-th term of the main diagonal of the gain matrix

Pqi and Pki respectively, while q
[i]
d , i = 0, . . . , 4 are the

vector of the desired joint position and their time derivative
up to the 4-th order and kd, k̇d and k̈d are the vector of
the desired stiffness trajectories and their time derivative up
to the 2-th order. By means of these linear controllers, it is

possible to achieve the asymptotic tracking of the position
and stiffness trajectories if qd(t) ∈ C4 and kd(t) ∈ C2.

This control approach can be viewed as a static state
feedback in the state space of the linearized system. Eq. (31)
and (32) can be rewritten in a more compact form by
grouping the control signals and the desired position and
stiffness trajectories in this convenient way:

vc =
[

vq

vk

]
, vf =

[
q
[4]
d

k̈d

]

zd =
[

qT
d q̇T

d q̈T
d q

[3]T

d kT
d k̇T

d

]T

To this end, it is useful also to define the state vector
z of the linearized system and the nonlinear coordinate
transformation between the state of the original system and
the state of the linearized system:

z =
h

qT q̇T q̈T q[3]T kT k̇T
iT

= Ψ(xe) =
2
6666664

q
q̇

−M−1 [N + Φ k]

−M−1
h
−Ṁ M−1 [N + Φ k] + Ṅ + Φ k̇ + Φ̇ k

i

k

k̇

3
7777775

It is important to note that, also in this case, both the state
linearization and the outer linear control loop depends only
on the state information xe and any time derivative of the
outputs must be computed.

The controller (31), (32) can be then rewritten as:

vc = vf + P [zd − z] = vf + P [zd − Ψ(xe)] (35)

where

P =
[

Pq0 Pq1 Pq2 Pq3 0n×n 0n×n

0n×n 0n×n 0n×n 0n×n Pk0 Pk1

]

A scheme of the proposed controller is depicted in Fig. 1.

V. SIMULATION OF A TWO-LINK PLANAR MANIPULATOR

The validity of the proposed approach is now reported by
presenting the simulation results of a planar two-link robotic
arm with variable joint stiffness. Due to space limitations,
the well-known dynamic model of the arm and the solution
of the previous equations for this system are omitted. Only
the simulation results in the case of full state linearization
via dynamic feedback described in Sec. IV-B are reported,
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Description Symbol Value
Joint inertia Jj 1.15e-2 kg · m2

Joint viscous friction coeff. dj 0.001 N · s · m−1

Joint mass mj 0.541 kg
Link center of mass lc 0.085 m
Link length l 0.3 m
Motors inertia bm 6.6e-5 kg · m2

Motors viscous frict. coeff. dm 0.00462 N · s · m−1

Position error weight wq 106 rad−1

Stiffness error weight wk 104 rad N−1 m−1

Actuator torque weight wτ 1 N−1 m−1

TABLE I

PARAMETERS OF THE 2-LINK PLANAR MANIPULATOR.

because this case is more complicated from the implementa-
tion point of view with respect to the static one, and because
there are no significant difference in the response of the full
state linearization via static or dynamic feedback.

In the simulation scheme, the trajectories are generated
through proper filters to compute also their derivatives up to
the appropriate order. The control strategy has been chosen
as in eq. (35) and the matrix P is obtained from the solution
of the CARE1 equation with a diagonal state weights matrix.
The parameters of the 2-link planar manipulator and of the
controller used in simulation are reported in Tab. I. The links
of the manipulator are considered identical for simplicity.
The elements of the resulting feedback matrix P are all
diagonal:

Pq0ii
= 3162.3 , Pq1ii

= 1101.9 , Pq2ii
= 192.0

Pq3ii
= 19.6 , Pk0ii

= 316.2 , Pk1ii
= 25.1

In Fig.2 the positions and the stiffness of the joints of the
two-link planar manipulator are reported, together with their
trajectory tracking errors. Note that the tracking errors are
practically zero, as expected. Both step and sinusoidal joint
trajectories are used together with coordinated movements
to show the stabilizing properties of the controller. It is
important to note that the joint stiffness trajectories are not
affected by the changes of the joint positions and vice versa.

VI. CONCLUSIONS

In this paper, the feedforward control action needed to
perform a desired motion profile on a robotic manipulator
with joint variable stiffness has been computed and the
problem of feedback linearization of these devices has been
analyzed. The key point in the analysis of this problem is
the definition of the stiffness model, and in particular of the
way the inputs of the system act to modulate the stiffness
of the joints. Two cases has been considered, with different
(vector) relative degree of both the position and the stiffness
information. The results of this analysis are summarized in
Tab. II. If also the damping of the transmission system is
considered, only input-output linearization can be achieved
[16].

The simultaneous non-interactive stiffness-position control
can be implemented by means of an outer linear control loop,
that can be seen as a static state feedback in the state space
of the linearized system. The asymptotic trajectory tracking
problem can then be solved with arbitrary dynamics if the

1Continuous Algebraic Riccati Equation
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Fig. 2. Full state linearization via dynamic feedback: (a) Joint positions,
(b) position errors, (c) joint stiffness and (d) stiffness errors.

position and the stiffness trajectories are continuous together
with their time derivatives up to the 4th and 2nd order
respectively. The experimental validation of the proposed
approach will be considered in the next future.

The mixed case, in which both rigid and elastic joints
are present, with constant or variable stiffness, can be easily
solved on the base of the analysis reported in this paper. Also
the case of joints with different stiffness variation models can
be easily considered.

Type of
nonlinear state

feedback

Stiffness model

k̈i = β+γτki ki = τki

Static full
linearization

not
enough

Dynamic not
needed

full
linearization

Dimension 0 2 n

TABLE II

SUMMARY OF THE RESULTS ON THE FEEDBACK LINEARIZATION .

Throughout the paper, we have assumed ideal conditions,
a perfect knowledge of the robot dynamics models and the
availability of full state measures. The presented results can
be used as a starting point for the definition of adaptive and
robust controllers for robots with variable joint stiffness, pos-
sibly based only on the feedback of the position information
of both the links and the actuators, supposing the velocity
information not available.

APPENDIX

ANTAGONISTIC VARIABLE STIFFNESS DEVICES

In antagonistic variable stiffness devices [3], [7], [8], [17],
a couple of actuators for each joint is present, and both
these actuators contribute to determine the position and the
stiffness of the joint to which the actuators are connected.
The dynamic model of the whole manipulator can be written
by grouping the actuators in two sets, denominated here as
α and β, described by two equations similar to (2), one for
each actuators set:

M(q) q̈ + N(q, q̇) + ηα − ηβ = 0 (36)

B θ̈α + ηα = τα (37)

B θ̈β + ηβ = τβ (38)
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where ηαi = ηαi(qi, θαi θβi) and ηβi = ηβi(qi, θαi θβi)
represent the coupling torques between the i-th joint of the
robot and its actuators, while τα and τβ are the torques
applied by the actuator set α and β respectively.

By making the model of elastic joint robots more general,
e.g., by means of a suitable change of coordinates, it is
possible to write the dynamic model of antagonistic variable
stiffness devices in a form similar to eq. (1), (2) and (9).
This generalization is meaningful since it allows to apply
the general concepts presented in this paper to different
technological implementations of variable stiffness devices.
By introducing the auxiliary variables p = θα−θβ

2 and
s = θα + θβ representing the positions of the generalized
joint actuators and the state of the virtual stiffness actuators
respectively, it is possible to write:

M(q) q̈ + N(q, q̇) + F (s)g(q − p) = 0 (39)

2Bp̈ + F (s)g(p − q) = τ (40)

Bs̈ + h(q − p, s) = τk (41)

where τ = τα − τβ and τk = τα + τβ , F (s) is a diagonal
matrix whose elements are strictly positive functions repre-
senting the generalized joint stiffness, g(q − p) is a vector
whose elements are odd strictly monotonically increasing
functions representing the generalized joint displacements,
while h(q − p, s) is a vector whose elements are functions
such that hi(0, 0) = 0.

As case studies, for the antagonistic actuated robot de-
scribed in [8], [17], in which transmission elements with
exponential force/compression characteristic are used, the
following relations hold:

fi(si) = ea si

gi(qi − pi) = b sinh
(
c (qi − pi)

)
hi(qi − pi, si) = d

[
cosh

(
c (qi − pi)

)
ea si − 1

]
where a, b, c, and d are suitable constants and fi(si) are the
elements of the diagonal of the matrix F (s).

For the same variable stiffness device, if transmission
elements with quadratic force/compression characteristic are
considered [7], [17], the following relations hold:

fi(si) = a1 si + a2

gi(qi − pi) = qi − pi

hi(qi − pi, si) = b1 s2
i + b2 (qi − pi)2

where a1, a2, b1, and b2 are suitable constants and fi(si)
are the elements of the diagonal of the matrix F (s).

For the variable stiffness actuation joint (VSA), described
in [3], the third-order polynomial approximation of the
transmission model reported in [20] can be used to transform
the system in the desired form:

fi(si) = a1 s2
i + a2 si + a3

gi(qi − pi) = qi − pi

hi(qi − pi, si) = b1 s3
i + b2 (qi − pi)2si + b3 si

where ai, bi, i = 1, . . . , 3 are suitable constants and fi(si)
are the elements of the diagonal of the matrix F (s).
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[6] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the DLR-III lightweight
manipulator arm,” in Proc. of the 2006 IEEE Int. Conf. on Intelligent
Robots and Systems, Beijing, China, October 9-15 2006, pp. 1623–
1630.

[7] S. A. Migliore, E. A. Brown, and S. P. DeWeerth, “Biologically
inspired joint stiffness control,” in Proc. IEEE Int. Conf. on Robotics
and Automation, 2005.

[8] G. Palli, C. Melchiorri, T. Wimböck, M. Grebenstein, and G. Hirzinger,
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