
Communication-Aware Trajectory Tracking

Magnus Lindhé and Karl Henrik Johansson
ACCESS Linnaeus Centre

School of Electrical Engineering
Royal Institute of Technology

SE-100 44 Stockholm, Sweden
{lindhe|kallej}@ee.kth.se

Abstract— This paper investigates the scenario of a robot
making a tradeoff between tracking a time-varying reference
trajectory and stopping to communicate at points where the
radio signal strength is high. Under the assumption that the
signal is subject to multipath fading, we formulate this as
a hybrid optimal control problem with penalties on tracking
error, communication buffer length and control power. The
problem is then solved using relaxed dynamic programming,
resulting in control laws for the discrete switching sequence
and the continuous control. We finally illustrate the results
through simulations under non-ideal conditions, confirming that
the system maintains a bounded buffer size and zero-mean
tracking error.

I. INTRODUCTION

In many robotic applications, such as surveillance, envi-
ronmental sampling or mapping, each robot performs some
desired motion while generating sensor information that must
be sent to a base or other robots. Sensing at the wrong
place is as bad as getting relevant measurements that cannot
be transmitted, so the overall performance of the system
depends on making a proper tradeoff between acquiring data
and ensuring good communication.

Such tradeoffs have been investigated for collaborative
sensing [1], [2], where the agents find positions that give
good sensor resolution and good inter-agent communication.
Esposito et al. [3] have shown how to move a formation
among obstacles under a line of sight communication con-
straint and Arkin et al. [4] have studied how to search an
indoor environment while ensuring that all searchers stay
connected with an outside base. These papers all use simple
communication models; the signal quality depends on the
distance or on a line of sight condition. Recently we proposed
a communication model that in many cases is more suitable:
multipath fading [5]. This effect arises if several reflections
of the same signal reach the receiver. The signal strength
will then fluctuate due to positive or negative interference
between the reflections, and it varies over distances in the
order of a wavelength (e.g., about 12 cm for a 2.4 GHz
signal). We showed by measurements that multipath fading
can be a significant effect indoors and presented a method

This work was partially supported by the Swedish Defence Materiel
Administration (FMV) through the TAIS programme 297316-LB704859,
the European Commission through the RUNES and HYCON projects,
the Swedish Research Council and the Swedish Foundation for Strategic
Research.

Fig. 1. Illustration of the considered scenario: A robot follows a patrol
trajectory in an office building, sending infrared camera imagery of each
room to a base station. Since the signal strength fluctuates due to multipath
fading, the robot has to make a tradeoff between stopping at good points
to communicate and keeping up with the reference trajectory.

to find good positions for robots performing stationary tasks
so that the fading could be exploited.

The main contribution of this paper is to study dynamic
communication-aware robot positioning: If a robot tracks
a time-varying reference trajectory in a multipath fading
environment, how should the tradeoff between tracking and
communication be done? An example scenario is illustrated
in Fig. 1: During night, a robot is patrolling one floor of an
office building, collecting infrared camera imagery of each
room that is transmitted to an operator on the ground floor.
The robot follows a predetermined trajectory, but can adjust
its movement along the trajectory to ensure that the images
are fed to the operator with minimum delay. Due to multipath
fading, the link capacity from the robot to a base station
varies when it drives, giving a certain average capacity. But
the robot can also choose to stop at a point with stronger
signal, thereby emptying its buffer faster, at the expense of
lagging behind the reference and having to use more power to
catch up. We ask: What is the optimal way to switch between
driving and stopping, and how should the robot accelerate,
to minimize the tracking error, transmission buffer length
and power consumption in its motors? This problem lends
itself well to a hybrid optimal control formulation. It is well
known that solving such problems can be problematic due
to the “curse of dimensionality”. Therefore we have applied
the method of relaxed dynamic programming, proposed
by Lincoln and Rantzer [6], that alleviates this issue by
approximating the value function with small relative error.

This paper is organized as follows: In the next section we
formulate the problem. In Section III, we provide a model for

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1519

the robot dynamics. We then model the onboard buffer and
the communication link for an environment with multipath
fading. In Section IV, we derive the system dynamics as
a switched linear system and formulate an infinite-horizon
hybrid optimal control problem. Using relaxed dynamic
programming, we present an algorithm to compute a con-
troller for both the switch sequence and the continuous
input. In Section V, we simulate the resulting closed-loop
system to illustrate its properties under different non-ideal
conditions. Finally we conclude in Section VI, and indicate
some possible directions of future research.

II. PROBLEM FORMULATION

We consider a robot with state x, input u, position p(x)
and dynamics ẋ = f (x,u), supposed to follow a time-varying
reference trajectory pre f (t). The robot collects information
at a rate r and tries to transmit it to a base station over a
multipath fading channel. Data are stored in a buffer of length
z ≥ 0 and we assume that the environment is static, which
means that the fading is a function of the state of the robot.
The buffer dynamics can thus be expressed as ż = g(r,x).

We can then formulate our problem: Find a control law
u = u(x) such that z is small and p(t) is close to pre f (t). The
control objective is thus to keep the communication latency
small while tracking the desired trajectory.

III. ROBOT AND COMMUNICATION MODELS

In this section, we define a model for the robot and
reduce it to one-dimensional movement along the reference
trajectory. It is formulated as a hybrid model, switching
between driving and standing still. We then present a model
for the communication buffer and how the radio link capacity
varies with the state of the robot.

A. Robot Model

Our approach can be used for several types of robots, such
as single or double integrators or differential drive. Here
we consider a differential drive robot with position p ∈ R2,
bearing θ ∈ [0,2π[and controls (v,ω). The dynamics are:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dp1

dt
= v(t) cosθ(t)

dp2

dt
= v(t) sinθ(t)

dθ
dt

= ω(t).

We assume that the robot has a given reference trajectory
pref(t) and is capable of following it, i.e., there exist vref(t)
and ωref(t) so that p(t) = pref(t). To vary the velocity along
the trajectory, we introduce the virtual time s(t), defined by

ds
dt

= γ(t) > 0, s(0) = 0.

Replacing the time t with s(t) allows us to speed up the
system or slow it down, by applying the controls

v(s(t)) = γ(t)vref(s(t))
ω(s(t)) = γ(t)ωref(s(t)).

We consider the one-dimensional movement of the robot
along the reference trajectory and define the position of the
robot, relative to the reference, as

Δ(t) =
∫ t

0
[v(t)− vref(s(t))] dt.

We also introduce the relative velocity ϕ(t) = dΔ
dt . To achieve

a relative velocity ϕ(t) we set the scaling

γ(t) = 1+
ϕ(t)

vref(s(t))
. (1)

To get smooth motion, we use the acceleration u(t) as
control. We further want to model the fact that many kinds of
robots only consume negligible power when breaking, using
disc breaks or by short-circuiting its electric motors. So we
consider the robot to have two discrete modes: drive and
stop. In the stop mode, we let the relative velocity be
self-stabilizing to the value of −vref. The motion along the
reference trajectory is described as:

stop:

{
Δ̇ = ϕ
ϕ̇ = −kv(ϕ− vref)

drive:

{
Δ̇ = ϕ
ϕ̇ = u

.

The parameter kv � 1 is chosen to ensure fast convergence
of ϕ to −vref when stopping.

B. Data Buffer Model

The data buffer onboard the robot has size z, inflow rate
r and outflow (or link capacity) c, so its dynamics are

ż = r− c.

Next we describe how c varies with the mode of the robot.
Note that the buffer is lossless, which means that no packets
are discarded.

C. Communication Model under Multipath Fading

The attenuation (or gain) due to multipath fading varies
over robot movements of fractions of a wavelength. In Fig. 2,
we illustrate a representative dataset from measurements. The
graph shows the received signal strength (RSS) for a robot as
it moves along a straight line in a lab room with computers
and equipment reflecting the incoming signal. For details,
see [5]. The average RSS of −58 dBm is marked in the
figure, but almost everywhere, the robot is only a few cm
away from a peak at the higher level of −54 dBm, which is
also marked. A gain of 4 dB may seem small, but can give a
substantial link capacity increase. To illustrate the increase,
we use a result by Zuniga and Krishnamachari [7]. They
derive an expression for the packet reception rate (PRR) as
function of the signal-to-noise ratio (SNR) for the MICA2
sensor motes [8]. The motes have a data rate of 19.2 kbit/s
and a PRR of

PRR =
(

1− 1
2
e−

SNR
1.28

)8F

,

where F is the frame size, i.e., the number of bytes in each
packet. In Fig. 3, we have illustrated what the resulting link
capacity would be for F = 50. A gain in RSS gives the same

1520

0 20 40 60 80 100 120 140 160 180 200
−75

−70

−65

−60

−55

−50

Position (cm)

R
SS

 (
dB

m
)

Fig. 2. Measurement results from a lab room, where the received signal
strength (RSS) varies due to multipath fading. The lower dashed line denotes
the average level, while the upper line is chosen by hand, so that a point
with that RSS can be found within a few cm from almost any position.

5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

14

16

18

20

Signal−to−noise ratio (dB)

R
es

ul
tin

g
ca

pa
ci

ty
 (

kb
it/

s)

Fig. 3. An illustration of the link capacity for a MICA2 sensor mote as a
function of the signal-to-noise ratio. When the link is on the limit of losing
contact, gaining just a few dB can have a large impact on bandwidth.

gain in SNR, so for a robot on the limit of losing contact,
gaining 4 dB could mean more than a tenfold increase in
bandwidth.

Motivated by this, we derive a simple model for the com-
munication channel: In the drive state, the radio hardware
smoothes the RSS variations, producing an average buffer
outflow cd . But when the robot is in the stop state, we
assume that it can instantly find a point with a higher signal
strength and a higher capacity cs. It is important to point out
that this approach is most useful in the interval cd < r < cs,
since if the inflow is lower than cd the robot is never forced
to stop, and if it is larger than cs, some higher-level protocol
must discard data to stop the buffer from overflowing. Also
note that this does not require accurate navigation, since the
robot can always find a high-capacity position by just driving
a few centimeters in any direction.

IV. HYBRID OPTIMAL CONTROL SOLUTION

In this section, we formulate the problem of this paper as
a hybrid optimal control problem. We then present relaxed
dynamic programming as a way of finding an approximate
solution. We state an algorithm that computes a value func-
tion from which we can derive a control law. Finally we
show how to do this computation in an efficient way.

A. Switched Linear System

To describe the whole system, we collect the robot and
buffer states in the same state vector. We include an integral
state ΔI to allow the controller to attenuate a static error in Δ.
We finally add a constant element to the state vector, which
allows writing the system on linear form. This yields

ẋ = Aσx+Bσu, x = (Δ,ϕ,ΔI ,z,1)T ,

where the controls are u ∈ R and σ ∈ {0,1}, which corre-
spond to stop and drive, respectively, and

A0 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 −kv 0 0 −kvvref

1 0 0 0 0
0 0 0 0 r− cs

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , B0 = 0

A1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 r− cd

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦ .

We consider a sampled version of the continuous-time
system above, where we suppose u is kept constant between
sampling times and σ only switches at sampling instances.
With sampling time τ , we can express the discrete dynamics
as

x[n+1] = f (x[n],u[n],σ [n]) = Φσ [n]x[n]+Γσ [n]u[n],

where
Φσ = eAσ τ and Γσ =

∫ τ

0
eAσ sBσ ds.

B. Cost Function

To maintain low latency and margin for unexpected buffer
inflow, it is desirable to keep the buffer size low. At the same
time we also want to stay close to the reference trajectory and
limit the control magnitude. Both Δ and z will in general not
simultaneously converge to zero, so we introduce a decay
factor λ n, with λ < 1, to get a finite cost in an infinite
horizon control problem. Now, given an initial condition x0,
the optimal control problem is defined as

min
σ [n],u[n]

∞

∑
n=0

(
xT [n]Qx[n]+Ru2[n]

)
λ n (2)

s.t. x[n+1] = f (x[n],u[n],σ [n])
x[0] = x0

x4 ≥ 0,

where Q = QT is positive semidefinite and R is a positive
constant.

1521

C. Dynamic Programming

Dynamic programming is based on approximating the
optimal value function (also called cost-to-go) at state x[m],
defined as

V ∗(x[m]) = min
σ [n],u[n]

∞

∑
n=m

�(x[n],u[n])λ n,

where
�(x,u) = xT Qx+Ru2.

Once we have V ∗(x), we can derive the optimal control law
as

(u∗(x),σ∗(x)) = argminu,σ {λV ∗(f (x,u,σ))+ �(x,u)} .

We introduce an approximate value function
Vk(x) : R5 → R such that limk→∞Vk(x) = V ∗(x) and
use value iteration to recursively compute it:

Vk+1(x) = min
u,σ

{λVk(f (x,u,σ))+ �(x,u)} , V0 = 0. (3)

For a given k, the iterate Vk(x) answers the question “what is
the lowest possible cost for k time steps of the system trajec-
tory, given that it starts in x?” The problem is that, if applied
naively, value iteration requires that we consider all possible
switching sequences of length k steps, so the complexity
of our hybrid optimal control problem grows exponentially
with the horizon length k. This “curse of dimensionality” is
a well known drawback of dynamic programming. Before
we present a way to avoid this, we will see how the optimal
control u∗ can be computed for a known switching sequence
of length k.

To facilitate the notation, let Φ = Φσ [n] and Γ = Γσ [n] for
some given mode σ [n]. We also assume that, at time n+1,
the value function can be written on quadratic form V ∗(x[n+
1]) = xT [n+1]P[n+1]x[n+1], where P[n+1] is a symmetric
positive semidefinite matrix. Then the optimal cost at time n
is V ∗(x[n]) = xT [n]P[n]x[n], where

P[n] = λΦT P[n+1]Φ+Q−λΦTP[n+1]Γ

× [
λΓT P[n+1]Γ+R

]−1ΓT P[n+1]Φλ (4)

and P[n] is positive semidefinite [9]. Further, the optimal
control is

u∗(x[n]) =−[
R+λΓT P[n+1]Γ

]−1λΓT P[n+1]Φ x[n]. (5)

If we initialize P[k] = 0, for a known switching sequence of
length k we can thus iteratively compute the optimal cost
V ∗(x[0]) and control signal u∗[n],n ∈ {0, . . . ,k−1}.

D. Relaxed Dynamic Programming

We define a discrete mode trajectory of length k as
σ k

j : {0,1, . . . ,k}→ {0,1}. Further, let Nk be the number of
such trajectories in the set {σ k

1 , . . . ,σ k
Nk
} of candidates for

optimality. Now let Πk = {Pk
1 , . . . ,Pk

Nk
} be the set of matrices

Pk
j such that the cost associated with σ k

j is Vk(x[0]) =
xT [0]Pk

j x[0]. Using a sufficiently rich set Πk, we can now

parameterize the approximate value function in a way that
can be used to perform the iteration (3):

Vk(x) = min
j∈{1,...,Nk}

xT Pk
j x.

As mentioned above, even for small k, the set Πk be-
comes prohibitively large if we do not discard some candi-
date switching sequences during the recursion. Lincoln and
Rantzer’s [6] method of relaxed dynamic programming does
just that: at each iteration, it retains only the candidates Pk

j
that are needed to represent the value function with a given
bounded relative error. If this bound is sufficiently large, the
number of candidates will converge to a finite value as k→∞.

More formally, the idea is to find an approximation Vk(x)
of the optimal value function such that, for α ≥ 1 and α ≤ 1,

min
u,σ

{λVk(f (x,u,σ))+α�(x,u)} ≤Vk(x)

≤ min
u,σ

{λVk(f (x,u,σ))+α�(x,u)} ∀ x. (6)

Using the appropriate “slack”, the cost-to-go function can be
parameterized by a much smaller set Πk, and we can discard
many candidate switching sequences at each iteration step.
For the discarding procedure, we define Πk = {Pk

1, . . . ,P
k
Nk
}

as the set of matrices Pk
j such that α times the cost for the

switching sequence σ k
j is x[0]T Pk

jx[0]. The set Πk and the

matrices P
k
j are defined analogously, using α . The method

to find Vk(x) is presented in Algorithm 1.

Algorithm 1 Relaxed Dynamic Programming
1: k := 0, Π0 = 0n×n

2: while (6) is not fulfilled do
3: k := k+1
4: Form Πk and Πk by propagating the matrices

in Πk−1 one step backwards in time, both with
σ = 0 and σ = 1, as defined in (4). This yields
Nk = 2 card(Πk−1).

5: Sort the sets Πk and Πk so that trP
k
1 ≤ . . . ≤ trP

k
Nk

and

P
k
j ≥ Pk

j ∀ j.
6: Πk := /0, i := 1
7: while i ≤ Nk do
8: if � a convex combination P of matrices in Πk such

that P ≤ P
k
i then

9: Add Pk
i to Πk.

10: end if
11: i := i+1, Nk := card(Πk)
12: end while
13: end while

Note that step 8 of the algorithm is an S-procedure test to
see if there exists an x such that

xT P
k
i x < min

P∈Πk
xT Px.

If not, then Pk
i is not needed to represent the value function

with sufficient accuracy. Also note that by ordering the
matrices by trace, we ensure that smaller matrices are added

1522

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

k

N
k

M
k

Fig. 4. The number Nk of matrices in Πk needed to represent the value
function at each iteration step. The vertical axis shows the number of
candidate matrices Nk and Mk as a function of the iteration step k. Nk stops
increasing, indicating that (6) is fulfilled, after about 50 iterations. Without
discarding any candidates, the complexity would grow as Mk = 2k, which
is illustrated for comparison.

first to Πk, which in practice means that we will add fewer
elements.

The stopping criterion for the iteration means that no more
candidate switching sequences need to be added to represent
the value function. This happens when the number Nk of
candidates stops growing, and to determine this we have
used the graph depicted in Fig. 4. For comparison we also
included the number of candidates Mk that would have to be
considered using normal dynamic programming. Note that
Nk does not converge, but rather stops growing and then
displays random variations due to numerical effects and small
random perturbations in the sorting of Πk to make the search
more efficient. The figure shows the result for α = α−1 = 2
and λ = 0.9, which are the parameters used to compute the
controller used in all simulations.

E. Resulting Controller

Using the approximation of the value function, we could
find the optimal mode σ∗(x[n]) as the first mode in the switch
sequence corresponding to the matrix

P∗ = argminP∈Π100
x[n]T Px[n].

The optimal control u∗(x[n]) was then computed using
(5), substituting P∗ for P[n + 1]. In a resource-constrained
robot, this could also be precomputed and stored as a
look-up table of feedback gains Lj, each associated with a
switching sequence σ100

j . The control signal would then be
u∗(x[n]) = −Ljx[n]. The resulting control law is plotted in
Fig. 5, for the subset ϕ = −vref, ΔI = 0 of the state space.

V. SIMULATION RESULTS

In this section, we first present an illustration of a system
trajectory using the previously derived controller. We then
investigate the sensitivity of the closed-loop system to dis-
turbances in buffer size and link capacity. In all simulations,

−20

−10
0

10
20 0

2

4

6

8

10

−10

−5

0

5

10

z
Δ

u

Fig. 5. The resulting control law for the subset ϕ = −vref, ΔI = 0 (corre-
sponding to standing still with an empty integral state in the controller). To
also illustrate σ(x), we have forced the control to u = 0 where σ(x) = 0.
As one would expect, there is a stop region for small Δ. If Δ decreases,
the controller accelerates the robot and if Δ becomes too large, it slows the
robot down.

the sampling time is τ = 0.1 s. We set kv = 100, R = 1 and
Q = diag(1,0,1,5,0). We thus penalize the position error and
integrated error Δ and ΔI , respectively. To reduce the static
error in z, we use a higher penalty Q44.

A. Following a Curved Path

Fig. 6 illustrates the system following a curved reference
trajectory corresponding to vref ≡ 1 and ωref = sin(0.8t). This
means that the reference is moving at constant velocity along
the path, while the robot varies γ as in (1) to perform
the communication-aware tracking. The figure consists of
periodical samples of the robot state, with the height of the
ball over the robot indicating buffer size. Thus the robot
stops at some points to empty its buffer. We have used the
exaggerated rates r−cs = 1 and r−cd =−1 to illustrate the
behavior of the system more clearly.

B. Limit Cycle and Buffer Disturbance Rejection

We have then simulated the system starting with an empty
buffer and perfect reference tracking. As seen in Fig. 7, it
approaches a limit cycle with a period time of 5.6 s, where is
spends 50% of the time in each mode. The relative position Δ
oscillates around zero while there is still a small static error
in z. However, at t = 40 s, extra data is added to the buffer,
and this impulse disturbance is successfully attenuated. Here
we also used r− cs = 1 and r− cd = −1.

C. Robustness to Capacity Variations

As indicated in the derivation of the communication
model, the actual link capacity cs at the position where the
robot stops can vary from the predicted value. We have tested
the robustness of the closed-loop system to this model error
by adding zero-mean white gaussian noise with standard
deviation 2 to cs. With cs = 3, cd = 1 and r = 2, the

1523

−1

0

1

2

3

4

0
2

4
6

8
10

12

0

0.5

1

1.5

2

2.5

3

3.5

4

p
2

p
1

z

Fig. 6. A trajectory of the system in the (p1, p2,z)-space, sampled with
regular intervals. The robot follows the reference trajectory (thick green
line) while stopping from time to time to reduce the buffer size. The robot
motion is from right to left.

simulations indicate that the system still oscillates around
Δ = 0 and a maintains a bounded buffer size z.

VI. CONCLUSIONS

We have studied a robot performing communication-aware
trajectory tracking in a multipath fading environment. The
problem can be cast as a hybrid optimal control problem,
which can in turn be solved with sufficient accuracy using
relaxed dynamic programming. The resulting controller can
be stored in look-up tables and thus used also on resource-
constrained robots. The only prior information needed about
the radio link is the capacities cs and cd , no map of the signal
strength is needed. The closed-loop system was simulated
under various conditions and it maintains a bounded buffer
size and zero-mean tracking error.

The radio model is derived under the assumption of
stationary multipath fading, but this approach could be used
whenever the signal strength varies in space and it is simple
to find good positions to stop at. Examples of this could be an
underwater robot that can surface to communicate, or a robot
searching office rooms, where the signal may be stronger in
the corridor or near windows.

In our ongoing work, we plan to implement the proposed
control law on a physical robot, validating our approach
with real-world radio characteristics. An interesting future
research question is how to control the robot if it is not
restricted to stay on the reference path, but has the option
of extending its trajectory to visit more potential commu-
nication positions. Especially for slowly moving reference
trajectories, this could increase the probability of finding a

0 10 20 30 40 50 60 70
−6

−4

−2

0

2

4

6

8

Time (s)

Δ
z

Fig. 7. An example of a trajectory for the system, starting with an empty
buffer and with perfect reference tracking. The solid blue line represents
the relative position Δ and the dashed green line is the buffer size z. The
robot approaches a limit cycle with a period time of 5.6 s. One can see that
the integral state of the controller forces Δ to oscillate around zero, while
there is still a static error in the buffer size.

spot offering higher link capacity, at the expense of reference
tracking error.

ACKNOWLEDGEMENTS

The authors would like to thank Henrik Sandberg for help-
ful discussions and the authors of [6] for kindly providing
numerical routines for relaxed dynamic programming.

REFERENCES

[1] T. Chung, J. Burdick, and R. Murray, “A decentralized motion coor-
dination strategy for dynamic target tracking,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2006.

[2] D. O. Popa and C. Helm, “Robotic deployment of sensor networks using
potential fields,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2004.

[3] J. M. Esposito and T. W. Dunbar, “Maintaining wireless connectivity
constraints for swarms in the presence of obstacles,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2006.

[4] R. Arkin and T. Balch, “Line-of-sight constrained exploration for
reactive multiagent robotic teams,” in Proceedings of 7th International
Workshop on Advanced Motion Control, 2002.

[5] M. Lindhé, K. H. Johansson, and A. Bicchi, “An experimental study of
exploiting multipath fading for robot communications,” in Proceedings
of Robotics: Science and Systems, 2007.

[6] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE
Transactions on Automatic Control, vol. 51, no. 8, pp. 1249–1260, 2006.

[7] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region
in low power wireless links,” in Proceedings of the First IEEE In-
ternational Conference on Sensor and Ad hoc Communications and
Networks, 2004.

[8] Crossbow Corporation, “Mica2 datasheet,” document part number
6020-0042-08 Rev A. Last visited 2007-10-29. [Online]. Available:
http://www.xbow.com/Products/productdetails.aspx?sid=174

[9] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory
and design. Prentice-Hall, 1997.

1524

