
Enlarging Regions of Stable Running with Segmented Legs

Juergen Rummel∗, Fumiya Iida†, James Andrew Smith∗ and Andre Seyfarth∗

∗Locomotion Laboratory, Institute of Sports Science, University of Jena, Germany

Email: juergen.rummel@uni-jena.de, andre.seyfarth@uni-jena.de,
†Robot Locomotion Group, CSAIL, Massachusetts Institute of Technology, Cambridge, MA

Email: iida@csail.mit.edu

Abstract— In human and animal running spring-like leg
behavior is found, and similar concepts have been demonstrated
by various robotic systems in the past. In general, a spring-mass
model provides self-stabilizing characteristics against external
perturbations originated in leg-ground interactions and motor
control. Although most of these systems made use of linear
spring-like legs. The question addressed in this paper is the
influence of leg segmentation (i.e. the use of rotational joint and
two limb-segments) to the self-stability of running, as it appears
to be a common design principle in nature. This paper shows
that, with the leg segmentation, the system is able to perform
self-stable running behavior in significantly broader ranges of
running speed and control parameters (e.g. control of angle
of attack at touchdown, and adjustment of spring stiffness)
by exploiting a nonlinear relationship between leg force and
leg compression. The concept is investigated by using a two-
segment leg model and a robotic platform, which demonstrate
the plausibility in the real world.

I. INTRODUCTION

With the eventual goal of adaptive legged locomotion sys-

tems, self-stabilizing characteristics of underactuated legged

robots have been extensively studied since the pioneering

work by Raibert [1]. While many legged systems control

the leg joints to achieve stable movements, there is another

class of control approach to stabilize locomotion behavior

by exploiting passive joints.

One of the well-known models, the spring-mass model,

also known as Spring-Loaded Inverted Pendulum (SLIP),

uses spring-like dynamics for energy-efficient running and

walking behaviors [2], [3], [4]. A fascinating characteristic

of this model is the self-stability against perturbations such

as dynamic leg-ground interactions, and changes of system

parameters [5]. A number of studies have previously shown

that the concept can be utilized in one-, two-, four- and six-

legged robots [6], [7], [8], [9].

While most of theoretical studies investigated legged mod-

els with telescopic joints [10], it is still not fully understood

what the role of segmented legs is, i.e. the legs with limb-

segments connected through rotational joints, which appears

to be a common design principle in nature. More specifically,

although many robotic systems intuitively employ segmented

legs, e.g. [11], [12], there has been no systematic investiga-

tion on the leg segmentation and behavioral performances.
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Fig. 1. (a) The two-segment leg model, and (b) a periodic running sequence.
The direction of the intersegmental joint does not influence the running
direction.

The goal of this paper is to gain better insights into legged

locomotion focusing on segmented legs and their influence

on dynamical stability in running. By using a simulation

model of two-segment leg with a rotational spring located at

the intersegmental joint, and its counterpart robotic platform,

we investigate contributions of leg geometry to leg force

generation and the resultant running dynamics.

A comparison of the model with the SLIP will help

clarifying the role of leg segmentation on running. We expect

that the two-segment leg inherits the properties of the SLIP

leading to self-stable running with a fixed angle of attack

policy. We further assume that the segmented leg shifts

regions of self-stability and allows new solutions.

II. METHODS

A. Leg Templates

In this study we investigate principles of running using leg

templates. The basic template is the spring-mass model [2],

[3] that represents the action of the stance leg by a linear

spring of constant stiffness k and rest length l0. The leg

is massless and the body is represented by a point mass.

Hence, the leg generated force Fleg can only direct from the

fixed foot point to the center of mass. The amount of leg

force depends on leg compression ∆l(t) = l0 − l(t) but not

on leg orientation or compression velocity. Furthermore, a

linear relationship between leg compression and leg force is

assumed since the leg stiffness k is constant

Fleg = k∆l. (1)
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To investigate the role of segmentation in legged loco-

motion we propose a two-segment leg template (Fig. 1(a)).

In order to keep the analysis simple we take advantage of

the above mentioned assumptions made in the spring-mass

model: The action of the leg is represented by a leg force

depending on leg compression. The segmented leg template

is defined by two massless segments of length l1 and l2
connected by the intersegmental joint with inner angle β.

The spring-like force in a segmented leg is generated by a

torsional spring of stiffness c causing a joint torque

τ(∆β) = c∆β. (2)

∆β denotes the joint flexion β0 − β with the rest angle β0.

The joint angle β is a function of the leg length l

β(l) = arccos
l21 + l22 − l2

2 l1 l2
(3)

To calculate the amount of joint flexion ∆β we need to

specify a rest angle β0 which corresponds to a rest length of

the leg

l0(β0) =
√
l21 + l22 − 2 l1 l2 cosβ0. (4)

Thus, any amount of joint flexion ∆β translates into a

corresponding leg compression ∆l depending on the rest

angle β0. The joint torque (2) results in a leg force with

Fleg(τ) =
l

l1 l2

τ

sinβ
(5)

and for any two-segment leg with a rotational spring the cor-

responding leg force-leg compression dependency Fleg(∆l)
can be calculated. Compared to the spring-mass model, the

two-segment leg has a few more parameters: the segment

lengths l1 and l2, the joint stiffness c and the rest angle

β0. To facilitate the comparison between the two-segment

leg and the spring-mass model (parameters l0 and k), we

define a reference leg compression at 10% of leg length

∆l10% = 0.1 l0. Based on the leg force F10%(∆l10%), a

reference stiffness k10% = F10%/∆l10% can be defined. This

stiffness can be compared to the leg stiffness of the SLIP.

The equation of motion for both templates is

m r̈ = Fleg +m g (6)

with r = [x, y]
T

the position of the point mass and

g = [0,−g]
T

the gravitational acceleration. The force vector

Fleg = [Fx, Fy]
T

directs from the foot point to the center of

mass. Its magnitude is given by (1) and (5) for the spring-

mass model and the two-segment model, respectively. The

leg force is zero during flight phase and the center of mass

trajectory describes a ballistic curve. We consider transitions

between flight and stance by the conditions

flight ⇒ stance : y(t) ≤ l0 sinα0

stance ⇒ flight : l(t) > l0
(7)

where α0 is the predefined angle of attack. The system’s

state is described by the position r and the velocity v of

the center of mass. Since the systems are conservative, the

horizontal velocity vx during flight depends on the system

è

ø
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Fig. 2. The single-legged robot testbed JenaHopper and it’s four DOF.

energy E and the height at apex yapex where the vertical

velocity vy is alway zero

vx(E, yapex) =
√

2/m (E −mg yapex) (8)

On even ground, the horizontal position x has no influence on

the forthcoming stance phase. Hence, for a given energy E
the system is fully described by the apex height yapex if the

direction of locomotion does not change. The system energy

can be plainly represented by a reference velocity vx, ref that

appears if the models have an apex height of yapex = l0.

The number of free parameters can be reduced using

dimensional analysis [4]. In the spring-mass model three

parameters were identified: the dimensionless energy Ẽ =
E/ (mg l0), the dimensionless leg stiffness k̃ = k l0 / (mg),
and the angle of attack α̃0 = α0. In the two-segment leg we

found the torsional stiffness c̃ = c / (mg l0), the nominal

angle β̃0 = β0 and the dimensionless segment lengths

l̃1 = l1 and l̃2 = l2. In this study, we focus on the case

of equal segment lengths l̃s = l̃1 = l̃2. The dimensionless

segment length is then given by l̃s = 1/

√
2 (1 − cos β̃0).

Using this simplification, the two-segment leg has only one

more parameter, the nominal angle β̃0, than the spring-mass

model. Any combination of c̃ and β̃0 can be expressed by

the dimensionless reference stiffness k̃10% = k10% l0/ (mg).
In the simulation study, we use human-like parameters

(mass m = 80 kg, leg length l0 = 1m, and earth gravitation

g = 9.81 m/s2.

B. Robot Leg

The second part of this paper is an experimental study on a

robot testbed, called JenaHopper (Fig. 2), which is a single-

legged system with a segmented leg. The intersegmental joint

is passive compliant since a tension spring connects both

segments. The hip joint is actuated by a DC motor (Sayama

RB-35GM) with a 1:100 gear ratio. A supporting boom is

attached to the body in order to disable pitch and roll of

the body. An elastic material (Adiprene) is attached as foot

point. The leg length in nominal position is l0 = 0.22 m
and the segment lengths are l1 = 0.13 m and l2 = 0.11 m,

resulting in a nominal angle of β0 = 132 deg. The total mass

is m = 0.42 kg where the leg is relatively light, accounting

for 28 % of m. The dimensionless joint stiffness is c̃ = 0.66
and the tension spring is somewhat pretensioned.
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Fig. 3. (a) Normalized force-length relationships of elastic two-segment
legs and, for comparison, the spring-mass model (SLIP) with the same
reference stiffness k10%. The curves in (a) correspond to the normalized
stiffness functions in (b).

Since we are interested in the natural behavior of the

legged system, we let the leg simply swing back and forth

using a sinusoidal oscillation as desired trajectory

θD(t) = θA sin (2π f t) + θ0 (9)

with the frequency f and the bias angle θ0. The amplitude θA

was set such that it decreases with increasing frequency. The

amplitude was calculated by θA(f) = 80 deg/s·f−1−10 deg
for f ≥ 2 Hz. For frequencies below 2 Hz the amplitude was

set to 30 deg.

During the experiments the robot moved on a turning

table. The locomotion patterns were recorded by a Qualisys

motion capture system with eight infrared cameras (sampling

frequency of 240 Hz). The system measured for 30 seconds

the trajectories of six tracking points attached at relevant

landmarks, e.g. at joints. The joint trajectories were trans-

formed into the saggital plane considering the moving inertial

system.

C. System Analysis

The dynamic stability of the systems can be analyzed using

Poincaré maps of the state vector at a predefined Poincaré

section

Si+1 = F (Si) (10)

where i is the number of the individual step and Si denotes

the systems state. Limit cycle trajectories or periodic running

solutions correspond to a fixed point in the Poincaré map

S∗ = F (S∗) . (11)

The stability of a periodic solution is estimated by calculating

the effect of small perturbations away from the fixed point

using linear approximation

[Si+1 − S∗] = J (S∗) [Si − S∗] . (12)

where J (S∗) is the Jacobian matrix and it’s eigenvalues are

the Floquet multipliers λj . If the magnitude of all complex-

valued Floquet multipliers is less than one, the limit cycle

is stable. In other words, if any |λj | is greater than one, the

periodic solution is unstable.

In this study, the instant of apex during flight phase (Fig.

1(b)) is used as a particular event to formulate the Poincaré

map. In this paper, we analyze two kinds of systems, i.e.

energy conservative leg template models and a robot. In the

former cases (Sec. II-A) the systems are fully described by

the apex height yapex for a given total energy E. Therefore,

the Poincaré map can be reduced to a one-dimensional map

of subsequent apex heights [5].

Investigating experimental data from the robot, the anal-

ysis becomes more complicated. The robots state vector S

consists of eight elements, i.e. the body position x and y, the

segment angles θ and ψ, and the velocities of them. During

flight phase, the angle of the lower segment ψ depends

on θ since the joint spring was pretensioned and held the

joint in its nominal position. Hence, the angle ψ and the

angular velocity ψ̇ are not necessary in the Poincaré map.

The horizontal position x does not influence the forthcoming

step, and the vertical velocity vy is always zero at apex.

Hence, the Poincaré map is a four-dimensional map of the

reduced state vector S =
[
y, vx, θ, θ̇

]T

.

In experimental recorded data we cannot directly identify

a fixed point. Therefore, we define the fixed point S∗

by the average of the state variables within a trial. The

Floquet analysis basically identifies stability of limit cycles

for infinite small perturbations which is almost unrealistic for

experimental analyses. Here, we define a small perturbation

if the apex height yapex lies within ±0.01 m from the average

y∗apex. We are further interested in the systems response

if the perturbation is somewhat larger, i.e. if the condition

0.01 m <
∣∣yapex − y∗apex

∣∣ < 0.03 m is fulfilled.

III. RESULTS

A. Leg Mechanics

Before we examine the effects of leg segmentation on

running stability, we first investigate the underlying princi-

ples in the compliant two-segment leg. The question here is:

How does the leg geometry influence the leg force when the

leg becomes compressed? Fig. 3(a) shows the normalized

force-length relationship for the two-segment leg at different

nominal angles β0 compared to the linear leg spring model

(SLIP). In the segmented leg, the leg force Fleg increases

with a high rate of change for small leg compressions.

The rate of change decreases the more the leg is flexed.

Even for the same reference stiffness k10%, the force is

lower in the two-segment model compared to the linear

leg spring model for compressions larger than 10 %. The

curvature of the force-length relationship further depends

on the nominal angle β0. The more the leg is extended in
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Fig. 4. Regions of self-stable running for (a) the spring-mass model (SLIP), and (b) and (c) for two configurations of the two-segment leg model. The
upper row shows stable system configurations for a given system energy E, represented by the reference velocity vx,ref . The lower row illustrates regions

of stability for some given reference stiffnesses k̃10%. The reference stiffness corresponds to a joint stiffness in the segmented legs as shown on the right
axis in (b) and (c).

its nominal position, the more nonlinear becomes the force-

length function. As mentioned in [13], this behavior can be

understood as a nonlinear leg stiffness Fleg(∆l)/∆l while

the joint stiffness is constant (Fig. 3(b)).

B. Running Stability

In this section, we analyze the contribution of leg seg-

mentation on self-stability in running. More precisely, we

compare the regions of self-stable running identified in

the spring-mass model and the two-segment leg. First, we

observe the regions for a given system energy E represented

by a moderate reference velocity vx, ref of 5 m/s (first row

in Fig. 4). In the spring-mass model a narrow region of self-

stable running (Fig. 4(a)) is found. This region also exists in

the segmented leg as shown in Fig. 4(b) and 4(c). In contrast

to the linear leg spring model this region is much larger, e.g.

for a reference stiffness k̃10% of 30 the tolerated range in leg

angle adjustments α0 increases from 2.2 deg in the SLIP to

9.4 and 17.4 deg in the two-segment leg with β0 = 150 and

170 deg, respectively.

With further increasing stiffness the regions of stable

running decrease in the segmented leg. In the template

with almost straight leg configuration (β0 = 170 deg) the

tolerated range in angle of attack diminishes from 17.4 to

9.6 deg for k̃10% = 30 and 60, respectively.

The regions of self-stability are further shifted to lower

speeds in segmented legs as illustrated in the lower row

of Fig. 4. The lower limit in reference velocity with stable

solutions were found at vx, ref = 1.9 and 1.1 m/s in the

two-segment leg with β0 = 150 and 170 deg, respectively.

Fig. 4(a) shows that in a leg including a linear leg spring
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Fig. 5. (a) Robot speed of each single step (mean ± s.d.) depending on the
oscillation parameters frequency f and offset angle θ0. For each frequency,
the symbols are a bit displaced horizontally. The gray line is the grand mean
of hopping speed. (b) Floquet multiplier indicating orbital stability of the
movement corresponding to the experiments in (a) for small perturbations
(empty symbols) and medium perturbations (filled symbols) explained in
Sec. II-C. An x means that no medium or large perturbations occurred.
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robot locomotion for two control frequencies: (a) f = 1.33 Hz, and (b) f
= 2.67 Hz. The stance phase is indicated with a gray area. The leg starts
retraction (increasing thigh angle) before touch-down.

self-stability disappears below vx, ref = 3.5 m/s.
In segmented legs a maximum running speed is found for

each configuration that is much lower than in the SLIP. Here,

the speed is restricted by the angle of attack. In contrast,

the two-segment templates predict the maximum velocity at

moderate leg angles α0. However, the maximum speed can

be shifted to higher values by increasing the joint stiffness.

C. Robot Experiments

So far, we have investigated underlying mechanisms and

running stability in highly reduced leg templates. In this

section we present experimental observed behavior of the

two-segment leg robot JenaHopper.

The implemented feed-forward control strategy basically

swings the leg back and forth and the robot starts hopping

immediately. Fig. 5(a) shows the achieved hopping speeds

dependent on the free parameter combinations where hop-

ping was observed. The average speed hardly changes for

the range of frequencies from 1.0 to 2.67 Hz. Here, the

mean values of the speed lie between 0.6 and 0.9 m/s. Above

3 Hz the robot behavior changes from forward locomotion

to hopping in place and hopping backwards with further

increasing frequency. Fig. 5(b) is a visualization of the orbital

stability of the robot movement by means of the Floquet

multipliers. Hopping is stable for frequencies between 1.67

and 3.0 Hz, where the Floquet multiplier for small and

medium perturbations are almost always lower than one.

Unstable locomotion is indicated for lower frequencies (f <
1.5 Hz) especially for small perturbations, however, the robot

continued hopping. Here, the range where the state variables

were measured is relatively large as shown in Fig. 6(a). In

the case of hopping in place and hopping backwards with
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Fig. 7. Model prediction of angle of attack and dimensionless apex speed
for self-stable running (black area, β0 = 150 deg, c̃ = 0.66), and frequency
dependent results (mean ± s.d.) of JenaHopper hopping (θ0 = 15 deg). The
symbol description is explained in Sec. III-C.

low speed, the Floquet multipliers indicate stable movements

with few exceptions. The transition from forward hopping

to hopping in place at f = 3.33 Hz is accompanied by a

tendency toward instability.

Finally, we compare the robot experiments with the two-

segment leg template. We detect the speed vx at the instant

of apex and the angle of attack α0. Both variables are not

directly controlled in the robot, but ”occur” dependent on

leg dynamics and hip oscillation. The nominal angle β0 of

the leg template is set to 150 deg. This is larger than that

of the robot (132 deg) to simulate the extra nonlinearity in

the leg force caused by the pretension of the robot’s joint

spring. Since the model and robot are of different sizes,

we compare the resulting speeds using the dimensionless

Froude number [14] given as Fr = v2/ (g l0). Fig. 7 shows

both the dimensionless speed and the angle of attack for

some representative control settings and the model predicted

region for self-stable running. Here, we identify three kinds

of robot behavior. First, at medium frequencies (squares) the

angle of attack and the velocity lie close to the lower end of

the model predicted stability region. These hopping results

were previously identified as stable solutions (Fig. 5(b)).

The second region for low control frequencies (triangles)

lies somewhat away from the model predicted area. Here,

large ranges in velocity and leg angle α0 can be observed,

which are a consequence of unstable locomotion. The third

region with higher frequencies (circles) is found at high

leg angles and low velocities. These outcomes are far away

from the stable region of the two-segment leg, although they

were identified as stable movements (Fig. 5(b)). The stable

hopping solutions of the robot (squares and circles) cover the

middle to lower-right region and extend the model prediction.

IV. DISCUSSION AND CONCLUSION

In this study, we proposed a conceptual model to discover

the potential role of leg segmentation on running stability.

Additionally, we conducted experiments on a robot testbed
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Fig. 8. Video sequence of JenaHopper hopping on a turntable. The direction of locomotion is from left to right.

to further understand the nature of elastic and segmented

legs. In this section, we will discuss the model predictions

and experimental results.

The two-segment model reveals that segmented legs pro-

vide self-stable running at an enlarged range of running

speeds, i.e. at lower speeds, compared to prismatic legs with

spring-like behavior. We found that in an almost straight

leg configuration (β0 = 170 deg), comparable to the knee

joint in human legs, the minimum running speed is 1.1 m/s.

This is much lower than the preferred gait transition speed

between walking and running at about 2 m/s [14]. Our robot

experiments support the model prediction, showing stable

locomotion at relatively low speeds (Fig. 6(b) and Fig. 7).

A second model prediction and experimental outcome is

that running becomes more robust to variations in the angle

of attack. This suggests that even simple control strategies,

e.g. swinging the leg back and forth, lead to stable periodic

movements in systems with segmented legs. Robots with a

similar leg design [15], [12] could take advantage of the

mechanical self-stability identified in the model. However, a

control of speed and apex height is possible by adapting the

angle of attack [11].

Running animals and robots with spring-like leg behavior

can stabilize running at different speeds by using simple

leg strategies, e.g. adjustment of leg stiffness, adjustment

of angle of attack, or a combination of both (Fig. 4(a) and

[5]). In contrast, the two-segmented model indicates that an

adjustment of joint stiffness to running speed is necessary

(Fig. 4(b) and (c)), especially since a low or medium joint

stiffness is preferred at low speeds. This model prediction

is supported by human experiments where the knee joint

stiffness increased with increasing running speed [16]. The

required adjustment of joint stiffness to speed could be done

by novel technical solutions, e.g. [17]. However, most robots,

including JenaHopper, are restricted in speed due to motor

performance [7].

The novel features of segmented legs with respect to run-

ning stability are consequences of the nonlinear relationship

between leg length and leg force resulting in a decreasing

leg stiffness with increasing leg compression (Fig. 3). The

adaptation of leg stiffness, i.e. softening the leg spring, is

a purely passive mechanism in segmented legs with spring-

like joint functions. This behavior allows for self-adapting

the systems natural frequency to the induced hip oscillation.

All robot experiments result in lower velocities than pre-

dicted by the model (Fig. 7). This is probably due to the

highly reduced nature of the model, i.e. it does not consider

energy dissipation, the disabled pitch motion of the body,

motor limitations and the pretension of the spring. Another

finding in the experiments is a swing-leg retraction before

touch-down (Fig. 6) which improves stability in spring-like

legs [18]. Although, swing-leg retraction hardly influences

stability in the two-segment model (unpublished results), it

could gain stability in the robot with non-negligible leg mass:

It prepares the leg for stance-leg retraction and, therefore,

a reduction of impact forces and system perturbations is

assumed. It remains for further studies on how leg mass

influences running dynamics.
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