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Abstract— Odometry calibration is a first and essential step
to do for a successful navigation because most of control
algorithms are based on odomety information. Odometry error
can be categorized as systematic and non-systematic error. In
this paper, we suggest a novel method to calibrate systematic
error using inherent home positioning capability of home
cleaning robot. The method is designed for a differential drive
type and take advantage of Augmented extended Kalman Fil-
ter(AKF) Algorithm to estimates systematic error parameters.
Our approach has both characteristics of on-line and off-line.
By simulation and experiment, we evaluate the method and the
result shows that the proposed method gives odometry error
reduction by several times.

I. INTRODUCTION

Let odometry be defined as the use of encoder mea-

surements at the wheels to estimate the configuration of

robot state(position and orientation). To achieve successful

autonomous mobile robot navigation, accurate odometry is

essential because localization, mapping and path-planning

algorithms which are fundamental for robot navigation basi-

cally use odometry information.

Odometry error falls into two categories: systematic odom-

etry error and non-systematic error. Usually internal system-

atic factors cause a rise of systematic error and that shows bi-

ased characteristic. In contrast, non-systematic error is inde-

pendent on systematic features and has a unbiased(random)

characteristic.

A. Previous works

To get more improved odometry information, numerous

attempts have been made by scholars and various methods

have been developed. From a general point of view, the

existing methods can be classified into two groups by a

distinction which regards when the calibration process is

executed.

1) Off-line methods : The main point of off-line methods

is that calibration is executed after following a suitable test

trajectory. Using the difference between actual end point

and estimated end point, calibration is accomplished. Off-

line methods have a merit that calibration is possible using

only encoder profile at the wheels without any external

sensors. However the aspect that the final pose is usually

obtained by manual methods, in other words, by hand
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is critical weakness and this makes automation or self-

calibration difficult. Borenstein et al. analyzed the possible

source of odometry error [1], [2]. Based on these research,

Borenstein introduced a popular geometric method, UMB

method [3] for the calibration of certain systematic errors on

rectangular closed trajectories. Kelly[4] proposed the general

solution using linearized error equation for any trajectory

and any error model. Antonelli[5] presented a calibration

method based on the least-squares technique. Doh et al. [6]

suggested an odometry calibration procedure called the PC-

method. This method includes an idea that a robot should

move forth and back along the same trajectory generated by

the Generalized Voronoi Graph.

2) On-line methods : In the on-line methods, calibra-

tion is executed through continuous steps when a robot

is able to estimate the pose of itself by external sensors:

ultrasonic, vision and laser. On-line calibration methods

have an advantage that automation is easy and it is more

probabilistic approach which makes calibration more robust

than off-line methods. In the frame of on-line methods, Roy

and Thrun [7] suggested an algorithm that uses the robot’s

sensors to automatically calibrate the robot as it operates.

Larsen [8] and Martinelli [9] apply an AKF (Augmented

extended Kalman filter) algorithm that uses the robot’s

sensors(vision and laser) to automatically calibrate the robot

as it operates. This method can estimate simultaneously

the robot configuration and the parameters characterizing

the systematic error. In despite of these merits, there is a

significant problem. Calibration performance relies on the

performance of sensors.

B. Our contribution

In this paper, we suggest a novel method focused on a

practical aspect using home positioning. We will use the term

”home positioning” to refer a robot returning to its home

position after following an arbitrary trajectory which was

started from home position. Home positioning is carried out

frequently because of various purposes: recharge or initial-

ization of mapping and localization. By the reason, many

companies which are related to mobile robot developed the

module for autonomous homing. Nowadays, it is not difficult

to see mobile cleaning robots have autonomous homing

function. The proposed method is basically AKF algorithm

to estimates the parameters for odometry calibration, and has

merits as followings:

• Awareness of home positioning by physical contact can

provide a direct information which is as truthful as that
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of off-line method. Note that, in off-line methods, the

measurement is obtained by manual way.

• This method can be carried out without any external

sensors.

• If we take advantage of an autonomous homing module,

it is possible to develop an automatic process for self-

calibration.

As we mentioned above, the proposed odometry calibra-

tion using home positioning is a complementary procedure to

overcome the limitations of conventional on-line and off-line

method and more practical than previous methods.

This paper is organized as follows. In section II, we define

the odometry error model which we deal with. Based on the

discussion of section II, in section III, we will introduce more

detail algorithm to compensate systematic error. Section

IV shows simulation and experiment for evaluation of the

method. Finally, conclusion follows on Section V.

II. THE ODOMETRY ERROR MODEL

In this paper, we deal with differential drive type which

is widely used in mobile robotics and apply the kinematic

model proposed by Chong and Kleeman [10] for the motion

model of differential drive type. The model satisfies the

following relation and basic notation follows those of the

paper of Martinelli[8].
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where RR/L is measured radius of right/left wheel, d is

the distance between two wheels, namely, base length as

shown in Fig. 1, n
R/L
k is the number of right/left encoder

signals at kth step, N is encoder resolution, δρ
eR/L
k in (1)

is traveled distance induced from a measured radius and

encoder signals, δρk is translation of the robot related to

the kth step, δθk is change of heading angle.

In the ideal case, the state of mobile robot(position

and orientation) is updated by (3), to put it another sim-

ple way, the state is predicted by the relation: Xk+1 =

Fig. 1. The kinematic model of differential drive type

Fig. 2. The translation model of the right/left wheel at the kth step
considering systematic and non-systematic error

f(Xk, Uk), Uk =
(

nR
k nL

k

)T
. But in the real world,

it is very difficult to have ideal case because there are

many sources invoking systematic and non-systematic errors.

For the odometry calibration, we have to establish an error

model which expresses the sources of error. A simple way

to represent the odometry error for a mobile robot with a

differential drive type is to model separately the error in the

translation of each wheel.

We assume the systematic error occurs by three factors.

Two come from difference between actual radius and mea-

sured radius of two wheels. Last one is difference between

actual base length and the measured one. To compensate

these systematic disparity term, we bring in three systematic

parameters δR,δL and δd. The term, δR/L is a parameter

to correct radius and δd is for base length. That is to

say, δR/LRR/L is the actual value of a radius of right/left

wheel and δdd is the actual base length. In case of non-

systematic error, with respect to the Chong-Kleeman model,

only one non-systematic error parameter(Kw) is adopted to

characterize both the variances for the right and left wheel.

In this paper, the value of Kw was given by apriority. we are

not concerned here with non-systematic error parameter, Kw.

Using four error parameters, we can represent the relation of

motion model newly as:

δρ
R/L
k = δρ

R/L

k + ν
R/L
k (4)

δρ
R/L

k = δR/Lδρ
eR/L
k (5)

ν
R/L
k ∼ N(0;Kw|δρ

eR/L
k |) (6)

δρk =
δρR

k + δρL
k

2
, δθk =

δρR
k − δρL

k

dδd
(7)

The actual translation of the right/left wheel at kth step,

δρR/L is assumed to be a gaussian random variable whose

mean value, δρ
R/L

k is given from the traveled distance

δρ
eR/L
k which is the value before compensating disparity.

Covariance of δρR/L is expressed by adding ν
R/L
k which

has a characteristic as (6). Fig. 2 shows the relation of (4)-

(6).

Based on (4)-(7), we get a new relation of motion model

considering the systematic and non-systematic error. Now

our purpose is to obtain more correct motion model to
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Fig. 3. Estimation of systematic parameters using home positioning

generate a right odometry path. In other words, by correct

estimation of systematic parameters, we can calibrate biased

error because the biased error is expressed by systematic

parameters.

In section 3, based on the above analysis, we introduce

the strategy to estimate systematic parameters using home

positioning.

III. ESTIMATION OF SYSTEMATIC PARAMETERS USING

HOME POSITIONING

To estimate systematic parameters, basically we use AKF

algorithm proposed by Larsen[8]. Larsen[8] and Martinelli[9]

utilized AKF for simultaneous localization and calibration

method using vision/laser sensors. In our approach, we do

not use sensors such as vision/laser/sonar/IR and just we take

advantage of the failure of loop closing due to systematic and

non-systematic errors. When robot arrives at home position,

we can update the systematic parameters by comparing two

points(estimated end point and home position). Repeat of this

update pattern can make systematic parameters converge to

the correct values. The scenario is as followings

1) The robot starts moving from its home position

2) Follow an arbitrary trajectory

3) Come back to its home

4) Compare the estimated end position with home posi-

tion and update systematic parameters as shown in Fig.

3.

5) From 1 to 4 step, repeat until systematic parameters

converge to certain values.

To make systematic parpameters(δR, δL, δd) converge to cor-

rect values, we use AKF algorithm and the detail explanation

is given below.

A. Augmented robot state

AKF in our algorithm is similar to EKF localization algo-

rithm. The difference is that state vector of EKF localization

algorithm includes only position and orientation vector X =
[

x y θ
]T

, but augmented state of AKF has not only the

original state vector but also systematic parameters as a state

vector Xa =
[

x y θ δR δL δd

]T
. AKF algorithm

estimates a state(the augmented state) containing the robot

configuration and the systematic parameters, through an

EKF. Next steps are the prediction and update steps like

conventional EKF.

B. Prediction

Until the robot arrives at its home, the augmented state

vector should be continuously predicted by kinematic model

and the augmented kinematic model can be represented as

followings.
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(
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where Xak is the mean of the augmented state related to the

kth step, Uk is control input at kth step which consists two

variables, encoder signals : nR
k and nL

k and fa is the function

of augmented motion model (9). (9) is the augmented form

of (3).

As (9) shows, in prediction step, only upper parts of state

vector are changed, augmented parts of the state vector are

constant. That is to say, until a robot comes back to its home

position, robot continuously predicts only its configuration.

The covariance is also predicted by the conventional EKF

relation as following (10) to (13).

Pk+1 = FkPkFT
k + GkQkGT

k (10)

Fk =
∂fa(Xa, U)

∂Xa

∣

∣

∣

∣

Xa=Xak−1,U=Uk

(11)
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∂fa(Xa, U)

∂U

∣

∣

∣

∣

Xa=Xak−1,U=Uk

(12)

Q =

(

|αRδρR
k |

2 0
0 |αLδρL

k |
2

)

(13)

where P is the covariance of the augmented state, F and

G are jacobians of augmented motion model. Q is control

noise model. The noise increases in proportional to control

input until measurement happens.

C. Update

We measure the robot pose when robot comes back to the

home position as shown Fig. 4. If we think home positioning

as a measurement, it has a powerful advantage. Many dis-

tance sensors (laser, IR and ultrasonic sensor) can provide

only two dimensional information(range and anlge) and those

can not determine three dimensional robot configuration. To

get 3-D configuration, we need to calculate measurement

from several readings. However home positioning as a mea-

surement can give a three dimensional information(x,y and

θ) directly to determine the configuration state. Not only the

dimensional problem, distance and vision sensors have a lot

of uncertainty problem. Especially low-cost sensors (IR and

sonar) which are used in commercial products have many

critical uncertainty problems. In contrast, the accuracy of
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Fig. 4. The moment when a robot approaches the home position

measurement obtained from home positioning is very high

because the home positioning is done by physical contact.

The measurement model is updated by followings.

zk = h(Xk) =
(

xk yk θk

)T
(14)

ẑk =
(

xh yh θh

)T
(15)

where Xk is the state at the kth step, xh, yh and θh are the

absolute position and the orientation of the robot at home.

Through the above measurement model, we can update

mean and covariance of the state by the following relation:

Ψk = HkPkHT
k + Rk (16)

Kk = PkHT
k Ψ−1

k (17)

X̂k(+) = X̂k + Kk[zk − ẑk] (18)

Pk(+) = [I − KkHk]Pk (19)

where Ψ is innovation matrix, H is jacobian matrix of h with

respect to its state, R is measurement noise matrix which is

adopted by accuracy of home positioning and K is Kalman

gain. The mean and covariance of the state is updated by

(18) and (19) respectively.

IV. RESULTS

A. Simulation

Before the experiment in the real world, we performed a

simulation using MATLAB to evaluate the performance of

the proposed method. The scenario of simulation is the same

as the previous one. The configuration is summarized as:

• Simulation program : MATLAB 7.04

• Sampling time of encoder signal : 0.025 sec

• Measured radius of right and left wheels: 50mm

• Distance between two wheels: 400mm

• Resolution of encoder : 360 pulse/revolution

• Variance of motion noise: 10% of control inputs

• Variance of measurement noise : 30mm, 30mm, 0.1rad

Using the above condition, the simulation was performed and

the results are shown in Fig. 5 and Fig. 6.

As Fig. 5 indicates, at the first step, the gap between actual

path and odometry path is large but after repeating different

trajectoris, the gap gets smaller. At the 10th step, odometry

path is almost same as actual path and we can verify that

the systematic parameters converge to the correct value. The

parameters are shown in Fig. 6 and the result is summarized

below. Note also that initially all parameters were set as 1.

Fig. 5. Procedure of simulation
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Fig. 6. Convergence of systematic parameters

• Finally estimated systematic parameters

- δR = 0.98862 δL = 1.0205 δd = 1.0149

• Correct value

- δR = 0.99 δL = 1.02 δd = 1.01
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Fig. 7. iClebo-free, YUJINROBT Co.

B. Experiment

After the simulation, we carried out experiments with

real robot. The robot which we operated for experiment is

a commercial vacuum cleaner robot, iClebo-free made by

YUJINROBOT Co. The robot has a function of automatic

homing and the detail account of the configuration is given

below:

• Model : iClebo-free, YUJINROBT Co.

• Sampling time of encoder signal : 0.03 sec

• Measured radius of right and left wheels: 42mm

• Distance between two wheels: 298mm

• Resolution of encoder : 12 pulse/revolution ( enhanced

to 900 by reduction gear )

It is noteworthy that the performance of encoder used is very

poor, since we use encoder model which is currently adopted

in commercial home cleaning robot.

In simulation, we could acquire the correct values that

systematic parameters should pursue. It was possible to

compare the systematic parameters with reference values.

Unfortunately, in the experiment, there is no way to know

exact correct values. By the reason, for the evaluation of

our approach, we utilized external sensor, indoor GPS sys-

tem(NINETY SYSTEM Co.)[11], as shown in Fig. 8, which

provides the 3-D position of robot in real time. Using indoor

Fig. 8. iGPS system, NINETY SYSTEM Co.
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Fig. 10. Odometry error before/after calibration as the robot travles

GPS system, we were able to plot the actual robot path.

We controlled the robot to travel several different trajec-

tories until systematic parameters converge to certain values.

After all, we could notice the convergence of parameters after

17th home positioning step. After adopting the converged

values as systematic parameters, we plot the the odometry

path both before and after calibration, and to evaluate the

paths, also we plot GPS data. Fig. 9 shows the result of

the experiment. The path before calibration diverges from

GPS data due to the systematic and non-systematic errors.

In contrast, in the path after calibration, we could verify that

the effect of biased error is small.

Fig. 10 is the plot to describe the increase of error as

the robot travels. This plot shows that both of two path are

affected by non-systematic errors, but remarkably indicates

that the systematic error was reduced several times after

calibration.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we suggested a novel method for odometry

calibration using home positioning function, and verified the

performance through simulation and experiment. The point

that systematic parameters are updated after a trajectory

2120



using difference between two points(estimated end point and

the measured one) is the characteristic of off-line methods.

Continuous tracking method(AKF) is the feature of on-

line methods. Our approach has both properties of on-line

and off-line calibration methods. These fused characteris-

tics make it easy to develop an automatic process and to

overcome the limitation of on-line calibration method that

calibration performance depends on ther performance of ex-

ternal sensors. In addition to that, the quality of measurement

is excellent as that of off-line method.

In practical sight, computational burden of EKF procedure

is not heavy, therefore the implementation of the proposed

method will be possible without additional high performance

hardware. To get more reliable result, robot has to follow var-

ious trajectories and the paths should have different patterns

as UMBMark does.

In simulation, we could see that the systematic parameters

converged to the correct values. In experiment, using indoor

GPS system, we could observe the improved odometry path.

Especially a commercial robot, not a robot for research,

was used for experiment and this shows the possibility for

practical solution.

In this paper, we dealt with only calibrating systematic

error parameters. Also, the results show that there are still

some systematic errors. Performance enhancement and com-

pensating possibly non-systematic errors will be the topic of

future work.
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