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Abstract— This paper proposes a method to recover missing
data during observation by factorial hidden Markov models
(FHMMs). The fundamental idea of the proposed method
originates from the mimesis model, inspired by the mirror
neuron system. By combining the motion recognition from partial
observation algorithm and the proto-symbol based duplication of
observed motion algorithm, whole body motion imitation from
partial observation can be achieved. The algorithm for missing
data recovery uses the same basic strategy as the whole body
motion imitation from partial observation, but requires more ac-
curate spatial representability. FHMMs allow for more efficient
representation of a continuous data sequence by distributed state
representation compared to hidden Markov models (HMMs).
The proposed algorithm is tested with human motion data
and the experimental results show improved representability
compared to the conventional HMMs.

Index Terms— factorial hidden Markov model, mimesis, mo-
tion recovery

I. INTRODUCTION

In order for robots to successfully interact with humans and

operate in daily life, they need to not only perform a variety

of tasks but also understand human beings. The imitation

learning mechanism provides a means of automatic program-

ming of complex systems such as dexterous anthropomorphic

robots, without extensive trials or complex programming. In

particular, for humanoid robots, learning motion patterns by

observing and imitating humans is not only highly efficient

but also desirable for social interaction.

The neuroscience evidence of motor primitives and mirror

neurons [1] [2], found in humans and other primates, has

provided a scientific background and suggested a direction

of technical studies for robot imitation learning [3] [4] [5]

[6] [7] [8] [9] [10]. Bentivegna and Atkeson [3] [4] used the

idea of primitives for motor learning to play air hockey and

marble maze. Billard and Matarić [6] [7] used connectionist-

based approaches to represent movements. Fod et al. [8]

automatically derived primitives through an off-line process

of segmentation and application of the principal component

analysis. Inamura et al. [9] proposed the HMM (hidden

Markov model) based mimesis model, where observed human

motion primitives are encoded using HMMs and the HMMs

are used for humanoid robot motion generation. Breazeal and

Scasellati [11] and Schaal et al. [12] provided reviews on

motion learning by imitation.

Deacon [13] explained the developmental process of sym-

bols in three stages: icon, index, and symbol. The idea of

symbols or motion primitives has been used in many imitation

learning algorithms [3] [4] [5] [6] [8] [9] [14]. Abstraction is

an important strategy for handling the huge search space in

the real world and the limited computation capability of the

human brain. The real world is full of complex spatiotemporal

experiences. By using the semiotics system, which segments

meaningful chunks from the physical information, abstracts

the complex spatiotemporal information into symbols, and

infers the relation between symbols, human beings can handle

the complex real world quickly in a reduced search space.

The semiotics system also provides efficient memory man-

agement.

HMMs have been frequently used for modeling human

motions because HMMs efficiently abstract time series data

[9] [14]. When using HMMs for both motion recognition and

motion generation, there is a tradeoff between recognition

and generation performance, in particular when selecting the

number of states of the model [15]. A small number of states

give good generalization and recognition performance, while

a large number of states give better generation performance, at

the risk of over-fitting and poor generalization. Although the

model selection problem for HMM models has been studied

based on Bayesian [16] and Akaike [17] information criteria,

recognition criteria only are used to select the appropriate

number of states. In a prediction programming method [18],

both the structure and the parameters of the HMM are trained

on-line. However, the method has been applied in a simple

task (i.e. manipulator trajectory prediction), not verified in

complex tasks (i.e. human motion abstraction). Kulić et al. use

factorial hidden Markov models (FHMMs) for human motion

representation [15]. Another alternative has been proposed

based on regression [19].

One of the most critical points in real applications is how

to deal with partial observations. Among the research dealing

with partial observations, Ghahramani and Jordan [20] pro-

posed using the expectation-maximization (EM) algorithm to

fill in missing feature values of examples when learning from
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incomplete data by assuming a mixture model.

Full body motion imitation from occluded observations

includes two issues. One is how to understand motion patterns

from partial observations. Human beings can recognize and

imitate the demonstrator’s motion, even when a part of

demonstrator’s body is occluded, as long as the key features

are visible. The binocular vision system of human beings

has low depth sensitivity, specially for objects at distance.

Humans can understand 3D images with the vision system of

low depth sensitivity.

The second issue is how to generate whole body motion

similar to the demonstrator’s motion using knowledge. Imita-

tion is not just copying the demonstrator’s motion. It must be

an inferred result by the semiotics system because it allows

that one is aware of meanings of one’s motions. Human

infants develop their motion repertoire from the innate set

of motions and the skill of mimesis. It is an iterative strategy

to acquire a new motion pattern by modifying the generated

one based on the previously acquired ones. It would be more

efficient than acquiring by copying an unknown motion from

scratch.

The authors have been developing the mimesis model

which enables the humanoid to imitate complete motion pat-

terns from incomplete human motion observations: full body

motion imitation from occluded observations [21], a motion

recognition algorithm from observing labeled markers on hu-

mans by an onboard monocular vision system [22], and a 3D

motion imitation algorithm from 2D image sequences using

vector field of feature points[23]. The underlying common

strategies are motion recognition from partial observation and

proto-symbol based duplication of observed motion.

Through the proposed symbol based duplication scheme,

the repertoire of the humanoid’s motion patterns is enriched,

compared with replaying existing proto-symbols. A humanoid

robot also can imitate a new motion pattern more quickly by

applying prior knowledge, compared with learning the motion

from scratch and generating it.

By combining motion recognition from partial observation

algorithm and proto-symbol based duplication of observed

motion algorithm, whole body motion imitation from partial

observation can be achieved. However, the recovery accuracy

of missing data is not sufficient. The insufficiency is inherited

from not having enough discrete states of the model. The

problem is similar to the tradeoff between recognition and

generation performance. As the number of states of HMMs

increases, motion representation becomes more accurate. On

the other hand, the HMMs with a large number of states are

hard to train without computational overflow or underflow

and prone to over-fitting. Due to the over-fitting, recognition

of new motion patterns becomes weak and the optimal state-

sequence search performance becomes worse. In this paper,

we develop a methodology for missing motion data recovery

using Factorial Hidden Markov Models (FHMMs).
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Fig. 1. (a) Hidden Markov Model, (b) Factorial Hidden Markov Model

(a)

Proto-symbols

(HMMs)

Human's 

Behavior 

Humanoid's

Behavior

R
ep
ro
d
u
ct
io
nA

b
stra

ctio
n

R
eco
g
n
itio
n

(b)

Proto-symbols

 (FHMMs)

Human's 

Behavior 

Humanoid's

Behavior

R
ep
ro
d
u
ct
io
nA

b
stra

ctio
n R

ec
o
ve
ry

R
eco
g
n
itio
n D

u
p
li
ca
ti
o
n

Fig. 2. (a) Mimesis Model [9]: The mimesis model is a mathematical
model, inspired by the mirror neuron system. It is a bidirectional model
which performs learning, recognition and generation functions through proto-
symbols. The proto-symbols are defined through the HMM parameters. (b)
The proposed strategy: Abstraction is done by the FHMM exact training
[24]. Recognition is implemented by an adaptation of the forward-backward
algorithm [24]. Reproduction is implemented by the greedy generation
algorithm [15] or a stochastic generation algorithm . Algorithms of motion

recognition from partial observation and proto-symbol based duplication

of observed motion for FHMMs are developed. By combining the two
algorithms, missing observation data are recovered accurately.
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II. MOTION REPRESENTATION BY FACTORIAL HIDDEN

MARKOV MODELS

A hidden Markov model (HMM) is a representation of

a Markov process which cannot be directly observed. Ef-

ficient algorithms have been developed for model training

(the Baum-Welch algorithm), pattern recognition (the forward

algorithm and the backward algorithm) and hidden state

sequence estimation (the Viterbi algorithm) [25].

HMMs have been frequently used for modeling human

motions [26] [27] [28] [9]. In the mimesis model [9] shown

in Fig. 2 (a), motion learning, recognition and generation are

performed by using continuous HMMs (Fig. 1 (a)). In the

motion learning procedure, time series of an observed human

motion are abstracted as HMM parameters λ = (A,B, π) via

the Expectation Maximization (EM) technique. The trained

HMM λ = (A,B, π) is called a proto-symbol. A is the state

transition probability matrix. π is the initial state probability

vector. B is the observation emission probability distribution.

In motion recognition, the likelihood P (O|λ), the probabil-

ity that a time-series sequence of an observed motion pattern

O is generated by a proto-symbol λ, is calculated against each

proto-symbol. The most likely proto-symbol which generates

the observed motion is sought.

In the motion generation function, a motion pattern is

decoded from a selected proto-symbol via two processes:

generation of the state sequence and generation of the output

motion elements. The state sequence is decoded from the

state transition probability matrix A and the initial state

probabilities vector π. The output motion elements at each

state are decoded from the observation symbol probability

distribution B.

A factorial hidden Markov model (FHMM) is a hidden

Markov model with a distributed state representations, as

shown in Fig. 1 (b). An FHMM consists of multiple hidden

Markov chains. Each dynamic chain is represented by its own

state transition probability matrix, initial state probabilities

vector, and emission probability distribution. Chains are in-

dependent of each other; they do not interact when generating

data. The output of the model at each time step is, however,

dependent on the values of the state variables of all the chains

because the outputs from all the dynamic chains are summed.

Several FHMM training algorithms have been developed;

the exact method [24], mean field approximation [24], backfit-

ting algorithm [29], and sequential training method [30]. The

exact method is an adaptation of the Baum-Welch algorithm

but computationally expensive. The others are faster than the

exact method but their training performance is not as good as

that of the exact method. Once an FHMM is trained, pattern

recognition can be implemented by an adaptation of the

forward-backward algorithm [24]. A representative sequence

from an FHMM can be generated by an adaptation of the

motion generation of the mimesis model [15].

In contrast of the conventional HMMs, FHMMs are ef-

ficient from a representational viewpoint. While in HMMs

there is inherited tradeoff between recognition and generation

performance in particular when selecting the number of states,

FHMMs provide more efficient approach for combining good

generalization for recognition purposes with sufficient detail

for better generation. Kulić et al. [15] proposed a methodol-

ogy for human motion representation based on FHMMs to

avoid over-fitting problems with large number of states and

poor generation and discrimination performance with small

number of states, which are encountered with HMMs.

III. MISSING MOTION DATA RECOVERY USING FHMMS

One of the most critical points in real applications is how

to deal with missing observation data. The authors have

proposed algorithms which enable the humanoid to imitate

complete motion patterns from incomplete human motion

observations; full body motion imitation from occluded obser-

vations [21], a 3D motion imitation algorithm from observing

labeled 2D markers on humans [22], and a 3D whole-body

motion imitation from 2D occluded image sequences using

vector field [23].

In [21], algorithms of motion recognition from a partial

observation and proto-symbol based duplication of an ob-

served motion are developed. The motion recognition from a

partial observation algorithm may recall the mirror neuron’s

attribution of activation from hidden observations [31] [2].

According to congruence type of observation and generation,

mirror neurons have been subdivided into “strictly congruent”

and “broadly congruent” neurons [2]. Two thirds of mirror

neurons are broadly congruent neurons which do not require

that observation and action are exactly the same. Mirror

neurons in which the effective observed and executed motions

correspond in terms of goal (e.g., grasping) and means for

reaching the goal (e.g., precision grip) have been classed

as strictly congruent neurons. The algorithm of proto-symbol

based duplication of an observed motion, which generates a

motion pattern close to the observation, provides the similar

attribution of the strictly congruent mirror neurons.

The proto-symbol based motion duplication algorithm per-

forms motion imitation similar to the observation. By estimat-

ing the optimal state sequence using the Viterbi algorithm, the

imitated motion pattern is temporally synchronized with the

observation. Different motion patterns corresponding to the

same proto-symbol can be imitated with different temporal

sequences. This allows situated motion generation by tempo-

ral synchronization.

By combining the two algorithms, we achieved imitation

of whole-body motion patterns from occluded observations

[21] [23]. Missing data recovery can be achieved by the

same basic strategy as the whole body motion imitation from

partial observation. This is an interesting approach to recover

missing data based on the mimesis model. However, the detail

of the generated motion data by our previous research is
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not good enough to say that the missing data is recovered

accurately. The insufficiency to represent continuous human

motion is inherited from discrete states of the hidden Markov

chains. This problem is similar to the tradeoff between recog-

nition and generation performance. As the number of states

of HMMs increases, motion representation becomes more

accurate. However, due to the over-fitting, recognition of new

motion patterns becomes weak and the optimal state-sequence

search performance becomes worse. On the other hand, an

HMM with low number of states is good at recognizing

new data, but cannot reproduce the observed data through

generation. In this paper, we develop a methodology for

accurate recovery of missing motion data using Factorial

Hidden Markov Models (FHMMs), as shown in Fig. 2 (b).

A. Recognition of motion patterns with missing data

Motion recognition is a problem to find the most probable

proto-symbol for the input observation sequences.

λ∗ = arg max
λ

P (x|λ) (1)

Log-likelihood, log P (x|λ), for FHMMs is calculated by an

adaptation of the forward-backward algorithm [24]. When

there are missing motion elements in the input observation

sequence xt, the emission probability distribution bi(xt),
which is represented with a Gaussian distribution, is modified.

bi(xt) =
exp{− 1

2
(xt − µi)

T Σ−1

i (xt − µi)}
√

(2π)M det Σi

(2)

For the missing motion elements {xk}t, either eq. (3) or

eq. (4) is substituted into eq. (2),

{xk}t − µij = ∗ (3)

Σij = ∞ (4)

so that the invisible motion elements do not affect the output

probability density function. In eq. (3), ∗ indicates a constant

value and in our experiments it is set to zero.

B. Proto-symbol based Motion Duplication

Motion patterns are decoded using the expectation operator

in the stochastic model. The general motion generation is a

two-stage stochastic process; state transition generation and

motion output generation from the state sequence.

Missing data in the observed motion sequences are recov-

ered by applying previous knowledge and current observa-

tions. The state sequence is obtained by applying the Viterbi

algorithm [25], which computes the single best state sequence

for the given observation sequence. Thus, this optimal state

transition generation enables us to generate a whole body

motion pattern close to the observed target motion pattern.

The Viterbi algorithm for FHMMs is developed. It is a

three-step procedure. (1) An FHMM, consisting of M chains

of N states, is expanded as a single hidden Markov chain

with NM states. The expanding procedure is adopted from

the exact training method [24]. (2) The single optimal state

sequence S∗ given an observation for the converted single

hidden Markov chain with NM states is calculated by the

conventional Viterbi algorithm. The best state at time t, s∗t ,

is a value between 1 and NM . (3) The calculated optimal

state sequence S∗ for a single chain is converted into S =
{S1, · · · , SM} for M chains. The best state at time t for the

i-th chain, sit, is a value between 1 and N .

When calculating the optimal state-sequence, the output

probability density function is required. In order for the

invisible motion elements not to affect the output probability

density function, for the invisible motion elements, either

x−µ = ∗ or Σ = ∞ is applied, where ∗ indicates a constant

value. After the optimal state sequence for each chain is

obtained, the output observation sequence from each chain

is calculated according to its output emission probability

distribution in state i, i.e., bi(x). The simplest way to generate

the output is by taking the mean vectors of each gaussian for

the state-sequence. Then, the output observation sequence y

is calculated by summing the contribution from each chain

at each time step. After the trajectory is obtained, post

processing like a smoothing technique is required before use

as motor command input.

The proto-symbol based motion duplication for an FHMM

is summarized as the following pseudo-code.

Step1 Expand an FHMM λ (M chains of N states) to an

HMM λ′ (NM states)

Step2 Calculate the optimal state-sequence S∗ =
[s∗

1
, · · · , s∗T ] given an observation for λ′ by the

conventional Viterbi algorithm

Step3 Convert S∗ into S = [S1, · · · , SM ]T for M chains

Step4 Generate a motion by summing the contribu-

tion from each chain at each time step: yt =
∑M

m=1
Bm(sm

t ), for 0 < t < T .

IV. EXPERIMENTS

The performance of the FHMMs is compared to the

conventional HMMs for missing motion data recovery. Both

models are tested on a data containing a series of 9 different

human movement observation sequences obtained through a

motion capture system. The human movement is converted

into joint angle data for a 20 degree of freedom humanoid

model. The data set contains multiple observations of walking

(28 observations), cheering (15 observations), dancing (14

observations), kicking (19 observations), punching (14 obser-

vations), sumo leg raise motion (15 observations), squatting

(14 observations), throwing (13 observations), and bowing (15

observations). Figure 3 shows selected frames of an animation

for a walking motion pattern from the data set.

A set of 9 HMMs and FHMMs are trained on the data, one

for each motion type. Each FHMM consists of two periodic

left-to-right hidden Markov chains of 10 states each. The

corresponding HMMs are also periodic left-to-right type with
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Fig. 3. Sample Walking Motion - Animated from joint angle data provided
by the motion capture system. (1, 11, 21, 31, 41, 51 and 61 frames)

Fig. 4. Partially Observed Walking Motion - Animated from joint angle
data. Right shoulder, arm, and leg are invisible. (1, 11, 21, 31, 41, 51 and
61 frames)

Fig. 5. Recovered Walking Motion using FHMM - Animated from recovered
joint angle data using the trained walk motion model by the proposed method.
(1, 11, 21, 31, 41, 51 and 61 frames)

different number of states. Among several training methods

of FHMMs [24] [29] [30], the exact training method [24]

was used in the experiments. To avoid overflow or underflow

problem during implementing HMMs, it is often necessary

to use a scaling parameter [32] or a logarithmic probability

form. On top of these techniques, in a number of algorithms

[33] [14] [15], the covariance matrix was constrained to be

diagonal and the minimum covariance was constrained. A

reason for the overflow or underflow problem is the HMM’s

over-fitting tendency, in particular with the large number of

states. In the experiments, the full covariance matrix is used,

without any constraint on the minimum covariance, during

training in order to check the over-fitting problem. Kulić at

el. [15] compared HMMs and FHMMs for recognition and

generation, and suggested the use of FHMMs in a dense

area of proto-symbol space to discriminate the proto-symbols

clearly. This paper skips the recognition and generation

performance comparison, but concentrates on missing data

recovery performance.

In the first set of experiments, each FHMM consists of

2 chains of 10 states and the corresponding HMM contains

10 states. Each model is trained on 7 exemplars of a motion

type. Input data is walking motion pattern whose right side of

body was occluded, as shown in Fig. 4. The input motion is

a different example which was not used for training. Figure 5

shows the snapshots from an animation of a recovered whole-

body walking motion using the walking FHMM. Figure 6

shows an example of motion recovery results for the left

and right knee joints during a walking motion. The shown

trajectory is mean value trajectory with respect to the optimal

state-sequence given the observation, prior to applying any

post processing (i.e., low-pass filtering). As can be seen in

the figure, due to the higher number of states available to

represent the motion, FHMMs achieve better spacial accuracy

compared to single chain HMMs.
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Fig. 6. Comparison of missing motion data recovery results of HMM (10
states) and FHMM (2 chains of 10 states) for the right and left knee joints
during a walking motion. In observed data, joint angles for right half of the
body was missing. Invisible right knee joint angle is recovered closely to the
true value.

In the second set of experiments, each FHMM consists of

2 chains of 10 states and the corresponding HMM contains

10 × 2 states. They are compared with the same occluded

walking motion data, as shown in Fig. 4. Figure 7 shows

an example of motion recovery results for the left and right

knee joints during a walking motion, prior to applying any

post processing. Although both HMMs and FHMMs contain

the same number of states (20 states), FHMMs achieve better

spacial accuracy because FHMMs can represent 102 statuses

by factorizing distributed states.
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Fig. 7. Comparison of missing motion data recovery results of HMM (10×2

states) and FHMM (2 chains of 10 states) for the right and left knee joints
during a walking motion, before any post processing is applied.

In the third set of experiments, each FHMM consists of

2 chains of 10 states and the corresponding HMM contains

102 states. The same occluded walking motion data, which is

displayed in Fig. 4, is given as the recovery target. Figure

8 shows an example of the motion recovery results. The

equivalent number of states of HMMs to FHMMs (2 chains

of 10 states) is 102. Although both models have the equivalent

number of states to represent the motion, it can be seen
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that FHMMs outperform the HMMs from Fig. 8. A single

hidden Markov chain with a large number of states is prone

to over-fitting, therefore the HMM shows a performance

drop when calculating the optimal state-sequence against

new motion data. On the other hand, FHMMs demonstrate

better generalization and good performance at optimal state-

sequence calculation.
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Fig. 8. Comparison of missing motion data recovery results of HMM (102

states) and FHMM (2 chains of 10 states) for the right and left knee joints
during a walking motion, prior to any post-processing.

One of reasons for the computational overflow or underflow

problem during training is the over-fitting. In the fourth set of

experiments, the over-fitting tendency with respect to different

model structures is surveyed. The following nine motion

patterns are trained; walk, cheer, dance, kick, punch, sumo leg

raise (SUMO), squat, throw and bow. Each motion pattern is

trained into eight different model structures; periodic HMM

with 10 states, periodic HMM with 20 states, periodic HMM

with 100 states, periodic FHMM with 2 chains of 10 states,

left-to-right(LR) HMM with 10 states, left-to-right HMM

with 20 states, left-to-right HMM with 100 states, and left-

to-right FHMM with 2 chains of 10 states. Training of each

motion pattern into a model structure is run 1000 times.

Among the 1000 trials of training, the rate of success without

computational overflow or underflow problem is calculated

and shown in table I. The full covariance matrix is used

and there is no constraint on the minimum covariance during

training. From the table, FHMMs which consist of 2 chains

with 10 states are less prone to overfitting than HMMs with

10 states. The table shows that the parameters of HMMs

with 102 states are hard to train. Even when the HMMs with

many states are trained successfully, the trained HMMs do not

represent abstract forms of motion patterns and the mimesis

model using such HMMs becomes distant from the semiotic

system.

In the fifth set of experiments, the recovered accuracy with

respect to different model structures is surveyed. Multiple par-

tial observations of nine motion patterns are recovered; walk

(28 observations), cheer (15 observations), dance (14 observa-

tions), kick (19 observations), punch (14 observations), sumo

leg raise (15 observations), squat (14 observations), throw

(13 observations), and bow (15 observations). Among the 20

TABLE II

ERRORS OF THE RECOVERED MOTION [UNIT: RAD]

model HMM HMM HMM FHMM

10 states 20 states 100 states 2 chains, 10 states

walk 0.067345 0.057648 0.054110 0.043207

cheer 0.072403 0.064836 0.058101 0.064642

dance 0.076132 0.068385 0.051436 0.067164

kick 0.077991 0.073480 0.073277 0.067525

punch 0.075862 0.083210 0.053234 0.059824

SUMO 0.087385 0.068190 0.057218 0.065885

squat 0.063387 0.051660 0.061371 0.049082

throw 0.073762 0.063399 0.068947 0.054224

bow 0.066992 0.065015 0.062311 0.052278

joints, 8∼10 joints are invisible for each motion pattern. The

invisible parts are the left half of the body for cheer and

squat, the upper half for kick and sumo leg raise, and the

lower body for punch and throw. In the case of walk, dance

and bow, the right half is invisible. The difference between the

true joint angles and the recovered joint angles is calculated.

Table II shows the averaged errors of each joint at each

frame. The table shows that FHMMs provide better recovery

accuracy than the HMMs in general. Although sometimes

HMMs with 100 states outperform FHMMs, HMMs with a

large number of states are distant from the semiotic system

and inappropriate for the mimesis model.

V. CONCLUSIONS

As an application of the mimesis model, a novel algorithm

for missing data recovery using factorial hidden Markov

models is proposed. The missing data recovery takes the

same strategy as the whole body motion imitation from partial

observations, but requires better motion representability. With

the distributed state representation, FHMMs achieve better

spatial representation with a small number of states and robust

recognition performance against new data. A symbol based

motion duplication algorithm is developed for FHMMs. In

the experiments, the proposed algorithm is used to estimate

the invisible joint angles of the human. From the results, it

is shown that FHMMs are more flexible to new motion data,

and improve the recovery accuracy compared to the HMMs.
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TABLE I

TRAINING SUCCESS RATIO WITHOUT OVER/UNDERFLOW [UNIT: %]
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