

Abstract—This paper explains an episodic-memory-based

approach for computing anticipatory robot behavior in a

partially observable environment. Inspired by biological

findings on the mammalian hippocampus, here, episodic

memories retain a sequence of experienced observation,

behavior, and reward. Incorporating multiple machine learning

methods, this approach attempts to help reducing the

computational burden of a partially observable Markov

decision process (POMDP) problem. In particular, proposed

computational reduction techniques include: 1) abstraction of

the state space via temporal difference learning; 2) abstraction

of the action space by utilizing motor schemata; 3) narrowing

down the state space in terms of goals through instance-based

learning; 4) elimination of the value-iteration by assuming a

unidirectional-linear-chaining formation of the state space; 5)

reduction of the state-estimate computation by exploiting the

property of the Poisson distribution; and 6) trimming the

history length by imposing a cap on the number of episodes that

are computed. Claims 5) and 6) were empirically verified, and it

was confirmed that the state estimation can be in fact computed

in an O(n) time (where n is the number of the states), more

efficient than a conventional Kalman-filter based approach of

O(n2).

I. INTRODUCTION

S the robotic technologies keep advancing and start

interweaving into our lifestyle, it is inevitable that some

robots will be soon required to make instant decisions in life-

or-death situations for humans. For example, the robots

deployed in the domains such as military [1, 2], nursing [3,

4], and search-and-rescue [5, 6] are the obvious candidates.

These robots will have to behave in an anticipatory manner.

In other words, they have to be able to assess a current

situation, predict the future consequence of the situation, and

execute an action to have desired outcome based on the

assessment and the prediction. For humans, such critical

decisions are made by experts, relying on their experiences.

Similarly, for robots, the premise here is that experience

does matter as well. The question is then how to store the

experience into the robot’s memory and, when necessary,

utilize it without delay.

We have previously investigated an anticipatory robot

navigation method [7], in which a robot constructs a

cognitive map while simultaneously localizing itself relative

to it. The cognitive map consists of episodic memories.

Inspired by the notion proposed by neuroscientists [8], the

Y. Endo is with Georgia Tech Mobile Robot Laboratory, Atlanta, GA

30332 USA (corresponding author to provide phone: 404-385-7139; fax:

404-894-0673; e-mail: endo@cc.gatech.edu).

basic idea of episodic memory is that it stores a temporal

sequence of events where each event consists of sensory and

behavioral information. While retaining the core concept, in

this paper, we extend the episodic memory from a mere

“map” notion into a framework to solve partially observable

Markov decision process (POMDP) problems efficiently.

The objective of an MDP problem is to find the best

action for the current state that maximizes expected rewards.

While solving a standard (stochastic) MDP problem itself

suffers from a computational complexity as the state space

broadens, solving a POMDP problem is known for its severe

computational burden because a current state cannot be

assessed directly and therefore has to be estimated first.

Unfortunately, when dealing with real robots, the assumption

of complete observability cannot be guaranteed because

various types of uncertainties influence the robot’s state.

Hence, the challenge for the robotics researchers has been to

find a computationally tractable solution while working in a

partially observable environment.

II. RELATED WORK

 A standard approach for solving POMDP problems is to

apply Bayes’ rule. Most notably, Cassandra et al. [9] laid out

one of the first Bayesian-based frameworks for the artificial

intelligence community. In robotics, Koenig and Simmons

[10] have developed a computational architecture for robot

navigation that incorporates POMDP. Representing the

environment with a topological map, in their method, the

optimal policies were refined (offline) through the Baum-

Welch algorithm.

 Various attempts have been made to reduce the

computational load associated with the POMDP

computation. One way to accomplish such reduction is to

represent the state space hierarchically. For example, in

Theocharous and Mahadevan’s approach [11], the state

space was abstracted based on spatial granularities. Through

their experiment using a real robot, the hierarchical

dissection of the state space was proven effective especially

when covering a large area. Likewise, Pineau et al. [12]

tackled a POMDP problem by decomposing the action space

hierarchically. The application of their method on a real

robot in nursing homes has successfully provided necessary

assistances to the elderly residents. It should be noted that

our method presented here also utilizes the notion of abstract

action (behavior) that is composed with lower level motor

schemata (which themselves can be represented

Anticipatory Robot Control for a Partially Observable Environment

Using Episodic Memories

Yoichiro Endo

A

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2852

hierarchically).

 Another way to reduce the state space is via sampling.

Thrun [13] has demonstrated that Monte Carlo sampling

over belief space can attain solutions that are near optimal.

On the other hand, instead of sampling based on the belief

distribution, Pineau et al. [14] proposed a sampling method

based on the shape of the value function. More specifically, a

finite set of sampling points is selected, which is enough to

recover the value function through a piecewise linear

function. For each computational cycle, a new set of

sampling points is selected by stochastically simulating the

trajectory of the previous points; hence, the old points are

thrown away if found irrelevant (i.e., trimming the history

length). Correspondingly, our episodic-memory-based

method can be viewed as a form of trajectory sampling [15];

instead of exhausting computational effort on sweeping the

entire state space, state parameters are updated only for those

residing along the trajectory of performing a task.

There is also an alternative to the Bayesian-based

approach for solving POMDP problems. McCallum [16]

applied an instance-based learning method to estimate the

current state. More specifically, from its memory, the robot

retrieves the k nearest neighboring states that best represent

the current state based on the current sequence of action,

perception, and reward. The state parameter (Q-value),

which is used to obtain an optimal policy, is determined by

averaging the values from those k states. Ram and

Santamaria [17] also took a similar approach to identify the

current state in the context of continuous case-based

reasoning. In their method, however, the retrieved case was

used to directly alter behavioral parameters in order to obtain

desired behavioral effects. Our method presented here also

utilizes the instance-based learning. However, instead of

directly identifying the current state, it was employed to help

narrow down the state space based on the goals.

III. ANTICIPATORY ROBOT CONTROL

The diagram in Figure 1 shows our proposed

computational steps that integrate multiple machine learning

methods to compute anticipatory behavior for a robot. While

we have proposed in [18] that these steps can be employed to

compute improvisational behavior as well, in this paper, we

will limit our discussion to the anticipatory behavior aspect

only.

Anticipation Anticipation + Improvisation+ Improvisation

Event SamplingEvent Sampling
Temporal Difference LearningTemporal Difference Learning

Episode RecollectionEpisode Recollection
InstanceInstance--Based LearningBased Learning

Event MatchingEvent Matching
Recursive Bayesian FilteringRecursive Bayesian Filtering

Behavior SelectionBehavior Selection
Markov Decision ProcessMarkov Decision Process

Episodic MemoryEpisodic Memory

P
 O

 M
 D

 P
P

 O
 M

 D
 P

Anticipation Anticipation + Improvisation+ Improvisation

Event SamplingEvent Sampling
Temporal Difference LearningTemporal Difference Learning

Episode RecollectionEpisode Recollection
InstanceInstance--Based LearningBased Learning

Event MatchingEvent Matching
Recursive Bayesian FilteringRecursive Bayesian Filtering

Behavior SelectionBehavior Selection
Markov Decision ProcessMarkov Decision Process

Episodic MemoryEpisodic Memory

P
 O

 M
 D

 P
P

 O
 M

 D
 P

Figure 1: Computational steps for the anticipatory robot control

A. Episodic Memory

Our computational steps utilize episodic memory, whose

biological inspiration comes from the mammalian

hippocampus [7]. As shown in Equation 1, an episodic

memory (E) consists of a temporal sequence of events (e),

where n is the number of events in the episode, and a goal

(g), which the robot was pursuing during the episode:

 }),,...,,{(21 geeeE n= (1)

The event can be considered as a snapshot of the world at a

certain instance during the episode. More specifically, the

event consists of a set of observation (o), behavior (b), and

reward (r):

 },,{ rboe = (2)

o (observation) is an m-length vector of sensor readings (z)

where m is the number of sensors that the robot is integrated

with:

 },,,{ 21 mzzzo K= (3)

b (behavior) is defined as a set of motor schemata [19] (σ)

that are instantiated at the instance:

 },,,{ 21 βσσσ K=b (4)

r (reward) is a value of the reward signal at the instance,

which is modulated by a separate function (Subsection

III.C). Finally, g (goal) is a particular perceptual state that

the robot was attempting to reach during the episode

(Subsection III.C). As for the observation above, the goal is

denoted with the m-length vector of sensor readings:

 },,{ 21

g

m

gg zzzg K= (5)

Note that episodes are partitioned based on goals. In other

words, a new episode starts when the robot starts pursuing a

new goal and ends when the robot stops pursuing it. Hence,

the number of events in each episode varies depending on

how long the particular goal was pursued by the robot.

B. Anticipatory Behavior Computation

As proposed in [18], anticipatory robot behavior is

computed by the following four steps: event sampling,

episode recollection, event matching, and behavior selection

(Figure 1). Each step employs a different machine learning

method: namely, temporal difference learning, instance-

based learning, recursive Bayesian filtering, and MDP,

respectively. Note that the combination of the recursive

Bayesian filtering and MDP is used to provide the solution

for the POMDP problem in our case.

1) Event Sampling: The goal of event sampling is to

construct a model of the world in terms of episodic memories

(Equation 1). More specifically, given a continuous stream

of sensor readings, discrete states are temporally abstracted

in this step. In order to abstract an event from the input data

stream, a simple (model-free) reinforcement learner, namely,

TD(λ) [20], is used. In this case, the sole purpose of the

learner is to predict the current observation based on the

previous observation as fast as possible. The assumption

here is that, at the instance when the learner fails to predict

the observation, the robot must be entering a new state;

2853

hence the state parameters are remembered. The observation

is learned at the individual sensor reading (z) level. At an

instance t, based on the previous sensor reading (zt–1), each

current sensor reading is predicted by a simple linear

equation
*
:

 1 −=′
ttt zwz (6)

where w is a weight. At each time cycle, w is updated with

the TD(λ) update rule [20]:

 ∑
=

−
+

′∇′−+=
t

k
k

kt

tttt zzzww
1

1)(λα (7)

where α is a learning rate, λk
 is an exponential weighting

factor (eligibility trace), and the gradient kz′∇ is a partial

derivative of kz′ with respect to the weights
†
.

 The error of the prediction is monitored at each time cycle

in order to decide when to sample an event. The error is

measured in terms of a root-mean-squared (RMS) difference

of the predicted and actual observations. If the error at t is

larger than the one before and after, a new event is sampled

(Equation 8):

−′>−′

−′≥−′

= ++

−−

otherwisefalse

)()(

and)()(iftrue

)(11rmsrms

11rmsrms

sample tttt

tttt

oofoof

oofoof

tf (8)

where frms is a function that returns a RMS of a vector. Figure

2 shows the error between predicted and actual observations

when a simulated robot (integrated with sonar sensors)

proceeds along a corridor of a typical office building. Each

tip of the spikes represents the occurrence of an event, and, it

shows how events are clustered around salient features of the

environment such as open doors and a corridor junction.

0

0.1

0.2

Time StepTime Step

R
M

S
 P

re
d

ic
ti

o
n

 E
rr

o
r

R
M

S
 P

re
d

ic
ti

o
n

 E
rr

o
r

DoorsDoors

DoorsDoors

CorridorCorridor

JunctionJunction

Robot PassageRobot Passage

Floor MapFloor Map

0

0.1

0.2

Time StepTime Step

R
M

S
 P

re
d

ic
ti

o
n

 E
rr

o
r

R
M

S
 P

re
d

ic
ti

o
n

 E
rr

o
r

DoorsDoors

DoorsDoors

CorridorCorridor

JunctionJunction

Robot PassageRobot Passage

Floor MapFloor Map

Figure 2: Comparison between the prediction errors and the

passage of the (simulated) robot.

2) Episode Recollection: One way to compute the best

behavior is to consider all the episodes collected by the robot

to find the best policy (as we did in [7]). However, as the

number of episodes increases, the computational power that

is necessary to process all of them also increases. In this step,

in order to allocate the computational power to only those

relevant to the current situation, the episodes are

preprocessed, and irrelevant episodes are filtered out by an

* The subscript denotes a temporal index, different from the subscript

used to denote the integrated sensor types in Equation 3.
† ∇z′k is zk-1 because of Equation 6.

instance-based learning method.

The core of instance-based learning algorithms is a set of

similarity and classification functions [21]. Taking the

current goal (gcur) as a query point, our similarity function is

implemented with a Gaussian-based likelihood function:

),(][curL EE ggf=ρ (9)

The likelihood function (fL) returns the similarity value (ρE)

in terms of the likelihood of a sample (the first input

parameter) given a measurement (the second input

parameter). In this case, we examine the similarities between

the current goal (gcur) and the goal of the querying episode

(g[E]) that we wish to evaluate.

 Once the similarity is computed, the classification function

determines whether the episode is relevant to the current goal

or not. More specifically, for any episode that is in the

robot’s memory (C), if ρE of the episode is above a

predefined threshold (θρ), the episode will be classified as

relevant and added to the collection of relevant episodes

(MRel). Note that, in order to reduce the computation time in

the event matching step (below), the size of MRel is restricted

to a predefined number, K. In other words, the K latest

episodes that meet the similarity condition are selected:

 }}{|{
:1:1:1rel ρθρ ≥∧⊆=
KEKK CEEM (10)

The effect of K with respect to the computation time of the

event matching step is reported in Section IV.

3) Event Matching: This step is invoked whenever a new

event is captured by the event sampler. It is an equivalent of

the state estimation process in POMDP. From a collection of

relevant episodes computed above, events that best represent

the current state are determined by a recursive Bayesian

filter, the probabilistic method commonly used for solving

the simultaneous localization and mapping (SLAM) problem

[22]. At first, for each relevant episode, the posterior

probabilities (belief) of being at some event (eq) in the

episode given the history of the observations (
τo) and

executed behaviors (
τ

b) are solved by the following

recursive equation
‡
:

∑
∈

−−
−−

−

=
Ee

qqq b|oepe|bep|eopb|oep
1

),(),()(),(11

11

τ

ττ
ττττ

ττ η (11)

where η is a normalization factor,)|(qeop τ is a sensor

model,),(1−ττ e|bep q is a motion model, and),(11

1

−−
−

ττ
τ b|oep

is the belief of the previous computational cycle.

 To implement the sensor model, which is the conditional

probability of observing oτ given the query event (eq), we

employ the same Gaussian-based likelihood function used in

Equation 9. More specifically, the similarity (ρsensor) of the

current observation (oτ) and the ones recorded in the

querying event (][qeo) is computed as our sensor model:

),()|(][L qesensorq oofeop ττ ρ == (12)

 The motion model is the transition probability of the robot

arriving at the target event (eq) if the previous event is 1−τe

‡ See [7] for derivation.

2854

and behavior bτ is executed. In the certainty equivalence

approach [23], the transition probabilities may be estimated

by taking the statistic of the transitions while exploring the

environment [24]. On the other hand, in our episodic-

memory-based approach, since events are formed in a

unidirectional linear chain (Equation 1), the motion model

can be computed in terms of how many events the robot

needs to advance in order to reach eq from 1−τe . Let ej be

1−τe , Equation 13 shows our implementation of the motion

model:

≠>+

=>+

=

otherwise

 and if else),(

 and if),(

),|(P

P

m

qmqjm

qmqj

jq bbjqeef

bbjqeef

ebep

ε

εκ

ε

τ

τ

τ
 (13)

where εm is some small number to ensure that the probability

does not become absolutely zero, κm is a discount factor, and

fP is a function that returns the probability of the robot

reaching eq from ej based on the Poisson distribution. Let us

define dj:q to denote the distance between ej and eq in terms

of event numbers and d to denote the average number of

events that the robot advances within one computational

cycle. The Poisson-based function is then implemented as:

!

)exp(
),Poisson(),(

:

)(

:P

:

qj

d

qjqj
d

dd
ddeef

qj−
== (14)

In other words, the motion model is the probability from the

Poisson distribution if the index of eq is greater than the

index of 1−τe , and bτ is the same behavior that is stored in eq.

If the behaviors mismatch, the probability is discounted.

Since the posterior probabilities are computed whenever the

event sampling step captures a new event, the value of d is

assumed to be 1.0. Note that, as shown in Figure 3, the

probability of this Poisson distribution becomes near-zero

when the distance from ej to eq becomes 6. This property can

be in fact exploited to reduce the computational burden of

the event matching (state estimate) step for each episode

from O(n
2
) to O(n) by computing the motion model

(Equation 11) for only 5 events (instead of n events). The

empirical result of this optimization is reported in Section

IV.

0

0.1

0.2

0.3

0.4

0 5 10 15 20

P
ro

b
a
b
ili

ty
P

ro
b
a
b
ili

ty

d (distance from (distance from ej to to ei))qjd :qjd : je je qeqe

0

0.1

0.2

0.3

0.4

0 5 10 15 20

P
ro

b
a
b
ili

ty
P

ro
b
a
b
ili

ty

d (distance from (distance from ej to to ei))qjd :qjd : je je qeqed (distance from (distance from ej to to ei))qjd :qjd : je je qeqe

Figure 3: The probability mass function (Equation 14) for the

Poisson distribution (d = 1.0).

 After the posterior probabilities for all of the events in the

episode are computed, the one with the highest probability is

considered as the the event that best represents the current

state. However, it is possible that the current state is novel,

and none of the events could correspond to the current state.

Hence, we introduce an assumption here that, if the posterior

probability distribution is spread evenly around the average

value rather than having a distinct peak, the current state is

considered to be novel. One way to check such novelty is to

compare the highest probability value with a predefined

threshold as we did in [7]. Another approach is, as suggested

by Tomatis et al. [25], to use the entropy of the posterior

probability distribution. More specifically, the entropy (H) of

the posterior probability distribution for an episode (E) is

computed by:

),|(log),|()(2

ττττ boepboepEH i
Ee

i

i

∑
∈

−= (15)

Having a high entropy value infers that the probability

distribution is close to uniform. Thus, only if H(E) is below

the predefined threshold, the event with the highest posterior

probability in the episode is considered to be matched (][̂ Ee)

to the current state:

∅

≤
= ∈

otherwise

)(if),(argmax
ˆ

][

Hi
Ee

E

EHb|oep
e i

θττ

 (16)

Note that, if the previous step (episode recollection) yields

k episodes as relevant, there will be at most k matched

events. Here, the set of all relevant episodes that contain

valid matched events is denoted as
relM̂ :

 })(|{ˆ
relrel HEHMEEM θ≤∧∈∀= (17)

4) Behavior Selection: Based on the matched events found

in the above step, the most appropriate behavior for

anticipation will be selected in this step. At first, the utility

(U) of each event is computed using a Bellman equation:

 ∑
∈′

+
′′−=

Ee
iiii eUebepreU)(),|()(1 (18)

where ri is the reward value stored in ei. Note that

),(1 ii e|bep +
′ is the same transition probability computed for

the motion model (Equation 13). Generally, in MDP

problems, the Bellman equation has to be iterated for a

number of times to obtain converged utility values (value

iteration). On the other hand, in our case, because events are

formed in a unidirectional linear chain
§
, from the end event

to the start event, the utility value can be computed by a

recursive (dynamic programming) fashion but without any

iteration.

 Next, we define a new function, Γ+
(b), which returns a

subset of episodes from
relM̂ . More specifically, given a

behavior (b), Γ+
 returns a special case of episodes in

relM̂

where the localized events (][̂ Ee) in these episodes are

followed by events storing b:

∈∧=

∧⊆∧∈
∀=Γ

+

++

1][

1rel

ˆ

 },{ˆ
)(

iEi

ii

ebee

EeeME
Eb (19)

 Finally, based on the utility values and Γ+
(b), we select the

§ εm in the transition probability (Equation 13) is zero in this case.

2855

best behavior (∗
b) by a maximization function:

∑∑
∈′Γ∈

+

∗ ′′
Γ

=
+ Ee

E
bEb

eUebep
b

b)()ˆ,|(
|)(|

1
maxarg][

)(

 (20)

where),(1 ii e|bep +
′ is the same transition probability used in

Equations 13 and 18. Note that Equation 20 is equivalent of

how an optimal policy is computed in a standard MDP

problem. However, while a standard MDP assumes only one

state that is representing the current state, in our case, as

much as the number of episodes returned by Γ+
(b) there are

events that represent the current state. Hence, the expected

utility of executing b is averaged over the number of those

events.

C. Goal and Reward

As mentioned above, episodes are partitioned based on the

goals, and the goals are used as the keys to retrieve relevant

episodes from the memory at the episode recollection step.

Let G be a set of all possible goals. A unique goal (gcur) for

the current instance is chosen by the robot based on a

motivation function:

),,(maxarg motivcur µogfg
Gg∈

= (21)

where fmotiv is a motivation function that returns the degree of

motivation for pursuing a particular goal (g) given the

current observation (o) and the internal state (µ). The use of

motivation has been exploited by many robotics researchers,

especially in behavior-based robotics [26-30]. In those cases,

motivation influences behaviors directly by adjusting

behavior parameters such as the activation level. On the

other hand, in our case, motivation influences behaviors by

setting a goal, and the goal influences behaviors by recalling

right episodes. It should be noted, however, that our

implementation of fmotiv is still preliminary at this point.

 Furthermore, based on the goal, the robot modulates a

single reward signal. Being saved in each event, the reward

signal influences the choice of behaviors by providing their

utilities. In our implementation, the reward signal is

determined by three factors: 1) the similarity between the

current goal and the current observation; 2) the similarity

between the predicted observation (][Eo ′′) and the actual

observation; and 3) the innate rewarding states (ω) and the

current observation. These similarities are computed by the

same likelihood function (fL) used in Equations 9 and 12, and

they are weighted by predefined constants (κg, κo, and κω):

∑
Ω∈Γ∈

+′′+=
+

ω
ω ωκκκ),(),(max),(L][L

)(
curLcur *

ofoofogfr E
bE

og

(22)

Note that, here, the predicted observation is not the same

observation predicted by TD(λ) above (Equation 6); in this

case, the observation is predicted based on the matched

events obtained by Equation 16. More specifically, given an

episode (E),][Eo ′′ is the observation stored in the event right

after the matched event (][̂ Ee):

 }ˆ},{|{][11][EiiiiiiE eeeoEeeoo =∧∈∧⊆=′′
−− (23)

The innate rewarding states are particular perceptual states

that are inherently important for the robot. For example, a

voltage meter indicating that the battery is fully charged may

be one of the innate rewarding states. The importance of

such states is appropriately weighted by corresponding

weights (κω). Note that κω can have a positive or negative

value. For example, a reading from a tactile sensor indicating

that the robot is violently hitting some object can be

considered as a negative innate rewarding state.

IV. OPTIMIZATION AND EMPIRICAL RESULTS

One of the most computationally expensive parts of a

Bayesian-based POMDP approach is the state estimation

(event matching in our case). Given n states (events), it

requires an O(n
2
) computation time to compute the full

posterior probabilities by the recursive Bayesian filter

because the transition probability (motion model) has to be

computed n times for each of the n states (Equation 11).

Incidentally, localization using a Kalman filter (also

Bayesian) requires an O(n
2
) computation time [31]. If

implemented naively, the event matching step of our

computational method proposed here requires O(kn
2
) where

k is the number of relevant episodes (Equation 10) and n is

the number of the events in each episode. However, by

imposing k to be a constant and assuming the transition

probability to be from the Poisson distribution, event

matching can be done in an O(n) time. The following

experimental results verify the claim.

action (u)
Motor Schemas

coordinator

Event
Sampler
Eqn. 6-8

Episodic Subsystem

Behavioral Subsystem

g

r

b

perception (z)

b

Reward

Manager
Eqn. 22

Goal
Manager

Eqn. 21

e

Episode
Compiler

Eqn. 1

E

Episodic

Memory
Depository

C

AIR (Anticipatory-Improvisational Robot)

query

o''

Anticipatory

Processor
Eqn. 9-20

Improv

Reasoner*

* To be implemented

action (u)
Motor Schemas

coordinator

Event
Sampler
Eqn. 6-8

Episodic Subsystem

Behavioral Subsystem

g

r

b

perception (z)

b

Reward

Manager
Eqn. 22

Goal
Manager

Eqn. 21

e

Episode
Compiler

Eqn. 1

E

Episodic

Memory
Depository

C

AIR (Anticipatory-Improvisational Robot)

query

o''

Anticipatory

Processor
Eqn. 9-20

Improv

Reasoner*

* To be implemented
Figure 4: AIR Architecture

A. Implementation

The anticipatory behavior computational method proposed

in Section III was implemented within a two-layer

architectural framework, AIR (Figure 4), consisting of the

episodic subsystem (deliberative layer) and the behavior

subsystem (reactive layer). The episodic subsystem takes the

current sensor readings, identifies the current goal,

modulates the reward value, samples events, compiles

episodes, saves/retrieves the episodes, and computes the

anticipatory behavior. The behavior subsystem retains the

2856

repertory of motor schemata and executes the ones specified

by the episodic subsystem.

AIR (executed as a Java program) interacts with the

environment simulated in Gazebo [32] (a high fidelity 3D

simulator developed by University of Southern California).

More specifically, AIR receives sensor readings of

ActiveMedia Pioneer 2 DX emulated in Gazebo and sends

back the control commands. The sensor readings and the

motor commands are relayed by HServer [33], which

communicates with AIR (running on Dell Latitude X200

with Pentium III; 933 MHz) and Gazebo (running on Dell

Dimension 4700 with Pentium 4; 3.00 GHz) through the

shared memory and a socket connection, respectively (Figure

5).

HServerHServer

GazeboGazebo

A I RA I R

perception

action

Dell Dimension 4700

Shared

Memory

Dell Latitude X200
Socket

Comm.

Simulation

Simulated ActiveMedia Pioneer 2 DX

HServerHServer

GazeboGazebo

A I RA I R

perception

action

Dell Dimension 4700

Shared

Memory

Dell Latitude X200
Socket

Comm.

Simulation

Simulated ActiveMedia Pioneer 2 DX

Figure 5: Communications among AIR, HServer, and Gazebo

B. Limited Transitions vs. Full Transitions

As mentioned above, since the events in an episode are

formed in a unidirectional linear chain, our claim here is that,

if we exploit the property of the Poisson distribution, the

event matching of each episode can be computed in an O(n)

time. In this experiment, we compared the cases between

computing the event matching steps when the property of the

Poisson distribution was exploited (limited transitions) and

not exploited (full transitions). For the limited-transitions

case, the motion model in Equation 11 was computed for

only 5 relevant events.

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888

Figure 6: The experimental indoor environment simulated in

Gazebo

The average computation time for the event matching was

recorded while the Pioneer 2 DX robot, autonomously driven

by AIR, navigated the hallway in a simulated indoor

environment (Figure 6). The robot was equipped with 16

sonar sensors and 16 bumper sensors. Note that no odometry

information was ever used. AIR computed the anticipatory

behavior based on a single training episode stored in the

memory. The training episode was constructed by manually

instantiating a combination of AvoidObstacle,

MoveForward, and SwirlObstacle schemata and assigning a

reward at the end of the episode. For each case, the size of

the training episode in the memory was varied from 20

events to 200 events with the increment of 10 events (i.e., 19

different sizes). For each condition, the testing was lasted 10

event-matching cycles, and it was repeated 20 times. Hence,

the computation time of the each data point was averaged

over 200 measurements.

The result, the average event matching computation time

of each condition with respect to the number of the events in

the episode, is plotted in Figure 7. Expectedly, when all of

the possible transitions were taken into account upon

computing the motion model, the computation time increased

quadratically with respect to the number of events. When the

computation was broken down to the sensor model and

motion model parts, the motion model computation did

indeed exhibit the quadratic increase while the increase of

the sensor model computation remained linear. On the other

hand, in the limited-transitions case, the overall event

matching time was increased only linearly with respect to the

number of events, consistent with the O(n) claim. The

computations for both sensor and motion models were

evidently also linear.

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Size of an Episode (# of Events)

T
im

e
 (

m
s

)

1. Limited Transitions: Total

2. Limited Transitions: Sensor Model

3. Limited Transitions: Motion Model

4. Full Transitions: Total

5. Full Transitions: Sensor Model

6. Full Transitions: Motion Model

Trend of Line 1 (Linear)

Trend of Line 2 (Linear)

Trend of Line 3 (Linear)

Trend of Line 4 (Quadratic)

Trend of Line 5 (Linear)

Trend of Line 6 (Quadratic)

Figure 7: The average computation time required for the event matching

step with respect to the size of the episode (the size of the history is fixed)

C. Limited History vs. Full History

One of the main differences between the conventional

POMDP approaches and our method here is that, in our

method, there could be multiple events that are considered to

be the current states. If there are k relevant episodes retrieved

by the episode collection step (Equation 10), the posterior

probabilities have to be computed for at most the k episodes.

Naturally, if the robot increases the experience, the k value

also increases. As mentioned above, our hypothesis here is

that we can impose a cap on the number episodes that are

2857

considered to be relevant without compromising the quality

of the performance. To test this hypothesis, two cases, the

event matching with an imposed cap on the number of the

relevant episodes (limited history) and without imposing the

cap (full history) were evaluated. For the limited-history

case, the latest 5 episodes that meet the goal condition

(Equation 9) were selected.

The experiment was conducted in the same indoor

environment as the previous experiment using the same robot

and the sensor configuration. During the training, the robot

was dispatched from Room 8 (see Figure 6), the combination

of AvoidObstacle, EnterOpening, MoveForward,

SwirlObstacle, TurnLeft, and TurnRight schemata were

manually instantiated in order to navigate the robot into

Room 2 via the hallway. The robot received a reward upon

arriving Room 2. For each case, there were initially 5

training episodes in the memory, and the size of the history

were accumulated up to 15 episodes during the testing. Each

testing was repeated four times. To reach Room 2, each run

generally required over 300 event-matching cycles; hence

the event matching computation time for each condition was

averaged over more than 1200 measurements. Furthermore,

the quality of the performance was measured in terms of the

total distance the robot traveled (path length) and the time

the robot took to reach the goal.

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7 8 9 10 11 12 13 14 15

Size of the History (# of Episodes)

T
im

e
 (

m
s

)

Latest Only (5 Episodes): Total
Latest Only (5 Episodes): Sensor Model
Latest Only (5 Episodes): Motion Model
All Episodes: Total
All Episodes: Sensor Model
All Episodes: Motion Model

Figure 8: The average computation time required for the event

matching step with respect to the size of the history

The graphs in Figure 8 shows the averaged computation

time required for the event matching step with respect to the

number of episodes in the robot’s memory. It can be

observed that, if all episodes in the memory were taken into

consideration, the overall computation time increased

linearly (same for both sensor model and motion model

computations). On the other hand, when the cap was

imposed on the number of the relevant episodes, those

computation times remained constant (with minor

variances
**

). Note that, for the limited-history case, the

experiment was able to be carried out even when the size of

the history reached 15 without any problem. On the other

** The variances most likely came from the different numbers of events

in the different episodes.

hand, for the full-history case, the robot could not reach the

goal after the size of the history reached to 13 because the

increased event matching time seemed to have started

interfering with other parts of the computation (e.g., event

sampling). As shown in Figure 9, even if only a limited

history was taken into account, the performance in terms of

the path-length did not seem to have been compromised.

Similarity, the time to reach the goal (Figure 10) did not

seem to have been affected by the imposed cap
††

.

Figure 9: Comparison of the performances in terms of the path

length of the robot (the vertical whiskers indicate the 95%

confidence)

Figure 10: Comparison of the performances in terms of the time

the robot took to reach the goal (the vertical whiskers indicate the

95% confidence)

V. CONCLUSION

In this paper, a biologically inspired episodic-memory-

based approach for anticipatory behavior computation was

explained. Forming episodic memories in a unidirectional-

linear-chaining fashion, this approach incorporates multiple

machine learning methods: namely, temporal difference

learning, instance-based learning, recursive Bayesian

filtering, and MDP. This approach attempts to solve the

computational burden of the POMDP through: 1) abstraction

of the state space via temporal difference learning; 2)

abstraction of the action space by utilizing motor schemata;

3) narrowing down the state space in terms of the goals by

employing instance-based learning; 4) eliminating the value-

iteration by assuming unidirectional-linear-chaining

formation of the states; 5) reducing the state-estimate

computation by exploiting the property of the Poisson

distribution; and 6) trimming the history length by imposing

the cap on the number of episodes that are computed. In

†† In fact, the mean value for the limited-history case was less than the

full-history one even though the difference was not statistically significant

(p = 0.09).

2858

particular, claims 5) and 6) were empirically verified,

confirming that the state estimation can be computed in an

O(n) time (where n is the number of the states).

ACKNOWLEDGMENT

The author would like to thank Prof. Ronald Arkin for his

helpful comments and advises on this study as well as

Michael Kaess, Zsolt Kira, Keith O’Hara, and Ananth

Ranganathan for engaging in very inspirational discussions.

REFERENCES

[1] L. Chaimowicz, A. Cowley, D. Gomez-Ibanez, B. Grocholsky, M. A.

Hsieh, H. Hsu, J. F. Keller, V. Kumar, R. Swaminathan, and C. J.

Taylor, "Deploying Air-Ground Multirobot Teams in Urban

Environments," presented at Multirobot Workshop, Washington,

D.C., 2005.

[2] Y. Endo, D. C. MacKenzie, and R. C. Arkin, "Usability Evaluation of

High-Level User Assistance for Robot Mission Specification," IEEE

Trans. Systems, Man, and Cybernetics, vol. 34, 2004, pp. 168-180.

[3] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma,

"Experiences with a Mobile Robotic Elderly Guide for the Elderly,"

presented at AAAI National Conference on Artificial Intelligence,

2002.

[4] K. Wada, T. Shibata, T. Saito, and K. Tanie, "Robot Assisted Activity

for Elderly People and Nurses at a Day Service Center," Proc. IEEE

Int'l Conf. Robotics and Automation, 2002, pp. 1416-1421.

[5] J. L. Burke, R. R. Murphy, M. Coovert, and D. Riddle, "Moonlight in

Miami: A Field Study of Human-Robot Interaction in the Context of

an Urban Serach and Rescue Disaster Response Training Exercise,"

Human-Computer Interaction, vol. 19, 2004, pp. 85-116.

[6] J. Casper and R. R. Murphy, "Human-Robot Interactions During the

Robot-Assisted Urban Search and Rescue Response at the World

Trade Center," IEEE Trans. Systems, Man and Cybernetics, Part B,

vol. 33, 2003, pp. 367-385.

[7] Y. Endo and R. C. Arkin, "Anticipatory Robot Navigation by

Simultaneously Localizing and Building a Cognitive Map," Proc.

IEEE Int'l Conf. Intelligent Robots and Systems 2003, pp. 460-466.

[8] H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila,

"The Hippocampus, Memory, Review and Place Cells: Is It Spatial

Memory or a Memory Space?," Neuron, vol. 23, 1999, pp. 209-226.

[9] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, "Acting

Optimally in Partially Observable Stochastic Domains," Proc. Nat'l

Conf. Artificial Intelligence, 1994, pp. 1023 - 1028.

[10] S. Koenig and R. Simmons, "Xavier: A Robot Navigation

Architecture Based on Partially Observable Markov Decision Process

Models," in Artificial Intelligence Based Mobile Robotics: Case

Studies of Successful Robot Systems, D. Kortenkamp, R. Bonasso,

and R. Murphy, eds., MIT Press, 1998, pp. 91 - 122.

[11] G. Theocharous and S. Mahadevan, "Approximate Planning with

Hierarchical Partially Observable Markov Decision Process Models

for Robot Navigation," Proc. IEEE Int'l Conf. Robotics and

Automation, 2002, pp. 1347-1352.

[12] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun,

"Towards Robotic Assistants in Nursing Homes: Challenges and

Results," Robotics and Autonomous Systems, vol. 42, 2003, pp. 271-

281.

[13] S. Thrun, "Monte Carlo POMDPs," Proc. Advances in Neural

Information Processing Systems 12, MIT Press, 2000, pp. 1064-1070.

[14] J. Pineau, G. Gordon, and S. Thrun., "Point-Based Value Iteration: An

Anytime Algorithm for POMDPs," Proc. Int'l Joint Conf. Artificial

Intelligence, 2003, pp. 1025-1032.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: an

Introduction. MIT Press, Cambridge, Mass., 1998.

[16] R. A. McCallum, "Hidden State and Reinforcement Learning with

Instance-Based State Identification," IEEE Trans. Systems, Man and

Cybernetics, Part B, vol. 26, 1996, pp. 464-473.

[17] A. Ram and J. C. Santamaria, "Continuous Case-Based Reasoning,"

Artificial Intelligence, vol. 90, 1997, pp. 25-77.

[18] Y. Endo, "Anticipatory and Improvisational Robot via Recollection

and Exploitation of Episodic Memories," Proc. 2005 AAAI Fall

Symp.: From Reactive to Anticipatory Cognitive Embodied Systems,

2005, pp. 57-64.

[19] R. C. Arkin, "Motor Schema-Based Mobile Robot Navigation," Int'l

J. Robotics Research, vol. 8, 1989, pp. 92-112.

[20] R. S. Sutton, "Learning to Predict by the Methods of Temporal

Differences," Machine Learning, vol. 3, 1988, pp. 9-44.

[21] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-Based Learning

Algorithms," Machine Learning, vol. 6, 1991, pp. 37-66.

[22] S. Thrun, "Robotic Mapping: A Survey," in Exploring Artificial

Intelligence in the New Millenium, Morgan Kaufmann, 2002.

[23] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation,

Identification and Adaptive Control. Prentice-Hall, Upper Saddle

River, N.J., 1986

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement

Learning: A Survey," Journal of Artificial Intelligence Research, vol.

4, 1996, pp. 237-285.

[25] N. Tomatis, I. Nourbakhsh, and R. Siegwart, "Hybrid Simultaneous

Localization and Map Building: a Natural Integration of Topological

and Metric," Robotics and Autonomous Systems, vol. 44, 2003, pp. 3-

14.

[26] L. E. Parker, "ALLIANCE: an Architecture for Fault Tolerant

Multirobot Cooperation," IEEE Trans. Robotics and Automation, vol.

14, 1998, pp. 220-240.

[27] C. Breazeal, "A Motivational System for Regulating Human-Robot

Interaction," Proc. Nat'l Conf. Artificial intelligence, 1998, pp. 54-62.

[28] A. Stoytchev and R. C. Arkin, "Combining Deliberation, Reactivity,

and Motivation in the Context of a Behavior-Based Robot

Architecture," Proc. IEEE Int'l Symp. Computational Intelligence in

Robotics and Automation, Banff, Alberta, 2001, pp. 290-295.

[29] T. Sawada, T. Takagi, Y. Hoshino, and M. Fujita, "Learning Behavior

Selection Through Interaction Based on Emotionally Grounded

Symbol Concept," Proc. Int'l Conf. Humanoid Robots, Los Angeles,

2004, pp. 450-469.

[30] R. C. Arkin, "Moving Up the Food Chain: Motivation and Emotion in

Behavior-based Robots," in Who Needs Emotions: The Brain Meets

the Robot, J. Fellous and M. Arbib, eds., Oxford University Press,

2005, pp. 245-270.

[31] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,

Cambridge, Mass., 2005.

[32] N. Koenig and A. Howard, "Design and Use Paradigms for Gazebo,

an Open-Source Multi-Robot Simulator," Proc. IEEE Int'l Conf.

Intelligent Robots and Systems, 2004, pp. 2149- 2154.

[33] MissionLab: User Manual for MissionLab 7.0. Georgia Tech Mobile

Robot Laboratory, College of Computing, Georgia Institute of

Technology, Atlanta, Ga, 2006.

2859

