
Probabilistic localization with a blind robot

Lawrence H. Erickson1, Joseph Knuth1, Jason M. O’Kane2, Steven M. LaValle1

Department of Computer Science Department of Computer Science and Engineering

University of Illinois at Urbana-Champaign1 University of South Carolina2

Urbana, IL 61801 USA Columbia, SC 29208 USA

{lericks4, knuth, lavalle}@uiuc.edu {jokane}@cse.sc.edu

Abstract— Researchers have addressed the localization prob-
lem for mobile robots using many different kinds of sensors,
including rangefinders, cameras, and odometers. In this paper,
we consider localization using a robot that is virtually “blind”,
having only a clock and contact sensor at its disposal. This
represents a drastic reduction in sensing requirements, even in
light of existing work that considers localization with limited
sensing. We present probabilistic techniques that represent
and update the robot’s position uncertainty and algorithms
to reduce this uncertainty. We demonstrate the experimental
effectiveness of these methods using a Roomba autonomous
vacuum cleaner robot in laboratory environments.

I. INTRODUCTION

Localization is one of the best-studied problems in mobile

robotics. Accurate knowledge of the robot’s position within

its environment is widely considered to be essential for

mobile robots to be useful. Although robots often obtain

such knowledge by some combination of sensor measure-

ments, motion estimates, and pre-supplied initial conditions,

information from sensors is usually the primary means of

eliminating position uncertainty. Understanding the role of

sensing in the localization process is therefore essential to a

complete understanding of localization problems.

In the mobile robotics literature, localization problems

take many forms. In this paper, we consider active global

localization, in which a robot has access to a complete map

of its environment but is totally ignorant of its position. The

robot must purposefully direct its motions to eliminate that

uncertainty. Using probabilistic techniques, we demonstrate

that a certain global active localization problem can be

solved with very limited sensing capabilities. This work is

distinguished from prior probabilistic localization techniques

by the limitations on the robot’s sensing. We consider a

differential drive robot equipped with a contact sensor and a

clock, but no other sensors.

This work is motivated by a desire to understand the infor-

mation requirements of important robotic tasks. By finding

very simple robots that are able to complete certain tasks,

we begin to identify necessary conditions on the sensing

and motion capabilities for completing that task. In a more

directly practical sense, studying robots with very simple

sensing schemes is profitable because such robots are better

suited (for reasons of cost and complexity) for deployment

in large cooperative teams.

Prior theoretical work showed that active global local-

ization problems can be solved under severe sensor lim-

Fig. 1. A Roomba autonomous vacuum cleaner robot.

itations [22]. However, that work relies in crucial ways

on assumptions that the robot’s sensing and control are

perfect. For example, certain portions of [22] depend on

the robot’s ability to slide along the environment boundary

without triggering its contact sensor. If the robot’s control

admits even the slightest directional errors, such motions

are impossible. In practice, sensing is rarely fully accurate

and control is rarely perfect. In this paper we present new

algorithms that are robust to these errors and demonstrate

experimentally that these algorithms are effective.

The most successful published approaches to localiza-

tion are generally based on either particle filters [8], [11],

[12], [17], extended Kalman filters [13], [18], or grid-based

discretizations [3], [5], [6], [14]. The novelty of our work

is that we use a robot model in which the sensing and

motion capabilities are severely limited. These limitations

introduce geometric issues, requiring new algorithms for

both pose tracking and active localization. Our work also

draws inspiration from theoretical results on localization that

use geometrical reasoning and set-based representations of

uncertainty [10], [22], [27].

The minimalist approach we take has a long history

in robotics. Researchers have studied the implications of

sensing limitations for navigation [19], [24], exploration [1],

[7], and manipulation [2], [20] tasks. The general problem

of determining the information requirements of robotic tasks

is taken up in [9], [21]. Our work contributes to this line

of research by demonstrating that, with appropriate adapta-

tions, such minimalist models are applicable in experimental

contexts.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1821

We conducted experiments using Roomba autonomous

vacuum cleaner robots, shown in Figure 1. The Roomba is

attractive as a research platform because it is inexpensive

and readily available, and because its sensors closely match

the abstract models we use.

Like many approaches to the localization task, our basic

method is probabilistic. In fact, our work can be consid-

ered as exploring a kind of probabilistic information space

[16], which arises in partially observable Markov decision

processes (POMDPs) [15], [25], [28]. As our algorithm

progresses, the robot maintains an approximate, discrete

probability distribution over positions along the environment

boundary. This distribution is updated in response to motions

by the robot. For active localization, we use an entropy-

based heuristic to choose uncertainty-reducing motions. The

algorithm constructs a localization plan consisting of several

subplans, each of which results in a monotonic decrease in

entropy, even if the entropy temporarily increases within a

subplan. This willingness to tolerate temporary increases in

uncertainty is crucial to effective handling of the multimodal

distributions that arise in our problems.

The remainder of this paper is organized as follows. We

present formal definitions for our robot model and for passive

and active localization problems in Section II. Algorithms to

solve the passive and active problems appear in Sections IV

and III respectively. Details about our experiments are in

Section V, followed by discussion and conclusion in Sec-

tion VI.

II. PROBLEM STATEMENT

In this section, we introduce our robot model and define

the passive and active localization problems we solve.

A. Robot model

A point robot with orientation moves in an environment

W ⊂ R
2 that is planar, closed, bounded, and polygonal. The

environment need not be simply connected. Let ∂W ⊂ W
represent the boundary of W and let n denote the number

of vertices of ∂W . The robot knows its initial orientation,

but not its initial position within W .

The robot is equipped with a contact sensor and a clock,

but no other sensors. We consider two types of motions that

these sensors enable.

• Rotations – Using its clock, the robot can rotate in

place by dead reckoning. Motion by dead reckoning is

notoriously noisy, so we model the error in the amount

of rotation by a zero-mean density p. We assume that

p is strictly increasing below its mean and strictly

decreasing above its mean, and that p has a continuous

cumulative distribution function. Figure 2 shows an

example, in which a robot starts in the center of a

rectangular environment and moves upward.

• Translations – The robot can move forward, but since it

lacks odometry, the only reliable translation it can make

is to move forward until it reaches the environment

boundary. We assume that the robot travels in a straight

line, but because we explicitly model orientation errors,

Fig. 2. A robot with Gaussian rotational error starts in the center of a
rectangular environment and moves forward to the environment boundary.
The probability density over points along the boundary is shown. For
illustration purposes, the variance of the distribution is impractically large.
[left] The robot moves upward. Although the resulting distribution appears
superficially to be Gaussian, it is not. [right] The robot moves at an
angle. Observe that, because of geometric effects, the mean of the resulting
distribution need not be endpoint of the robot’s nominal trajectory.

our algorithms are robust to small deviations from

this assumption. Since we are interested in solving

localization problems with a little sensor information as

possible, we ignore the robot’s clock during translations.

The robot’s motions can be described as a sequence of

discrete stages, in each of which the robot makes a single

rotation, then moves forward until its contact sensor is

triggered. We number these stages with consecutive integers

k = 1, 2, Since the robot can only move between points

along ∂W , we need not consider the points in the interior

of W as possible locations for the robot.

Note that rotational errors accumulate over time, and the

robot’s true heading will become more uncertain as more

stages go by. Since the error in the robot’s orientation at stage

k will be the sum of the error at stage k plus all preceding

error, we can say that the random variable Rk representing

the orientation error at step k is Rk =
∑k

i=1 ri, in which

ri is a random variable describing the error resulting from

step i. Note that the ri’s are independent and identically

distributed according to p. Let pk denote the distribution of

Rk. The result of this sum will depend on the single-stage

error distribution p. In the special case where p is Gaussian

with variance σ2, pk is Gaussian with variance kσ2.

B. Localization problems

We consider two related localization problems:

• Passive localization – The robot’s motions are con-

trolled by an external decision maker. The problem

is to efficiently maintain and update the probability

distribution of possible states of the robot.

• Active localization – The robot’s primary task is to

eliminate uncertainty in its position. The problem is to

choose motions so that the robot will be certain it is in

a disk of radius ǫ with a probability at least 1 − δ.

Observe that to solve the active localization problem

typically requires as a “subroutine” a solution to the passive

localization problem.

Unfortunately, as the robot moves, the distribution of pos-

sible states along ∂W becomes increasingly difficult to repre-

sent analytically, even if both the prior and error distributions

are well-behaved. Moreover, geometric features within the

environment will cause discontinuities that complicate the

analytical representation of the distribution even further. To

1822

0.0190.019

H(P0) = 5.682

0.163

H(P1) = 4.504

0.730

H(P2) = 1.960

0.922

H(P3) = 0.652

0.941

H(P4) = 0.421

0.987

H(P5) = 0.148

Fig. 3. A simple square environment, along with a 5-step plan that solves
the active localization problem in that environment. The initial state is shown
in the top left. The final state, which concentrates nearly all of the probability
mass in one corner of the square, is shown in the lower right. The small
arrows in each picture show the direction of movement at that step.

combat this complexity, we approximate the true distribution

by discretizing the boundary of the environment into small

cells of size at most 2ǫ and recording the amount of prob-

ability mass in each of these cells. Such a nonparametric

representation is well-suited for representing the complex,

multimodal distributions that arise in global localization.

This discretization can be viewed as a piecewise-constant

approximation to the underlying density function. We divide

each edge e of ∂W into ⌈length(e)/(2ǫ)⌉ equally-spaced

cells. Let S = {s1, . . . , sm}, in which each si ∈ S is line

segment in ∂W , denote the set of discrete cells generated in

this way.

Under this discretization, we can represent the robot’s

uncertainty as an m-dimensional column vector

Pk =
[

Pk,1 · · · Pk,m

]

T

, (1)

in which Pk,i is the probability of the robot being in cell si

at stage k. We assume a uniform prior, so that

P0,i =
length(si)

perimeter(∂W)
. (2)

If additional information about the robot’s starting position is

available (for example, a known starting position), this initial

condition can be changed accordingly.

In this context, the input to the passive localization prob-

lem is the environment W , a discretization S, a motion

direction u, and a probability vector Pk; the output is a

probability vector Pk+1 the updated to reflect this motion.

Similarly, note that if at least 1 − δ of the probability mass

is concentrated in a single cell, we can be certain (modulo

any errors introduced by the discretization) that the active

localization problem has been solved. Figure 3 shows a

starting distribution and possible solution for a very simple

environment.

III. PASSIVE LOCALIZATION

In this section, we solve the passive localization prob-

lem, in which the task is to observe the robot’s execution

si

Fig. 4. Computing the set Vi of cells visible from a cell si. The diagram
depicts three cells fully visible from the midpoint of si and one cell that,
because of an obstruction, is only partially visible. All four cells are included
in Vi.

and maintain a probability distribution of possible positions

within the environment.

The robot receives as input a description of W , represented

as a doubly-connected edge list. As a preprocessing step, we

compute for each cell si in the environment discretization

S a list Vi ⊆ S of cells that are visible, either fully or

partially, from the midpoint of si. See Figure 4. This step

can be accomplished in time O(mn log n) by computing the

visibility polygon in W of each such midpoint [23].

Given the environment W , a commanded motion direction

u, and a belief distribution Pk, the problem of passive

localization is to compute an updated distribution Pk+1. To

accomplish this, we compute a transition matrix Ru,k such

that

Pk+1 = Ru,kPk (3)

The interpretation of Ru,k is that the entry at row i, column

j contains the fraction of probability mass that moves from

cell si to cell sj , under a motion in direction u. We use

the subscript k on the transition matrix R to emphasize the

dependence on time-varying the orientation error distribution

pk.

It remains to describe how to compute Ru,k. Column i
of this matrix describes how probability mass moves from

si to each other cell of the discretization. Since the robot

moves in a straight line, this fraction is nonzero only for

cells visible from si, that is, the cells in Vi. For each of these,

we compute two angles θ1 and θ2 that bound the interval1 of

orientation errors that, given commanded motion direction u,

leads the robot from the midpoint of si into a visible portion

of sj . By integrating pk over the interval between θ1 and θ2,

we obtain the transition probability from cell si to cell sj .

Since pk has a continuous cumulative distribution function,

the integral is guaranteed to exist. After all of the visible cells

in Vi are accounted for, the remaining probability remains

concentrated in si. This procedure is pictured Figure 5

and summarized in Algorithm 1. The algorithm runs in

1Note that, if the visibility of sj by the midpoint of si is obstructed by an
obstacle small relative to ǫ, then visible portion of sj need not be a segment.
Although, in general, this indicates the ǫ is too large for localization in W ,
this case can be handled in Algorithm 1 by integrating over each connected
component of the visible portion of sj and summing the results.

1823

mi

u

θ1 θ2

p1

sl

p2

Fig. 5. Computing a single entry in Ru,k . Orientation errors between θ1

and θ2 will lead the robot from si to sl.

Algorithm 1 PassiveLocalization(W,S, Pk, u)

1: Ru,k ← m × m matrix of zeros

2: for i ∈ {1, . . . ,m} do

3: mi ← midpoint of si

4: for sl ∈ Vj do

5: if sl 6= si then

6: p1p2 ← maximal subset of sl visible from mi

7: θ1 ← u − ANGLE(p1 − mi)
8: θ2 ← u − ANGLE(p2 − mi)

9: Ru,k,l,i ←
∣

∣

∣

∫ θ2

θ1

pk(φ)dφ
∣

∣

∣

10: end if

11: end for

12: Ru,k,j,j ← 1 −
∑

1≤j≤m,j 6=i Ru,k,j,i

13: end for

14: Pk+1 ← Ru,kPk

15: return Pk+1

time O(m2), which (holding perimeter(∂W) constant), is

O(ǫ−2).

IV. ACTIVE LOCALIZATION

Now we turn to the problem of active localization. We

present an algorithm that chooses motions for the robot in

order to eliminate uncertainty in its position. The intuition

is to chain together a sequence of subplans, each of which

“merges” the probability mass from two cells into a single

destination. This basic structure is inspired by the algorithm

of [22], but because we admit errors in control, the algorithm

requires significant modifications. Our algorithm is greedy

in the sense that it selects, from a group of candidate

subplans, the subplan that makes the most “progress” toward

localization.

We propose a certain form of entropy as a progress

measure in Section IV-A, describe how we generate subplans

in Section IV-B, and combine these two elements to form a

complete active localization plan in Section IV-C.

A. Progress measure

We follow [5] and others in using entropy as a heuristic

for measuring the progress of the algorithm. Recall that Pk

approximates the density of a continuous random variable

representing the robot’s true position. Let fPk
: ∂W → [0, 1]

denote the (piecewise constant) approximation to the true

0.500 0.419

0.466

Fig. 6. Adjusting robot’s motion angle. [top left] An initial, bimodal
distribution. [top right] Because of orientation errors, a motion parallel to
the wall leaves a large fraction of the probability mass unaffected. [bottom]
A small adjustment to the motion direction, computed by Algorithm 2 with
α = 0.1, corrects the problem.

density function induced by Pk. This density has differential

entropy

h(fPk
) = −

∫

∂W

fPk
(x) log fPk

(x)dx (4)

= −

m
∑

i=1

∫

si

fPk
(x) log fPk

(x)dx (5)

= −

m
∑

i=1

length(si)Pk,i log Pk,i. (6)

Note in particular that this formulation differs from the

discrete entropy of Pk, because the contribution of each cell

to h(fPk
) is weighted by the size of that cell. Our algorithm

selects a series of motions u1, . . . , uk intended to minimize

h(fPk
).

B. Candidate subplans

Suppose two cells si and sj each have nonzero probability

in Pk. What actions by the robot will transfer (most of)

the probability mass in these cells into a single common

destination? A solution to a similar problem for a robot

without errors appears in [22]. The approach is based on

pursuit-evasion, in which one point (representing a possible

position of the robot) chases another, repeatedly moving in

the direction of the first step of the shortest path in W
between the two points, until they finally merge.

Unfortunately, this solution is not directly applicable,

because it often generates motions that require the robot

to move very close to ∂W without triggering its contact

sensor. In extreme cases, the robot makes a “collapsing

transition” by sliding along an edge of ∂W . Such motions

are not reliable for the robot model in this work, because so

much probability mass lies between angles occupied by the

wall the robot is currently touching. This probability mass

corresponds to the possibility that the robot may collide with

the wall immediately. Figure 6 illustrates the phenomenon.

This behavior can be minimized by adjusting the robot’s

motion direction away from the boundary, thereby increasing

the probability that the robot will move. Select an algorithm

parameter α ∈ (0, 1/2], representing the maximum allowable

chance of the robot failing to make a move. Then, given a

desired motion direction u and a cell si, we can compute a

1824

Algorithm 2 AdjustAction(u, si, k)

1: (x1, x2) ← endpoints of si, ordered so that the interior

of W is on the clockwise side.

2: m ← (x1 + x2)/2
3: ψ1 ← ANGLE(x1 − m)
4: ψ2 ← ANGLE(x2 − m)
5: umin ← min(u, ANGLE((x2 − x1)

⊥))
6: umax ← max(u, ANGLE((x2 − x1)

⊥))
7: u ← (umax + umin)/2
8: b ←

∫

[ψ2,ψ1]
pk(θ)dθ

9: if b ≤ α then

10: return u

11: end if

12: while |b − α| > ζ do

13: if b < α then

14: umin ← u
15: else

16: umax ← u
17: end if

18: u ← (umax + umin)/2
19: b ←

∫

[ψ2,ψ1]
pk(θ)dθ

20: end while

21: return u

new motion direction u′, defined as the direction closest to

u that leaves at most α probability of the robot not moving

from si. The resulting angle u′ will always be between u
and the angle normal to the si in the interior direction. This

u′ can be approximated to within a tolerance ζ using binary

search. Algorithm 2 summarizes this method, which runs in

time O(log(1/ζ)).
This adjustment technique allows us to construct a subplan

that attempts to unify the probability mass in a given pair

of cells si and sj . We use the midpoints of the cells

as representatives, and apply the pursuit-evasion technique

introduced in [22] to unify those representatives. At each

step, however, we apply Algorithm 2 to adjust those motions

to allow for orientation errors. This process continues until

the two representatives are merged. Since, in contrast to [22],

some motions may actually increase the robot’s uncertainty,

we truncate the subplan at the stage at which entropy is

lowest. The complete algorithm to generate subplans appears

in Algorithm 3.

C. A complete localization plan

Now we can state the complete active localization algo-

rithm, which appears in Algorithm 4. At each step, it consid-

ers a set of candidate subplans generated by Algorithm 3 and

appends to its master plan the candidate that improves the

entropy the most. This process continues until no entropy-

reducing candidate can be found.

Which candidate subplans should be considered? Ideally,

all m2−m possibilities should each be evaluated, but because

generating each subplan is computationally expensive, this

approach is impractical. Instead, we choose an algorithm

parameter N and we assign a score Pk,iPk,j to each pair

Algorithm 3 CandidateSubplan(si, sj , Pk)

1: q1 ← midpoint of si

2: q2 ← midpoint of sj

3: Pmin ← Pk

4: π ← empty list of actions

5: while |q1 − q2| > ǫ/2 do

6: u ← first step of the shortest path from q1 to q2

7: s ← cell in S containing q1

8: u ← ADJUSTACTION(u, s, k)
9: append u to π

10: Ru,k ← PASSIVELOCALIZATION(W,S, Pk, u)
11: Pk+1 ← Ru,kPk

12: k ← k + 1
13: if h(fPk

) < h(fPmin
) then

14: πmin ← π
15: Pmin ← Pk

16: end if

17: q1 ← SHOOTRAY(W, q1, u)
18: q2 ← SHOOTRAY(W, q2, u)
19: end while

20: return (πmin, Pmin)

(si, sj) of cells. The algorithm considers only the N pairs

with the highest scores. This had the effect of excluding

low-probability unions that would more likely scatter the

probability mass around the environment rather than lower

the entropy. Note that the pairs (si, sj) and (sj , si) are

distinct (and therefore considered separately) but always have

identical scores. In practice, we obtained acceptable results

setting N as low as 10.

V. EXPERIMENTAL RESULTS

We have implemented this algorithm and evaluated its

effectiveness in localizing a Roomba autonomous vacuum

cleaner robot. In this section, we describe those experiments.

Since the Roomba is a disk rather than a point, we perform

computations using the configuration space of the robot

in W , rather than W itself. Where the boundary of the

configuration space is a circular arc, we use a piecewise-

linear approximation by segments of length less than ǫ.

Note that even as simple a robot as the Roomba is

equipped with several sensors that we ignore in our models.

In particular, the robot has an infrared wall sensor with range

approximately 5cm, a more powerful infrared sensor for re-

ceiving remote control commands, encoders for each wheel,

and several sensors that report on the internal conditions of

the robot (battery voltage, battery current, etc.). Although

some of these sensors provide information that might be

helpful for localization, we ignore them in this work because

our intention is to find minimal sensor configurations that

enable localization solutions. Additionally, because of scala-

bility problems that may eventually arise due to accumulating

error in dead reckoning, this algorithm was created with the

intention of eventually using a compass instead of a clock,

calibration data, and initial heading. Therefore, we do not

use the clock for anything other than rotating.

1825

Algorithm 4 ActiveLocalization(W)

1: S ← discretization of ∂W into cells no larger than 2ǫ
2: π ← empty list of actions

3: P0 ←
[

length(s1)
perimeter(∂W) · · · length(sm)

perimeter(∂W)

]

T

4: k ← 0
5: loop

6: S ← S × S − {(s, s) | s ∈ S}
7: sort S by decreasing values of Pk,iPk,j

8: delete all but the first N elements from S

9: Pmin ← Pk

10: πmin ← empty list of actions

11: for (si, sj) in S do

12: (πcan, Pcan) ← CANDIDATESUBPLAN(si, sj , Pk)
13: if h(fPcan) < h(fPmin

) then

14: πmin ← πcan

15: Pmin ← Pcan

16: end if

17: end for

18: if πmin is empty then

19: return π
20: else

21: append πmin to π
22: k ← k + length(πmin)
23: Pk ← Pmin

24: end if

25: end loop

Fig. 7. Two laboratory environments we used to test Algorithm 4. The
floor is a pitted vinyl surface, and the walls are covered cinderblocks.

A. Error modeling

Since the robot uses dead reckoning to rotate, calibration

was required to minimize the rotational error. The robot was

commanded to rotate a certain amount of time in an effort to

get it to rotate a certain number of radians. Our results in this

calibration indicate that the manufacturer-specified rotational

speeds were off by small amounts, though large enough that

they had to be considered. We also confirmed that the same

calibration works well for two other Roombas not used for

collecting the calibration data. The calibrations were made on

a floor with pitted vinyl tiles, and it is possible that different

flooring materials would require different calibrations.

At each stage, the rotation error is relatively small. In

our experiments, we modelled this error by using for p a

Gaussian distribution with variance σ2 = 0.0001. Recall,

however, that at stage k, the accumulated orientation error

pk has variance σ2
k = kσ2.

0.017
0.017

h(fP0
) = 5.158354

0.240
0.367

h(fP2
) = 1.667621

0.999

h(fP10
) = 0.009535

Fig. 8. Localization in a simple environment. [top left] The initial
probability distribution around the environment boundary. [top right] An
intermediate step resulting from the first two steps of the plan. [bottom]
The resulting distribution after the localization plan is run.

0.007

0.008

h(fP0
) = 5.842

0.948

h(fP34
) = 0.331

Fig. 9. Localization in a non-simple environment. [left] The initial
probability distribution. [right] The final probability distribution.

B. Execution examples

We tested Algorithm 4 on two synthetic environments,

depicted in Figure 7. Figure 8 shows a localization plan for

the environment in the top portion of Figure 7.Our implemen-

tation computed a 10-stage plan that concentrated essentially

all of the probability mass in a single cell. The Roomba was

able to repeatedly localize itself in this environment using

this plan, without any failures. Our algorithm computes a

similar plan even if the variance in the rotational error is

increased by a factor of five. This occurs largely because the

environment is relatively simple, having few concavities and

no holes.

Figure 9 shows a significantly more difficult environment.

There are two holes, and there is a narrow corridor in the

center of the environment around which it is difficult for

a Roomba to navigate. It also contains a segment in the

upper left corner where the environment width is only larger

than the robot by a few centimeters. Our implementation

computed a 34-stage plan that concentrated almost 95% of

the probability mass in a single cell. The Roomba was also

able to consistently localize itself in this environment.

We also tested the algorithm in simulation (but not with

physical experiments) on about 12 other environments. We

were able to solve most of them without any parameter

tuning using a standard set of parameters. The left portion

of Figure 10 shows one of these, along with the final state

after executing a 52-step localization plan. The environments

requiring special tuning of α, N , and ǫ shared the feature of

having portions between which it is difficult to move without

stopping in the interior and turning, an action that the robot

is incapable of performing. The right portion of Figure 10

shows an extreme example of this feature, where movements

by our robot between arms of the environment are difficult

1826

0.994

Fig. 10. [left] The final probability distribution after the algorithm was run
on a complicated, jagged environment. [right] A problematic environment
for the algorithm. The algorithm could not solve this environment with
reasonable parameters.

to execute reliably.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented algorithms for both passive

and active localization problems a robot equipped with

only a contact sensor and a clock, and demonstrated its

usefulness experimentally. We have left several important

areas unexplored.

First, the active localization algorithm depends on sev-

eral constants that must be hand-tuned. The discretization

resolution ǫ can be eliminated using dynamic discretization

methods [4]. We found that the performance of Algorithm 4

depends on only weakly on N , the number of candidate

subplans considered. It remains a challenging problem to

choose α in an automated way that balances overly long

localization plans (if α is too small) against the inability to

deal with multimodal distributions (if α is too large).

Second, the environments we used for our experiments

are relatively small and artificial. We are actively working

to implement our techniques in a much larger, more realistic

office environment. We expect larger environments to signif-

icantly increase the computation requirements and magnify

the noise of the robot’s control.

Finally, we are also interested in solving navigation prob-

lems with similar sensor limitations. This problem is related

to both path planning and active localization, because the

robot must carefully plan paths that keep uncertainty at

manageable levels throughout the robot’s motion. Prior work

on so-called “coastal navigation” with longer-range sensors

[26] is also relevant. More detailed tasks, such as mapping

or delivery, might require even more informative sensors.

ACKNOWLEDGMENT

This work was supported in part by the DARPA SToMP program
(DSO HR0011-07-1-0002).

REFERENCES

[1] E. U. Acar and H. Choset, “Complete sensor-based coverage with
extended-range detectors: A hierarchical decomposition in terms of
critical points and voronoi diagrams,” in Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2001.
[2] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding

on a conveyor with a one joint robot,” Algorithmica, vol. 26(3), pp.
313–344, March-April 2000.

[3] D. J. Austin and P. Jensfelt, “Using multiple gaussian hypotheses to
represent probability distributions for mobile robot localization,” in
Proc. IEEE International Conference on Robotics and Automation,
2000, pp. 1036–1041.

[4] W. Burgard, A. Den, D. Fox, and A. B. Cremers, “Integrating global
position estimation and position tracking for mobile robots: The dy-
namic markov localization approach,” in Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems, 1998.
[5] W. Burgard, D. Fox, and S. Thrun, “Active mobile robot localization,”

in Proc. International Joint Conference on Artificial Intelligence, 1997.
[6] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under

uncertainty: Discrete bayesian models for mobile robot navigation,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems, 1996.
[7] H. Choset and J. Burdick, “Sensor based planning, part I: The

generalized Voronoi graph,” in Proc. IEEE International Conference

on Robotics and Automation, 1995, pp. 1649–1655.
[8] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo local-

ization for mobile robots,” in Proc. IEEE International Conference on

Robotics and Automation, 1999.
[9] B. R. Donald, “On information invariants in robotics,” Artificial

Intelligence, vol. 72, no. 1-2, pp. 217–304, 1995.
[10] G. Dudek, K. Romanik, and S. Whitesides, “Localizing a robot with

minimum travel,” SIAM Journal on Computing, vol. 27, no. 2, pp.
583–604, 1998.

[11] D. Fox, “Adapting the sample size in particle filters through kld-
sampling”,,” International Journal of Robotics Research, vol. 22, pp.
985–1003, 2003.

[12] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” in Proc. National

Conference on Artificial Intelligence (AAAI), 1999.
[13] J.-S. Gutman and C. Schlegel, “AMOS: Comparison of scan matching

approaches for self-localizing in indoor environments,” in Euromicro

Workshop on Advanced Mobile Robots, 1996.
[14] P. Jensfelt and S. Kristensen, “Active global localisation for a mo-

bile robot using multiple hypothesis tracking,” IEEE Transations on

Robotics and Automation, vol. 17, no. 5, pp. 748–760, Oct. 2001.
[15] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and

acting in partially observable stochastic domains,” Artificial Intelli-

gence, vol. 101, 1998.
[16] S. M. LaValle, Planning Algorithms. Cambridge, UK:

Cambridge University Press, 2006, also available at
http://msl.cs.uiuc.edu/planning/.

[17] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proc. IEEE International Conference on

Robotics and Automation, 2000.
[18] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization

by tracking geometric beacons,” IEEE Transations on Robotics and

Automation, vol. 7, no. 3, pp. 376–382, 1991.
[19] V. J. Lumelsky and A. A. Stepanov, “Path planning strategies for a

point mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorthmica, vol. 2, pp. 403–430, 1987.

[20] M. Moll and M. Erdmann, “Manipulation of pose distributions,”
International Journal of Robotics Research, vol. 21, no. 3, pp. 277–
292, 2002.

[21] J. M. O’Kane and S. M. LaValle, “On comparing the power of mobile
robots,” in Robotics: Science and Systems, 2006.

[22] ——, “Localization with limited sensing,” IEEE Transactions on

Robotics, vol. 23, pp. 704–716, 2007.
[23] J. O’Rourke, Art Gallery Theorems and Algorithms. Cambridge, UK:

Oxford University Press, 1987.
[24] C. H. Papadimitriou and M. Yannakakis, “Shortest paths without a

map,” Theoretical Computer Science, vol. 84, pp. 127–150, 1991.
[25] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration,” in

Proc. International Joint Conference on Artificial Intelligence, 2003,
pp. 1025–1032.

[26] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation -
mobile robot navigation with uncertainty in dynamic environments,”
in Proc. IEEE International Conference on Robotics and Automation,
1999.

[27] K. Sugihara, “Some location problems for robot navigation using a
simple camera,” Comp. Vis., Graphics, & Image Proc., vol. 42, no. 1,
pp. 112–129, 1988.

[28] N. L. Zhang and W. Zhang, “Speeding up the convergence of value
iteration in partially observable Markov decision processes,” Journal

of Artificial Intelligence Research, vol. 14, pp. 29–51, 2001.

1827

