
 
 

 

  

Abstract— In this work a novel control method is presented 
for controlling the forward speed and apex height of a special 
class of running quadruped robot, with a dimensionless inertia 
of 1, and one actuator per leg. Seeking to minimize the parasitic 
pitching motion in running, pronking is used as the target gait. 
The control design is based on the robot dynamics, allowing its 
application to a wide range of robots of the class studied. 
Moreover, the controller adjusts the robot speed and height, 
requiring knowledge only of the robot physical parameters. 
The control ensures that negative actuator work during the 
stance phase is zero, thereby reducing the power expenditure. 
Small, off-the-shelf DC motors are adequate for the control 
implementation, while results of application to a detailed robot 
model show good performance even when including leg mass, 
foot collision, motor limitations, foot slipping and other factors. 

I. INTRODUCTION 
ECENTLY, the potential of using legs for efficient 
locomotion over varied terrain has inspired much 

research. Quadrupeds excite particular interest, as they are 
stable when stationary, unlike most two legged robots. Also, 
they retain simpler dynamics than robots with six legs. 

There is much work on quadruped control, both in design 
and applications, especially using two or more actuators per 
robot leg. Raibert controlled a quadruped’s forward speed 
using two actuators per leg, [1]. Using delayed feedback 
control a bounding gait was stabilized, though the speed 
could not be directly set, [2]. Fuzzy control has been applied 
to set the speed of a gallop [3], while CPG’s have been used 
on the Tekken quadruped, with three actuators per leg, [4]. 

Although forward speed control has also been achieved 
using one actuator per leg, trial and error determination of 
controller parameters is required. The Scout II quadruped 
achieved stable gaits with one actuator per leg, [5], [6], with 
control parameters found by trial and error. Also, speed 
setting is reported for a walking gait, [7]. It is worth noting 
that most controllers are applicable to specific robots. 

Using two actuators per leg rather than one simplifies 
control design, by adding system inputs. However, this also 
complicates robot design, has a severe effect on weight and 
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cost, and increases power supply demands. So an important 
open issue is how to control both forward speed and attained 
apex height, using one actuator per leg and with no need for 
trial and error selection of control parameters. 

In this work, this control issue is studied with the added 
requirement that the parasitic pitching motion, often present 
in quadruped running, shall be minimized. To this end, a 
particular design class of quadruped, described in Section II, 
is studied. Also, in Section III, pronking is selected as the 
desired gait, as it does not involve pitching. The control is 
designed in Section IV utilizing analytical robot dynamics. 
Further, no actuator negative work is present during stance, 
which reduces energy expenditure. Finally, in Section V, 
controller performance is shown for application to a robot 
model including all major real-world characteristics. 

II. QUADRUPED ROBOT 
A. Quadruped robot design and gait evolution 
The quadruped robot studied has springy legs actuated at 

the hips, which is the only robot actuation, see Fig. 1a. This 
is the type of quadruped that the Scout II robot belongs to, 
[5], [6], which has run with a variety of gaits. A special class 
of this robot type is studied, for which the body inertia I , 
body mass bm  and half the hip spacing, d  give a 
dimensionless inertia of 2/( ) 1bj I m d= = . This selection is 
inspired by the decoupling of the vertical and pitching 
modes of motion, for 1j= . Murphy found that when 1j< , 
the pitching motion in running is stable, while it is unstable 
for 1j> . When, 1j=  the vertical and pitching modes are 
decoupled [8]. This inspires the selection of this robot class, 
which facilitates a decoupled approach to pitching control 
and avoids triggering of pitching dynamics by other DOF. A 
dimensionless inertia of 1 is simply achieved by proper hip 
placement or mass redistribution. 
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Fig. 1  (a) Quadruped robot and (b) gait phases. 

The gaits referred to are the pronk, in which all the robot 
legs are always in phase, and the bound, in which the back 
pair of legs is in phase, as is the front pair. The bound may 
involve up to four motion phases, see Fig. 1b, while the 
pronk has only the double stance and flight phases. Next, a 
simplified planar model used for control design is shown. 
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For the control evaluation in Section V, a second detailed 
model, including all major real-world properties, is used. 

B. Simplified model for control design 
The simplified planar model is shown in Fig. 2. The body 

has its center of mass (CoM) at its geometrical center, and is 
supported on two springy legs. The legs each have total 
mass lm , inertia lI , and are actuated by torques fτ , bτ  at 
the hips. Each model leg has twice the mass, inertia and 
spring stiffness of a robot leg and includes viscous friction, 
of viscous coefficient b . Table 1 shows quantities used. 

The influence of the leg mass on stance phase dynamics is 
negligible, and for the double stance phase a Lagrangian 
approach is used for the model dynamics, using body 
Cartesian coordinates, x , y , and pitch, θ , as generalized 
variables. The dynamics in terms of x , y , θ  has a lengthy 
form, but observation shows that certain complex 
expressions of x , y , θ , actually represent the leg angles 

bγ , fγ , and leg lengths bl , fl , see Fig. 2. Substituting these 
expressions, the dynamics assumes a more compact form. 
The dynamics is shown in (1) to (3), while bl , fl , bγ , fγ  
are given as expressions of x , y , θ  in (4) to (7). 
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where btx  is the position of the back foot, ftx  is the position 
of the front foot during the double stance phase. The double 
stance dynamics above also yields the dynamics for the 
remaining stance phases by removing non pertinent terms.  

In flight, the system CoM performs a ballistic motion. 
Also, the angular momentum of the system of the body and 
two legs, with respect to the system CoM, is conserved: 
 1 2 3 .O b fH D D D constγ γ θ= + + =  (8) 

where 1D , 2D , 3D  are given by: 
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where 1l  is the leg CoM to hip distance. 
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Fig. 2  Planar quadruped robot model. 

TABLE 1 
VARIABLES AND INDICES USED IN THE WORK 

x CoM horizontal position L  leg rest length 
y CoM vertical position b  viscous friction coefficient 
θ  body pitch angle g  acceleration of gravity 
l  leg length lm  leg mass 
γ leg absolute angle lI  leg inertia 

sumγ sum of leg absolute angles bγ  back leg angle 

difγ  difference of leg absolute angles fγ  front leg angle 
k  leg spring stiffness τ  hip torque 

bm  body mass stT  stance duration 
m  total robot mass f  as index: front leg 
I  body inertia b  as index: back leg 
d  hip joint to CoM distance td  as index: value at touchdown 

The robot motion during the double stance phase is 
governed by (1) to (3), and by similarly derived equations 
for the back and front stance phases. During flight, the CoM 
motion is ballistic and the pitch motion is constrained by (8). 

The form of the model dynamics still remains complex for 
analysis due to nonlinearities and its discrete phase nature. 
To enable the analytical manipulation of the dynamics for 
the derivation of the control, certain hypotheses are made 
which also appear in the literature [1,12,13]. These are laid 
out below and referred to in the text. 

Modeling hypotheses: 
H1: The contribution of the dissipation forces to the 

stance phase forward dynamics, see (1), is negligible. 
H2: To predict the change in forward speed during a 

stance phase, and also to compute energy dissipation due to 
viscous friction in the legs, the behavior of the springy legs 
in stance is approximated by the simple mass-spring model. 
The mass is equal to the robot mass, and the spring constant 
is equal to the sum of the robot’s leg spring constants: 
 2 ( )b b bm l k L l mg= − −  (10) 

H3: In the stance dynamics, the leg lengths bl , fl  are 
considered equal to the leg rest length L , for terms which 
involve the input torques bτ , fτ . 

Gait specific hypotheses: 
H4: In the pronk the back and front legs are almost 

parallel, so the difference between the two angles is small. 
H5: For reasonable speeds, the leg angles and body pitch 

angle, are small enough for trigonometric small angle 
simplifications. 

Using the above hypotheses, the dynamics is further 
manipulated. First, for a gait of speed x , the leg angle 
evolution through stance is as predicted by Raibert [1]: 
 ,i i td xt Lγ γ= −  (11) 
where ,i b f= , ,i tdγ  is the leg touchdown angle, and time t  
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counts from each leg touchdown. Writing the leg lengths as 
functions of y , θ , bγ , fγ , see Fig. 2, and using H3, H5, 
(11), the double stance dynamics in (1) to (3) becomes: 
    ( ) ( ) / / 0b b b f f b fm x k L l k L l L Lγ γ τ τ+ ⋅ − + ⋅ − + + =  (12) 
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where , , ,sum td b td f tdγ γ γ= + , and , , ,dif td b td f tdγ γ γ= − . Finally, 
using H4, the angular momentum in (8) can be written as: 
 2 2 2 2

0 1 1 1( 2 ) ( ( 2 ))( )/l l b fH I d m I m l m m m m mθ γ γ= + + + − +  (15) 
The simplified form of (15) may be simply integrated, and 

can therefore predict body pitch orientation. 
To summarize, the robot model is now described by (12) 

to (14) during the double stance phase. During the flight 
phase, the CoM motion is ballistic and the pitch is 
constrained by (15). Below, the duration of the stance phase 

stT  is considered known, and can be found by 
approximately solving the vertical dynamics in (13), while 
neglecting friction and torque terms. Section III follows, to 
explain the advantages of pronking as the desired gait.  

III. PRONKING AS THE DESIRED GAIT 
The pronking gait is essentially bounding with no body 

pitching, and has only the flight and double stance phases. 
Though pronking may reduce in practice to bounding with 
very limited pitching, it does offer advantages in control 
design, as will be explained in this Section. In a two-
dimensional analysis, the trotting and pronking gaits have 
essentially the same dynamics, while trotting is more 
common in nature. However, pronking was preferred in this 
analysis it is tranferrable in principle to the 3D problem. On 
the contrary, studing the trotting gait in a two dimensional 
analysis does not provide a solution to the 3D problem. 

To begin with, the robot leg touchdown angles ,b tdγ , 
,f tdγ , are known to be important inputs in any gait and are 

easily set by leg positioning during flight, so they are often 
used in control [1,3,5,6,12]. One issue that arises is 
identifying the discreet influence of the back and front leg 
touchdown angles on the dynamics, as they appear in 
coupled forms in the general case. For the special case of 
pronking it will be shown that the sum and difference of the 
touchdown angles, ,sum tdγ , ,dif tdγ , may be distinctly 
associated with the vertical and pitching motion modes. 

First, if ,dif tdγ  is zero as in ideal pronking, then (13) 
shows the vertical motion to be dependant on the sum of the 
touchdown angles, ,sum tdγ . Also, for motions close to 
pronking, it can be seen from (14) that ,dif tdγ  has the 
stronger influence on the pitching motion, as small 
deviations of its value from zero determine the existence of 
the whole term it belongs to. The distinct effect of the inputs 

,sum tdγ , ,dif tdγ  in pronking is apparent, and this decoupling 
behavior facilitates the control approach in Section IV, 

where the motion modes are studied individually. 

IV. CONTROL DESIGN 
The control inputs to the robot system are the sum and 

difference of the leg angles at touchdown, ,sum tdγ , ,dif tdγ , 
and the actuator torque applied during the stance phase. The 
inputs ,sum tdγ , ,dif tdγ  are not directly controlled in the 
physical robot, but are fed to the actuator controllers that 
servo the legs to the desired touchdown positions in flight. 
For control design purposes the actuator torques during 
stance are chosen to be constant for the duration of the 
phase, and to be equal at the back and front hips: 
 . ( )b f const in stanceτ τ τ= = =  (16) 

Therefore, the three control inputs to the robot system are 
the leg angle inputs, ,sum tdγ , ,dif tdγ , and the constant torque, 
τ , applied in stance. The robot dynamics used for the 
control derivation is that presented in Section II, in (12) to 
(15), with generalized variables x , y , θ . 

The aim in this Section is to compute the control inputs 
,sum tdγ , ,dif tdγ , τ , given the state of the robot at liftoff from 

the ground. Once the inputs are computed, the hip actuators 
position the legs in flight. Then, at touchdown, the actuators 
apply a torque defined by the control input τ . 

In the first three parts of this Section, each of the forward, 
vertical and pitching modes of motion is studied. From the 
study of each motion mode, a single control design equation 
involving the control inputs is derived. The fourth part of the 
Section explains how the three control design equations lead 
to the computation of the three control inputs.  

Details of the robot feedback are given in subsection E. 
Here, it is relevant to say that leg lengths, leg angles, and the 
body pitch are measured, and the rates of change are also 
known. From this data, the robot state at liftoff is known, 
using robot geometry. An example is to compute x  at liftoff 
for the case where the back leg lifts off last, see Fig. 2: 
 , , , , ,sin cos sinlo b lo b lo b lo b lo b lo lo lox l l dγ γ γ θ θ= − − −  (17) 

A. Forward motion mode 
The forward motion is studied for the pronking gait with 

the desired forward speed desx . A constraint on the control 
inputs must be derived that ensures that the robot forward 
speed is the desired. In Section II, the forward dynamics are 
given in (12). Using (16) and H4 in (12) provides: 
 2 ( ) 2 / 0b b bm x k L l Lγ τ+ ⋅ − + =  (18) 

Due to H4, the sum of the touchdown angles ,sum tdγ  in the 
pronking gait is equal to twice one of ,b tdγ , ,f tdγ . Also, 
utilizing H6, and integrating (18) once, the forward speed 

1ix +  after stance can be computed, given the speed before 
stance, ix , as a function of the control inputs ,sum tdγ , τ : 

1 ,0
( 2 )( ) 2stT

i sum td des b b st b ix k x t L L l dt m T L m xγ τ+ =− − − − +∫  (19) 

In (19), the first term on the right represents the effect of 
the leg spring forces on the speed, while the second term 
describes the effect of the hip torques. The value of the 
control input ,sum tdγ  is now considered as the sum of a 
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nominal value plus some bias, , ,sum td biasγ : 
 , , ,( / )sum td des st sum td biasx T Lγ γ= +  (20) 
The bias , ,sum td biasγ  can be found by using (20) in (19), and 
observing the symmetry of the leg evolutions during stance, 
as predicted by (10). We then obtain: 

 ( ), , ,4 ( 2 )sum td bias st b b td stT m L l gTγ τ= − ⋅ ⋅ − +  (21) 

where ,b tdl  is the leg compression rate just after touchdown. 
By integrating flight dynamics, it is possible to express ,b tdl  
as a function of the control input ,sum tdγ . Therefore: 
 , ,( )b td sum tdl f γ=  (22) 
We have observed, when applying the control, that 
substituting the desired forward speed in (20) with the actual 
speed of the robot, x , attracts the robot to the desired speed. 
A similar observation is made in [1], which inspired us here. 

Equation (20) is the first control design equation. 
Observing (21), (22), shows the control design equation to 
be a constraint between the two control inputs ,sum tdγ , τ . 

B. Vertical motion mode 
The apex height during flight is controlled indirectly. The 

quantity directly controlled is the amount of energy added 
during stance, via the hip torques. This results in a control 
on the apex height, as will be explained. To this end, 
consider the body energy at the flight apex: 

 2 2( 2) ( 2)ap b bE m x m g y I θ= + ⋅ + ⋅  (23) 
If the forward speed is controlled to the desired value and 
the pitching to zero, as in pronking, then from (23) the apex 
height is controlled by regulating the energy. So, since the 
controllable quantity is the energy inserted in each stance, it 
is sought to show that inserting the same pre-calculated 
energy, in every stance, controls the body’s energy. 

This is indeed the case if the losses of energy for a desired 
pronking gait can be calculated, and an amount of energy 
equal to these losses is inserted in each stance. Then, if the 
robot has a higher energy than that of the desired gait, it will 
have a greater apex height for the same controlled speed. 
Hence the losses due to the leg viscous friction will surpass 
the compensated pre-calculated energy losses, and the 
system energy decreases. In the opposite case, the apex 
height will increase, till it stabilizes at the desired level. 

Now the energy losses for the desired pronking gait 
remain to be calculated so as to achieve the desired apex 
height, as explained above. The body energy losses, lE , in 
one cycle, are due to three causes, firstly the leg viscous 
friction during stance, secondly the leg positioning in flight 
and thirdly the acceleration of unsprung leg mass at liftoff. 
Combining these, the body energy losses are expressed as: 

   2 2 2 2 2

0
2 ( ) / 2 (( ) ( ) ) / 2stT

l b td lo lo loE b l dt m x x m y y+ −= − − − −∫  (24) 

where loy− , loy+  indicate vertical velocities just before and 
just after liftoff. The three terms in (24) correspond to the 
three causes of energy loss described above. Given the state 
of the robot at liftoff, the last two terms are computable, 

using (17), and solving flight dynamics. The first term of 
(24) is computed using (10), and will be a function of the 
control input ,sum tdγ  because of (22). Therefore, the body 
energy losses lE  for the next stance phase are a direct 
function of the input ,sum tdγ , given the robot state at liftoff. 

For the system energy to remain at the correct level, the 
losses lE  must equal the energy inserted by the actuators:  

 
0 0

( ) ( )st stT T

l b b f fE dt dtτ γ θ τ γ θ= − + −∫ ∫  (25) 

So, using H5, H6 and (16), in (25), it is: 
 ( ) / 2l stE L x Tτ = ⋅ ⋅  (26) 
Using the current speed x  in (26), as opposed to the desired 
value, ensures that the correct energy is inserted in any 
transient case. Equation (26) is the second control design 
equation. Note that, as explained after (24), lE  is a function 
of the control input ,sum tdγ . Therefore, given the known 
robot state at liftoff, the second control design equation is a 
constraint between the control inputs ,sum tdγ , τ . This was 
also the case in the first control design equation in (20), so 
there is now a system of two design equations with the two 
unknown inputs ,sum tdγ , τ . The solution process is 
described in part four of this section. 

C. Pitching motion mode 
The third control input ,dif tdγ  now remains to be 

determined. To remain close to the pronking desired gait, it 
is necessary to eliminate deviations of the body pitching 
velocity from zero. To do this, the evolution of the pitching 
motion is first mapped from the current liftoff of flight phase 
i through to the touchdown of flight phase i+1, as a function 
of the control inputs ,sum tdγ , ,dif tdγ , τ , see Fig. 3.  
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(a)     (b)    (c)    (d)      (e) 

Fig. 3  Sequence of events for deriving the pitching map. 
The control inputs ,sum tdγ , τ  are known from above, so the 
single free parameter to influence pitching is the difference 
of the leg touchdown angles ,dif tdγ . The map is comprised of 
three parts, the first through flight i, the second through 
stance and the third through flight i+1. For the two flight 
parts, the map is given by (15), while during stance it is 
given by the double stance vertical and pitching dynamics in 
(13), (14), and the back and front stance dynamics which 
may be similarly derived. Using this dynamics, the vector 

[ , , , ]Ty yθ θ=u  is mapped from liftoff of flight i to 
touchdown of flight i+1. The vertical motion is controlled 
independently in part B of this Section. Therefore, the 
control of pitching is implemented by computing input 

,dif tdγ , such that zero pitch velocity is obtained at the 
touchdown of flight i+1, given u  at liftoff of flight i: 
 , , 1,( , )dif td td i desγ θ +⋅ = ⋅ =i+1,td i,loS u S f u  (27) 

where , 1,td i desθ +  is the desired pitch velocity at touchdown, 
set equal to zero, see Fig. 3, and the vector [0,0,0,1]=S  
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selects the pitch velocity component of u , and f  represents 
the pitching map described above. The solution process is 
numerical, but is fast, as it does not involve dynamics 
integration, due to the analytically integrable form of stance 
dynamics when 2

bI m d= . A solution on a typical PC takes 
10ms or so, which is acceptable as it is required only once 
per flight. Equation (27) is the third control design equation. 

D. Computation of control inputs 
Now, all three control inputs, ,sum tdγ , ,dif tdγ , τ , can be 

computed. The sum of the leg touchdown angles, ,sum tdγ , 
and the torque to be applied at each hip during stance, τ , 
are found first by combining the first two control design 
equations in (20) and (26). The solution is analytical, but 
lengthy, and does not offer further insight into the motion. 
The solution process requires expanding harmonic functions 
of ,sum tdγ  in a second-order Taylor series around the value 
( / )des stx T L . Finally, the third control input, the difference of 
the leg touchdown angles, ,dif tdγ , is found from (27). 

E. Sensory feedback and control application 
The sensors required for control are encoders for 

measuring leg angles and lengths, an inclinometer, and a rate 
gyro for pitch velocity and orientation. Leg rotation speeds 
and rates of leg compression or extension can be found by 
differentiating sensor output. Recently it was shown that 
using low-cost state of the art sensors, it is possible to obtain 
good measurements of pitch and pitch velocity [13]. 

To give an overview of the control method, it is useful to 
follow the robot through the execution of one motion cycle, 
starting with liftoff, when the robot enters the flight phase. 
At liftoff the three control inputs are computed, based on the 
robot state. Once the inputs are known, the individual 
touchdown angles are known, from ,sum tdγ , ,dif tdγ , so the 
legs are positioned in flight. The leg positioning is 
accomplished using a simple PD control. When the stance 
phase begins, and given a transmission efficiency of aη , the 
hip actuators are commanded to apply a constant torque aτ , 
such that the applied torque is equal to the control input τ : 
 a aτ τ η=  (28) 
At liftoff, at the end of stance, the cycle repeats. 

V. RESULTS 
The control approach is evaluated for the real-world 

problem, using simulations of a detailed planar robot model, 
referred to as the test model, using the Working Model 2D 
software, see Fig. 7b. Simulations with adequate modeling 
have been shown to predict real quadruped motion [9].  

The test model includes both robot and actuator modeling. 
The robot has body mass bm =16 kg, leg spring constant 
k = 7000 N/m, body inertia I =1 kg.m2, leg viscous friction 
b =15 N.s/m and leg rest length L =0.32 m. Half the hip 
spacing is d =0.25 m, and the dimensionless inertia is equal 
to 2/ 1bj I m d= = . The test model simulated also includes non-
trivial leg mass, modeling of plastic foot-ground collisions, a 
DC motor model for the hip actuators, and a Coulomb foot-

ground friction model allowing realistic foot slip. The DC 
motors are from Maxon Motors [10], of 60 W power, with 
nominal voltage 24 V, and torque constant 0.0259 N.m/A. 
Each motor weighs under 0.24 kg and the gear ratio is 50.  

Initially, the response to height control is tested. The 
robot response is shown in Fig. 4, and the desired height 
trajectory in Fig. 4b, together with the apex height attained.  

0 10 20 30
0.4

0.6

0.8

0 10 20 300.34
0.36
0.38
0.4

0.42

0 10 20 30
-5
0
5

10
15

0 10 20 30-2

0

2

4

0 10 20 30
-10

0

10

0 10 20 30
10

15

20

t (s) t (s)

x (m/s).

t (s) t (s)

t (s) t (s)

yap (m)

θtd (deg/s)
.

θ (deg)

τ (Nm) γb,td , γf,td (deg)

(a) (b)

(c) (d)

(e) (f)

desired

actual

 
Fig. 4  Robot response to height control, at a speed of 0.8 m/s, (a) forward 
speed, (b) height at apex and desired in orange, (c) pitch velocity at 
touchdown, (d) body pitch, (e) sum of applied torque on both back legs, (f) 
back and front leg touchdown angles. 

The maximum error in steady-state is less than 1cm, and 
then only for the largest apex height, which gives a ground 
clearance of 10cm. This is where fluctuations in the forward 
speed appear, see Fig. 4a. It can be seen that the torques 
applied by the actuators, in Fig. 4e, are completely realistic. 

Secondly, results from following a desired forward speed 
trajectory are shown in Fig. 5. The trajectory is shown in 
Fig. 5a with a solid line, together with the actual speed, for a 
range of 0.6 to 1.5 m/s. The pitching motion is not shown 
for space economy, but it resembles the response in Fig. 4. 
The desired apex height of 36 cm is maintained, see Fig. 5b.  
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Fig. 5  Robot response to speed control, for a constant apex height of 
h=0.36 m, (a) forward speed and desired in orange, (b) CoM height, (c) leg 
touchdown angles. (d) Actual forward speed versus desired value (with 
crosses). The solid line represents zero error, while dashed lines show 
deviations of 10% and 15%. Gray circles indicate steady-state motion. 

The forward speed of the robot at each flight apex is 
plotted versus the desired speed, in Fig. 5d. Although 
overall errors of up to about 15% are observed, this also 
includes transient states of motion. The size of the errors can 
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be verified by observing the forward speed in Fig. 5a. The 
gray circles indicate the steady-state motions, where it can 
be seen that errors are limited to less than 10%.  

The controller maintains a pronking gait, as can be seen 
by the almost total absence of the pitching motion in Figs. 
4d, 4c. Further, in Figs. 4f, 5c, the leg touchdown angles 
used are realistic. It is also interesting to portray a small time 
window of the motion, as in Fig. 6. In Fig. 6a, the velocity 
of a robot foot relative to the ground is shown and the slip of 
the foot is visible as it touches the ground, due to the 
ground-foot friction model. Also, Fig. 6b depicts a detail of 
the actuator power. Because the applied torque during stance 
has been chosen to be constant, see (16), there is no negative 
actuator work during stance. This is interpreted as the 
control working in coordination with the natural dynamics, 
pumping only the required energy in to the system. 
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Fig. 6  Response detail. (a) Foot slipping due to friction model, (b) actuator 
power for the back (solid) and front (dashed) motor. In both plots, the gray 
line denotes stance with its high value, and flight with its low value. 

Now the case of the robot carrying a load is studied. The 
load is known, and is two loads of 2 kg placed at 11 cm each 
side of the body CoM, preserving mass symmetricity but 
changing total robot mass and inertia. The dimensionless 
inertia j  is now 0.85, so the robot does not strictly belong 
to the class studied. Following the same speed trajectory as 
in Fig. 5, Fig. 7a shows good behavior all the way up to 1.3 
m/s. Pitching was a little increased, but the 15% deviation in 
the dimensionless inertia did not result in control failure. 
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Fig. 7  (a) Forward speed of robot with j=0.85. (b) Working Model 2D 
snapshots of running at 1.1 m/s. 

A further interesting case is when the robot is made to 
carry asymmetric loads. For example, let two loads again be 
placed at 11 cm each side of the body CoM, except this time 
the loads are unequal, with masses of 1.5 kg and 2.5 kg. 
With this asymmetrical mass distribution the same speed 
trajectory as that used for Fig. 5 is applied. Despite the 
asymmetry, the control works well up to speeds of 1.1 m/s. 
However, if the asymmetry is increased by placing loads of 
1kg, 3kg instead, the controller eventually fails. 

The robot is also tested in the case of modeling error. 
Specifically, the robot parameters bm , lm , b , k , were all 
increased by 10% compared to the values used by the 
controller. In practice, error in parameter estimation will 

probably be smaller. Despite this, the robot followed the 
desired speed trajectory used for Fig. 5, up to speeds of 1.1 
m/s, while pitching varied between -1 deg and 2 deg. 

Finally, simulations in 3D were also performed using the 
ADAMS 3D simulation package. The controller response is 
similar to the Working Model 2D simulations. This result is 
expected, as the pronking gait studied here is symmetric 
with respect to the plane of forward motion. 

CONCLUSIONS 
In this work it has been shown how it is possible to 

control both the forward speed and height of a running 
quadruped, while retaining minimum pitching, using one 
actuator per leg. The control has been designed based on an 
insight of the robot dynamics and an unveiling of the effect 
of the leg touchdown angles. Extensive simulations showed 
the control to perform well, achieving high-speed running 
with almost no pitching. Negative actuator work was absent 
during stance, which reduced consumed energy by attracting 
the robot to the desired gait without working against the 
natural dynamics. This indicates that this work could 
contribute to designing lighter and more autonomous robots, 
as smaller actuators and power supplies could be used. 
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