
  

  

Abstract— In legged systems design an important question 

applies to: "What can be inferred from the performance of a 

legged robot of a similarly configured system, but scaled to a 

smaller or larger size?" Our work attempts to answer this ques-

tion and set the basis for a systematic approach in sizing legged 

robots. This paper focuses on the influence of permanent mag-

net DC electric drives on the size of quadruped running robots. 

The reason is twofold. First, many of the existing legged ma-

chines have used such actuators for propulsion. The second, the 

performance of electric motors scales differently from torque-

speed requirements of legged robots. Specifically, we show that 

there exists a particularly sized quadruped running robot that 

is superior according to desired performance criteria, and un-

der the existing technologic limitations and economic restraints. 

Therefore, valuable information on legged systems design and 

insight for optimizing the size of a quadruped robot emerges. 

I. INTRODUCTION 

t is generally accepted that the performance of different 

subsystems may scale differently. This is very important in 

complex systems, such as legged robots. For example, actua-

tor performance typically scales in a completely different 

way to structural strength, [1]. Analysis of the ways in which 

different subsystems scale, permits conclusions to be drawn 

about the necessity for configuration changes, i.e. changes in 

the type of actuator, or in the structural material. 

Nondimensional numbers that combine important system 

parameters are particularly useful when dealing with systems 

that have similar configuration but different scale. We are all 

familiar with the role of the Reynolds number in fluid me-

chanics as an indicator of the onset of turbulence, [2]. Simi-

larity analysis and its role in experimental mechanics is also 

well established in engineering practice. 

A relevant example of a scaling law is provided by the 

Froude number, [3]. The Froude number is twice the ratio of 

the kinetic energy to the gravitational potential energy of a 

system. Particularly in legged locomotion, the Froude num-

ber has been shown to be a predictor of dynamic gait transi-

tions in animals of widely differing size. That is, animals will 

tend to transition from a walk to a trot, and from a trot to a 

gallop at similar values of the Froude number, [4]. 
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In small-scale, electric power is the predominant source of 

energy. Small-scale electric power supplies (batteries), actua-

tors, controls and sensors are common and well developed. 

To date, many of the legged machines produced have used 

electromagnetic motors for propulsion, e.g., [5], [6], [7], and 

[8]. Although there are many tools to help the designer to 

choose the right motor drive for a particular application, a 

systematic methodology or a dedicated tool that connects the 

size of the motor-gearbox combination with the size of the 

robot does not exist. In this paper, we are setting the basis of 

a methodology to assist the designer to choose the optimal 

size of the robot according to some specification, given the 

constraints that existing electric drives impose. 

Initially, simple scaling laws are derived from first princi-

ples where the basis for these laws is obvious. The tech-

niques for developing electric scaling laws are discussed 

comprehensively. The developed electrical scaling laws ex-

amine resistive, magnetic, and electrostatic effects, as in [9], 

and they are verified by using data from existing systems. 

Combining the simple scaling laws with each other, and with 

engineering relationships, produces more complex and less 

intuitive laws. Applications of the scaling laws are then used 

to provide direction in optimal quadruped robot design. 

Connecting the size of the motor drive with the size of the 

legged machine departs from that in [10], where scaling con-

cepts for running robots are discussed and a parametric 

analysis for a quadruped, passively bounding, robot is pre-

sented. According to that analysis, dynamically similar mo-

tions may be obtained for a wide range of dimensionless pa-

rameters related to the “shape” of the legged machine. 

Broadly speaking, “shape” refers to the analogies between 

the structural components of the robot, such as body and leg 

length, body mass and inertia, leg stiffness, and hip separa-

tion.  

It was shown that energy consumption varies for different 

combinations of structural parameters, and that these differ-

ences are considerable, [10]. Consequently, to minimize en-

ergy expenditure one should identify the set of parameters, 

for which the required energy to sustain the desired motion is 

the least. Although the result of this process is the optimal 

shape of the running quadruped, i.e. the optimal analogies 

between its structural components, yet it reveals nothing 

about the optimal size of the legged robot.  

This information is obtained through the work provided 

here. In this paper, we show that there exists a particular size 

of the quadruped running robot that is superior according to 

desired performance criteria, which are in turn subject to the 

existing technologic limitations and market economic re-
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straints. This result provides valuable insight into legged 

machine design and sets the basis of a methodology to assist 

the designer to choose the optimal size of the robot accord-

ing to some specification.  

II. SIMILARITY RULES 

A similarity rule maintains the constancy of a nondimen-

sional number. The simplest similarity rule is geometric 

similarity. Here, the ratio of any lineal dimension to a char-

acteristic length of the system is constant. That is, all dimen-

sions are magnified by the same factor as compared to a base 

configuration. For example, if the same materials are used, 

the mass of a system scales with the cube of the length in 

geometrically similar systems.  

Just as geometric similarity refers to shapes, the concept 

of dynamic similarity refers to motion. Two motions are said 

to be dynamically similar if one could be made identical to 

the other by multiplying all linear dimensions by some con-

stant factor and all time intervals by another one. Addition-

ally, dynamic similarity in legged locomotion requires that 

the Froude numbers of the motions of two legged animals (or 

robots) are equal. 

According to the parametric analysis in [10], the rest of 

the dimensionless parameters that should be kept equal for 

dynamically similar motions are the combinations of the 

structural parameters, which are connected to robot shape as 

discussed in Section I. Particularly, these combinations of 

the design parameters include: (a) the dimensionless inertia j, 

i.e. the robot’s body inertia, normalized to the product of 

body mass and the square of hip separation, (b) the leg rela-

tive stiffness r, which is defined as the product of leg stiff-

ness and leg rest length normalized to the weight of the ro-

bot, and (c) the ratio of hip separation to the height of center 

of mass (or the leg rest length), given as p. 

Next, we use an evidential example based on biological 

data to prove similarity requirements. Let the rest leg length 

be the characteristic scale length. This implies that by dou-

bling the rest length of the leg, the robot is scaled up by a 

factor of two. Body mass is proportional to the third power 

of the characteristic length while the gravitational accelera-

tion does not scale with size. Therefore, in order for the ro-

bot to keep moving in a dynamically similar fashion, the leg 

stiffness should be quadruplicated, since the relative stiffness 

of the leg should be kept constant. This is consistent with 

biology findings in animal scaling laws, [11], where the leg 

springiness increase with body mass, namely, 2 3
k m∝ . 

III. SCALING LAWS 

The techniques for developing scaling laws for electromag-

netic subsystems are derived and explained here. Specific 

scaling laws are developed and verified using data from ex-

isting systems. Finally, applications of the scaling laws are 

discussed to help provide direction in quadruped robots de-

sign. 

The laws developed provide the variation of the property 

of interest with respect to the scale factor, i.e., the character-

istic length. Another size scale factor, such as the product of 

the characteristic length and system weight, could be used as 

well and, while the individual scaling laws would be differ-

ent, the relationships between scaling laws would be invari-

ant.  

Initially, simple scaling laws are derived from first princi-

ples where the basis for these laws is obvious. More complex 

and less intuitive laws may be produced by combining these 

simple scaling laws with each other and with engineering 

relationships. Laws are expressed as an exponent of the 

characteristic length. All scaling laws presented here are, by 

their nature, simplistic and applicability over a wide range 

may be limited. It is important to remember that these laws 

are intended to provide guidance and intuition into the do-

main but are not meant as a substitute for detailed analysis.  

A. Electric motors 

Most macroscopic electric motors rely on magnetic fields 

produced by electric currents or permanent magnets. As 

shown in Table I, where the electric motor scaling laws are 

summarized, the magnetic field produced by magnets is in-

variant with scale. 
TABLE I 

ELECTRIC MOTOR SCALE LAWS 

Name Formula Order Variables 

Area 2
A l∝  2 l  - Characteristic length (1) 

Mass ( )3,M lρ∝  3 ρ  - Material density (0) 

Armature 

resistance 2

1 w
a

w w

l
R

c rπ
=  

-1 
wc  - Wire conductivity (0) 

wl  - Wire total length (1) 

wr  - Wire diameter  (1) 

Magnetic force 

on (still) con-

ductor 

 

a
r

a

V
F Bl

R
=  

2 B  - Magnetic field (0) 

rl  - Rotor length (1) 

aV  - Armature voltage (0) 

Motor 

(stall) torque 
a

m c r r

a

V
N Bl r

R
τ =  

4 
rr  - Rotor radius (1) 

cN  - Number of conductors (1) 

Stress-induced 

speed limit 

 
( )

1 8

3r

σ
ω

ν ρ
=

+
 

-1 ν  - Poisson’s ratio (0) 

σ  - Allowable stress  (0) 

r  - Disk radius (1) 

Gearing load 

factor 0.5v

m

C
K

C V
=

+
 

-0.5 
mV  - Pitch-line speed (1) 

C  - Constant (0) 

Motor scale 

length  

23
m m m

s r lπ=  1 
mr  - Motor radius (1) 

ml  - Motor length (1) 

 

In an electric motor the magnetic force on a moving con-

ductor frequently provides the forced to operate the motor. 

The force on a still, current carrying, conductor is a second 

order law. Motor stall torque is the product of that force act-

ing on multiple conductors that increase in number with 

scale, and rotor radius and thus it is a fourth order law.  

Empirical evidence for these scaling laws is easily found. 

For example, consider the fourth order torque scaling law. 
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Fig. 1 is the plot of motor size vs. stall torque for a series of 

commercially available permanent magnet DC motors, [12]. 

The motor scale length here is defined as the cube root of the 

motor volume (see Table I). The correlation between “ac-

tual” and “prediction” values using the fourth order scaling 

law is very strong.  
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Fig. 1. Motor size vs. stall torque for a series of commercially available 

permanent magnet DC motors ([12]). 

B. Planetary gearheads 

In most instances, electric motors run at far higher speeds 

than are suitable for quadruped robot joints and therefore 

gearboxes are used to match motor speed to joint speed. 

Space, and the diverse configurations and mechanics of 

gearboxes that are actually used, preclude a detailed discus-

sion of the scaling of gearboxes here, especially of the plane-

tary ones that are mostly used in legged robots. However, 

since speed is inversely proportional to motor size as indi-

cated in Table I, scaling down can result in very high motor 

speeds requiring large speed reduction ratios.  

The transmitted load through the gearbox depends heavily 

on the accuracy of the gears. A dynamic load factor is added 

by manufacturers to take care of this. For gears of the preci-

sion classes, the strength of the gear tooth depends, among 

others, on the square root of surface speed, which is often 

also referred to as pitch-line speed. Therefore, the load factor 

is an inverse square root order law of motor size (see Table 

I). This is also empirically evident. Fig. 2 displays motor size 

vs. maximum permissible speed for a series of commercially 

available precision planetary gearheads ([12]).  
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Fig. 2. Motor size vs. max. permissible speed for a series of commercially 

available precision planetary gearheads ([12]). 

Practical reduction ratio achievable any type of planetary 

gearheads is limited. Furthermore, high ratios mean multiple 

reduction stages. The number of stages of speed reduction is 

a concern not only because of the relative bulk, weight and 

complexity of multi-stage reducers, but also because effi-

ciency degrades exponentially with the number of reduction 

stages. 

IV. SYSTEM DYNAMICS 

Fig. 3 shows a planar model that is used to study the influ-

ence of permanent magnet DC motors on the size of quadru-

ped robots. This is a commonly used template to analyze the 

basic qualitative properties of quadrupedal running. Its asso-

ciated parameters are given in Table II. 

 
Fig. 3. Parameters of the template for quadrupedal bounding in plane. 

TABLE II  
VARIABLES AND INDICES USED 

x COM horizontal pos. τ torque delivered at hip 

y COM vertical pos. g acceleration of gravity 

θ body pitch angle m body mass 

γ leg absolute angle J body inertia 

φ leg relative angle d hip joint to COM distance 

xbt back toe horizontal pos. f as index: front leg 

xft front toe horizontal pos. b as index: back leg 

l leg length m as index: motor 

lo leg rest length * as subscript: dimensionless 

 

This model, which represents the lateral half of a quadru-

ped, and consists of a rigid body and two springy massless 

legs, one attached to the body at the front and the other at-

tached at the rear. Permanent magnet DC electric motors 

control the orientation of each leg with respect to the body 

and the torque delivered to each leg. Each modeled leg 

represents the back or the front leg pair, in which the two 

back or front legs are always in phase, and it is called virtual 

leg, [6]. Each virtual leg has twice the stiffness of a single 

leg. The torque delivered at the hip of each robot leg is equal 

to half the corresponding ones at the virtual leg. 

Based on the fact that simplified models, and passive dy-

namics, have been already proved to be helpful in designing 

controllers, [6], we use an unactuated and conservative 

model, which encodes the target behavior of the system and 

reveals intrinsic system properties and aspects of quadru-

pedal bounding, and it is anticipated to be used as a testbed 

for the validation of the discussed concept. 

To reveal the effect of scaling, dimensional analysis is 

employed and a passive and conservative model is derived 

using a Lagrangian formulation, with generalized coordinates 

the Cartesian variables describing the center of mass COM 

position and the main body’s attitude. The detailed model is 
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described in [10] thoroughly, yet is given here as a set of 

differential-algebraic equations to complement the analysis  

 ( ) ( ) ( ) ( )* * * * * * *
1 sin 1 sinb b f fx r l r lθ φ θ φ= − − + − − +ɺɺ  (1) 

 ( ) ( ) ( ) ( )* * * * * * *
1 cos 1 cos 1b b f fy r l r lθ φ θ φ= − + + − + −ɺɺ  (2) 

 ( ) ( )( )* * * *1 cos 1 cos
f f b b

r l l p jθ φ φ= − − −ɺɺ  (3) 

 
( )
( )

* * * * * * *

* * * * * * *

Atan2 sin , cos

Atan2 sin , cos

b bt

f ft

y p x p x

y p x p x

φ θ θ θ
φ θ θ θ

= − + − −

= + − − −
 (4) 

 
( ) ( )
( ) ( )

2 2
* * * * * *

2 2
* * * * * *

cos sin

cos sin

b bt

f ft

l x x p p y

l x x p p y

θ θ

θ θ

= − + + −

= − − + +
 (5) 

In order to facilitate the study, we focus on system peri-

odic steady state trajectories, which are trajectories that re-

peat themselves after one cycle of locomotion. Following a 

similar procedure as in and [6] and [10] we employ a Poin-

caré Map technique to formulate these trajectories. 

V. MOTOR EFFECT STUDY 

Following the previous assumptions, the robot executes a 

passive motion according to the sets of initial conditions, 

found by employing the Poincaré Map technique, which is in 

favor of its natural dynamics. In this case, no energy is lost 

or added to the system. This may sound unrealistic, but if 

one uses actuators just to compensate for the lost energy, and 

initial conditions that yield a passive trajectory, then the ro-

bot will execute an active gait, very close to the passive gait 

and the system can be then studied as in the lossless case, 

which is described by (1)-(5). 

The only energy required then to sustain the motion is the 

amount dissipated over one stride, which is the sum of the 

mechanical energy dissipated due to leg friction and the ki-

netic energy lost in ground damping and compression at 

touchdown. This amount of energy is injected into the system 

by the motors, which are controlled to exert a desired con-

stant torque that is given, in its dimensionlesss form, as  

 ( )*

o
m g lτ τ=  (6) 

The dimensionless angular velocity about a joint, is given as 

 *

o
l gω ω=  (7) 

Generally speaking, in work cycles, all operating points 

must lie beneath the motor curve at a maximum voltage. 

Mathematically, this means that the following must apply for 

all operating points (ω,τ) 

 1
o stall

ω τ
ω τ

> +  (8) 

where ωo is the no-load speed, and τstall  is the stall torque. 

Apparently, the performance of the electric drive is limited 

by other factors, as well, from which the prime are the 

maximum permissible speed at gearbox input and the maxi-

mum permissible continuous torque delivered due to thermal 

considerations. 

According to the analysis presented in Section III, motor 

stall torque and no-load speed in (8) can be scaled as 

 *

stall stall m m
m g sτ τ=  (9) 

 *

o m
g sοω ω=  (10) 

since motor mass scales with the cubic power. (Refer to Ta-

bles II and III for the associated indices and variables.) 

By substituting (6) to (10) in (8), a nondimensional form 

of the motor-load curve, i.e. a universal motor-load curve, 

results as 

 

0.5 * *

0.5 * *
1

o g o

m o m m stall g g

l i ml

l m s i n

ω τ
ω τ

−

−
> +  (11) 

where ig is the reduction ratio and ng  is gearbox efficiency. 

This universal motor-load curve drawn here refers solely to 

the electric drives selected for this study. However, the 

methodology for constructing such a curve is not restricted to 

these but could apply to all electrically driven systems, or 

could be derived from data from different motor vendors. 

Nowthen, in nondimensional work cycles, all operating 

points must lie beneath the universal curve at a maximum 

voltage. The scaling factors of the motor, based on which the 

universal curve is drawn, depend on the existing range of 

commercially available permanent magnet DC motors from 

[12]. Their range of products is finite due to technology limi-

tations and economic restraints, i.e. in larger scale, it is much 

more cost effective to use other electric actuation technolo-

gies and in micro-scale systems, motors operating on other 

than electromagnetic principles are needed. For the purpose 

of the work here we use the scaling factors presented in Ta-

ble III, which are derived from scaling the smoovy DC 

Drives from [12] based on the analysis presented in Section 

III. 
TABLE III 

SMOOVY DC DRIVES SCALING FACTORS 

Description ( f= ) Factor ( C= ) Value Function 

Max. motor speed vs. scale ( s= ) 
*

max
ω  112.6 1( )f s C s−= ⋅  

No-load speed vs. scale 
*

οω  316.9 1 2( )f s C s−= ⋅  

Max. permissible speed vs. scale 
*

gω  75.2 1 2( )f s C s−= ⋅  

Stall torque vs. size  ( m g s= ) 
*

stall
τ  33.0 1( )f x C x= ⋅  

Max. permissible torque vs. scale 
*

max
τ  5.3 4( )f s C s= ⋅  

Motor equivalent density vs. scale mρ  5282.0 0( )f s C s= ⋅  

Reduction vs. No. of stages  ( N= ) 1C  1.4 ( ) 1 C Nf N e ⋅= ⋅  

Efficiency vs. No. of stages (%) 2C  0.1 ( ) 100 C Nf N e− ⋅= ⋅  

 

The ratio of leg length to motor characteristic length and 

the ratio of robot mass to motor mass that appear in (11) 

reflect the analogy between the sizes of the robot and the 

motor(s). In that sense, by comparing the length or mass ra-

tios of various robots for a given motor size, a larger length 

ratio means that the size of the robot is relatively larger, and 

a larger mass ratio means that the robot is capable of carry-

ing bigger payload, if the structural mass is kept constant. 

Likewise, for given robot size, a larger mass ratio implies 
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that the size of the actuator needed to propel the robot and 

the desired payload is relatively smaller. 

In Fig. 4, the universal motor curve along with various 

load curves, drawn by simulation of the passively stable 

bounding quadruped described by (1)-(5), for increasing 

length (upper) and mass (lower) ratios are presented. Dimen-

sionless forward speed, which is defined as 

 *

o
v x g l= ɺ  (12) 

varies from 0.9 to 3.0, which corresponds to typical bound-

ing speeds found in nature. The rest of the dimensionless 

design parameters are kept constant. Each marker on the load 

curves corresponds to the maximum required speed and 

torque in a passive bounding cycle with zero pitch rate (i.e. 

pronking), while the background color of the marker corre-

sponds to the value of the dimensionless forward speed. 
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Fig. 4. The universal motor curve and dimensionless load curves for various 

combinations of length (upper) and mass ratio (lower).  

 

Since the mass of a system is typically scaled up with the 

third order law of the characteristic length, the separate 

length and mass ratios could be reduced to a single ratio us-

ing the corresponding densities, namely motor and robot 

equivalent densities. Motor equivalent density is derived 

from motor data (see Table III), while robot equivalent den-

sity is estimated by a series of biological data extracted from 

various experimental biology publications. Fig. 5 presents 

the leg length, which is the typical scale factor for living and 

artificial quadrupeds, versus body mass for a series of quad-

ruped animals, from small rats to large horses.  

We assign the estimated equivalent density to robot den-

sity because one may fairly consider that nature’s designs are 

optimized even though animal requirements are way differ-

ent than those of machines. Such a choice is not misleading, 

since a different choice may affect the actual results but not 

the essence of the proposed methodology. To support this, 

we add data from existing robots in Fig. 5, namely for Scout-

II, RHex and Tekken, which they satisfactorily fit the third 

order scaling law ([5], [6] and [7]). Therefore, the estimated 

equivalent robot density is found to be 218.6, and it will be 

used next. 
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Fig. 5. Leg length vs. body mass for a series of quadruped animals.  

 

The minimum value of the mass ratio can be obtained by 

taking into account that an actuated quadruped robot should 

have at least four motors. If the mass of the planetary gear-

boxes is fairly added, then reasonable robot to motor mass 

ratios should be way over 12 based on Fig. 6, where the unit 

mass increase versus the reduction ratio for a series of com-

mercially available precision planetary gearheads ([12]). We 

consider a minimum mass ratio of 12 and therefore the mini-

mum length ratio results as  

 ( )
3

3
3

min

4 1 2 12 12o o m

m mm m

l lm

m sl

ρ ρ
ρρ

≥ + ⇒ ≥ ⇒ =  (13) 
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Fig. 6. Unit mass increase vs. reduction ratio for a series of commercially 

available precision planetary gearheads ([12]). 

 

The maximum permissible speed of the motor is limited 

by the maximum input speed at gearbox. Given the minimum 

length ratio as in Eq. (13), and forcing the operating speed to 

be less than the maximum permissible, which scales accord-

ing to Table III, then a maximum reduction ratio can be ob-

tained as 

 

*

* *

*max

1 1 g o

g g g

o m m

l
i i

l s s

ω
ω ω

ω
≤ ⇒ =  (14) 

An electric motor will rarely deliver its stall torque due to 

thermal considerations. Its maximum continuous operating 

torque is limited by environmental factors and the amount of 

heat that can dissipate. Therefore, the maximum required 

torque should be kept below the maximum permissible motor 

torque, which is scaled according to Table III. This assump-
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tion leads to the maximum mass ratio as 

 

1**
max*

max *

max

g go o

m m

g g m m

i nml lm
m s

i n m s

ττ
τ

τ

−
 

≤ ⇒ =  
 

 (15) 

VI. RESULTS 

Following the methodology presented in Section IV, we 

seek here the optimal mass ratio for a quadruped robot of 

total mass m = 15 kg, 5 kg of which is the largest allowable 

payload m
p
. The desired dimensionless forward speed num-

ber ranges between 0.9 and 3.0. By using (13) and the esti-

mated values for the equivalent densities of both the motor 

and the robot from Table III and Fig. 5, respectively, the 

minimum length ratio is found to be 6.8. The dimensionless 

torque and angular speed, given by (6) and (7), respectively, 

are calculated as in Fig. 4. The dimensionless angular speed, 

the computed minimum leg length, the scale constant ωg
*

 of 

the maximum permissible speed at gearbox input and (14) 

are combined to obtain the maximum allowable reduction 

rate. Finally, the dimensionless torque, the minimum leg 

length, the maximum reduction rate, gearbox efficiency, 

which is derived from Table III in two steps, and (15) are 

used to obtain the optimal mass ratio, which is plotted in Fig. 

7 (A) versus the dimensionless forward speed. 
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Fig. 7. Opt. mass ratio (A), min. motor mass and the first motor that ex-

ceeds (B), the max. payload (C) and P.I. (D) vs. the dimensionless speed. 

 

By dividing the optimal mass ratio with the overall robot 

total mass the minimum motor mass is obtained, and it is 

drawn in Fig. 7 (B). Considering the actual motor masses and 

the fact that there is not an infinite number of winding varia-

tions available from a practical point of view, this line should 

be replaced by the discontinuous dotted line, which repre-

sents the first available motor to exceed the minimum re-

quired motor mass. This is illustrated in Fig. 7 (B), as well.  

There appears to be a tradeoff between the maximum 

achievable speed and the maximum payload that a robot may 

carry if actuated with a certain motor. Moving with greater 

speed necessitates bigger motors and result to less payload, if 

the total mass is kept constant. This is evident in Fig. 7 (C). 

Exactly at the point where the step change for a bigger motor 

is introduced the capability of a particular motor is fully ex-

ploited. This constitutes an optimal selection by itself. 

By further defining a performance index, such as the 

weighted sum of relative payload, i.e., divided by the maxi-

mum required, and relative forward speed, i.e., divided by 

the maximum possible, 

 
( ) ( )

*p

i

p *

i

m
P.I.

max m max

i

m v

i

v
w w

v
= +  (16) 

one could identify that combination of payload and forward 

speed, for which the P.I. in (16), is least, and thus obtain the 

optimal size of the robot. In Fig. 7 (D) the value of the P.I. 

for the case of an equally weighted sum, i.e., for wm = wx = 

0.5, is drawn. P.I. is maximized for a payload of 3.6 kg and a 

dimensionless forward speed of 2.1. Ultimately, a 0.31 kg 

motor should be selected for this particular robot. 

CONCLUSION 

In this paper, electric scaling laws were developed and 

verified by using data from existing systems. Applications of 

the scaling laws were discussed for the case of a bounding 

quadruped robot executing an active gait very close to the 

passive one. The critical issue of how big the robot should be 

was explored. The work was focused on the influence of 

permanent magnet DC electric drives on the size of the robot 

and it has been showed that there exists a particularly sized 

quadruped that is superior according to given specification. 

This constitutes a useful guideline in design quadruped ro-

bots and facilitates optimal legged machine design. 
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