
Consensus Learning for Distributed Coverage Control

Mac Schwager∗, Jean-Jacques Slotine†, and Daniela Rus∗

∗Computer Science and Artificial Intelligence Lab

MIT, Cambridge, MA 02139

Email: schwager@mit.edu, rus@csail.mit.edu
†Nonlinear Systems Lab

MIT, Cambridge, MA 02139

Email: jjs@mit.edu

Abstract— A decentralized controller is presented that causes
a network of robots to converge to a near optimal sensing
configuration, while simultaneously learning the distribution
of sensory information in the environment. A consensus (or
flocking) term is introduced in the learning law to allow sharing
of parameters among neighbors, greatly increasing learning
convergence rates. Convergence and consensus is proven using
a Lyapunov-type proof. The controller with parameter consen-
sus is shown to perform better than the basic controller in
numerical simulations.

I. INTRODUCTION

We present a decentralized controller to cause a group

of robots to spread out over an environment in an optimal

configuration for sensing. The robots position themselves in

such a way that their density is greater in regions of the

environment with more sensory interest and less in regions

of less sensory interest. Each robot simultaneously learns

the distribution of sensory information in the environment

while driving to its near optimal position. The distribution

of sensory information in the environment is learned by

adapting a parameter vector based on sensor measurements.

The controller improves upon the one we previously pre-

sented in [1] by including a consensus term in the parameter

adaptation laws to couple the adaptation among neighboring

robots. The main effect of this coupling is that sensor

measurements from any one robot propagate around the

network to be used by all robots. Figure 1 shows an overview

of the control scheme. We prove that the robots converge to

a configuration that minimizes a cost function relevant to the

robots’ collective sensing ability over the environment. We

also prove that their parameters reach a common value. The

control laws we discuss are both adaptive and decentralized,

thereby combining two of the defining qualities of biological

systems. Our controller would be useful in controlling teams

of robots to carry out a number of tasks including search and

rescue missions, environmental monitoring (e.g. for forest

fires), automatic surveillance of rooms, buildings, or towns,

or simulating collaborative predatory behavior.

This work was supported in part by the MURI SWARMS project grant
number W911NF-05-1-0219, and NSF grant numbers IIS-0513755, IIS-
0426838, CNS-0520305, CNS-0707601, and EFRI-0735953.

Fig. 1. A schematic of the overall control scheme is shown. The robots
at pi, pj , and pk move to cover the area Q. Simultaneously, each robot
adapts a parameter vector (âi, âj , and âk) to build an approximation of the
sensory environment. The parameter vectors are coupled among neighboring
robots in such a way that their final value is the same for all robots.

A. Relation to Previous Work

The coverage control literature most relevant to this work

was initiated by [2], which introduced a formalism from loca-

tional optimization [3], and proposed a stable, decentralized

control law to achieve an optimal coverage configuration.

Other works have investigated variations upon this control

law [4], [5], however, in all of these works the robots

are required to know a priori the distribution of sensory

information in the environment. We previously relaxed this

requirement by using a simple memoryless approximation

from sensor measurements [6], though a stability proof was

not found. In [1] we introduced an adaptive controller [7]

with provable convergence properties in order to remove this

requirement definitively.

However, the controller from [1] exhibited slow parameter

convergence in numerical simulations. We address this prob-

lem in the present work by including a consensus algorithm

(sometimes called flocking, herding, swarming, agreement

algorithms, gossip algorithms, rendezvous algorithms, and

other names) in the parameter adaptation law. Consensus

phenomena have been studied in many fields, and appear

ubiquitously in biological systems of all scales. However,

they have only recently yielded to rigorous mathematical

treatment; first in the distributed and parallel computing

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1042

community [8]–[11] in discrete time, and more recently in

the controls community in continuous time [12]–[16]. In the

present work, consensus is used to learn the distribution of

sensory information in the environment in a decentralized

way by propagating sensory information gathered by each

robot around the network. Consensus improves parameter

convergence rates, which in turn causes the robots to con-

verge more quickly to their optimal positions.

We set up the problem, and provide the necessary back-

ground in Section II. We present the consensus controller and

prove its convergence in Section III. In Section IV we discuss

and compare parameter convergence rates for the consensus

and basic controllers. The results of numerical simulations

are described in Section V. Conclusions are given in Section

VI.

II. PROBLEM SET-UP

Let there be n robots in a convex, bounded area Q ⊂ R
N .

An arbitrary point in Q is denoted q, the position of the

ith robot is denoted pi, and the set of all robot positions

{p1, ..., pn} is called the configuration of the network. Let

{V1, ..., Vn} be the Voronoi partition of Q, for which the

robot positions are the generator points. Specifically,

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i}

(henceforth, ‖.‖ is used to denote the ℓ2-norm). We assume

that the robots are able to compute their own Voronoi

cell. This assumption is common in the literature [2], [4],

though it presents a practical conundrum. One does not

know beforehand how far away the farthest Voronoi neighbor

will be, thus this assumption cannot be translated into a

communication range constraint. In practice, only Voronoi

neighbors within a certain distance will be in communication,

in which case results can be derived, though with consider-

able complication [5]. We will take this assumption on the

communication range as implicit and leave the burden of

relaxing this assumption for future work.

Next, define the sensory function as a map φ : Q 7→
R+ (where R+ refers to the strictly positive orthant) that

determines a weighting of importance of points q ∈ Q. The

function φ(q) is not known by the robots in the network, but

the robots are equipped with sensors from which a measure-

ment of φ(pi) can be derived at the robot’s position pi. The

interpretation of the sensory function φ(q) is intentionally

unspecific in order to suit a broad range of applications.

For example, for a human surveillance application in which

robots use audio sensors, φ(q) may be chosen to be the sound

intensity of the frequency range corresponding to the human

voice. In any case, φ(q) should be chosen to represent a

weighting of importance over Q.

Let the unreliability of the sensor measurement be defined

by a quadratic function 1

2
‖q− pi‖2. Specifically, 1

2
‖q− pi‖2

describes how unreliable is the measurement of the informa-

tion at q by a sensor at pi.

A. Locational Optimization

Drawing from the field of locational optimization [3], we

can formulate the cost incurred by the network sensing over

the region Q as

H(P) =

n
∑

i=1

∫

Vi

1

2
‖q − pi‖2φ(q) dq. (1)

Notice that unreliable sensing is expensive and high values

of φ(q) are also expensive. An optimal network configuration

corresponds to a set of robot positions that minimize (1).

Next we define three properties analogous to mass-

moments of rigid bodies. The mass, first mass-moment, and

centroid of Vi defined as

MVi
=

∫

Vi

φ(q) dq, LVi
=

∫

Vi

qφ(q) dq, (2)

and CVi
=

LVi

MVi

,

respectively. The moments and the Voronoi regions them-

selves depend on the robot positions. Remarkably, despite

this dependency, a standard result [3] is that

∂H
∂pi

= −
∫

Vi

(q − pi)φ(q) dq = −MVi
(CVi

− pi). (3)

Equation (3) implies that local minima of H correspond to

the configurations such that pi = CVi
∀i, that is, each agent

is located at the centroid of its Voronoi region. Thus, the

optimal coverage task is to drive the group of robots to a

centroidal Voronoi configuration—one in which each robot

is positioned at the centroid of its Voronoi region.

Fig. 2. A graphical overview of the quantities involved in the controller and
environment is shown. The robots move to cover a bounded, convex area Q.
Their positions are pi, and they each have a Voronoi region Vi with a true

centroid CVi
and an estimated centroid ĈVi

. The true centroid is determined
using a sensory function φ(q), which indicates the relative importance of
points q in Q. The robots do not know φ(q), so they calculate an estimated

centroid using an approximation φ̂i(q) learned from sensor measurements
of φ(q).

B. Sensory Function Approximation

We assume that the sensory function φ(q) can be pa-

rameterized as an unknown linear combination of a set of

known basis functions. This requirement is formalized in the

following assumption.

1043

Assumption 1 (Matching Conditions): ∃a ∈ R
m and K :

Q 7→ R
m
+ such that

φ(q) = K(q)T a, (4)

where the vector of basis functions K(q) is known by each

agent, but the parameter vector a is unknown. Furthermore,

a(j) ≥ amin ∀j = 1, . . . , m, (5)

where a(j) denotes the jth element of the vector a, and

amin > 0 is a lower bound known by each agent.

Let âi(t) be robot i’s approximation of the parameter vector.

Naturally, φ̂i = K(q)T âi is robot i’s approximation of φ(q).
Figure 3 shows a graphical representation of this function

approximation scheme.

Fig. 3. The sensory function approximation is illustrated in this simplified
2-D schematic. The true sensory function is represented by φ (blue curve)

and robot i’s approximation of the sensory function is φ̂i (orange curve).
The vector K(q) is shown as 3 Gaussians (dotted curves), and the parameter
vector âi denotes the weighting of each Gaussian. According to Assumption
1 there is some value of âi that makes the approximation equal to the true
function.

Requirements such as Assumption 1 are common for

adaptive controllers. In theory, the assumption is not limiting

since any function (with some smoothness requirements)

over a bounded domain can be approximated arbitrarily well

by a network of basis functions [17]. In practice, however,

designing a suitable function approximation network requires

application-specific expertise. We use Gaussian basis func-

tions in our simulations, but there is a variety of other

basis function families to chose from including, wavelets,

sigmoids, and splines. Gaussian basis functions have a com-

putational advantage over non-local basis functions because

they have nearly compact support. To compute the value of

the network at a location φ̂i(q), or to tune the weights of the

network âi with new data, one has only to consider Gaussians

in a region around the point of interest. Looking forward,

we are also interested in adapting nonlinearly occurring

parameters, such as Gaussian center locations and widths,

similarly to [18].

Define the mass moment approximations

M̂Vi
=

∫

Vi

φ̂i dq, L̂Vi
=

∫

Vi

qφ̂i dq, (6)

and ĈVi
=

L̂Vi

M̂Vi

.

Next, define the parameter error

ãi = âi − a, (7)

and the sensory function error

φ̃i = φ̂i − φ = K(q)T ãi. (8)

Finally, in order to compress the notation, we introduce the

shorthand Ki = K(pi(t)) for the value of the basis function

vector at the position of robot i, and φi = φ(pi(t)) for the

value of φ at the position of robot i. As previously stated,

robot i can measure φi with its sensors. Figure 2 illustrates

the quantities involved in the problem.

C. Graph Laplacians

We here describe some of the basic properties of graph

Laplacians, which will be used later to prove parameter

convergence. A graph G = (V, E) is defined by a set of

indexed vertices V = {v1, . . . , vn} and a set of edges E =
{e1, . . . , el}, ei = {vj , vk}. In the context of our application,

a graph is induced in which each agent is identified with

a vertex, and an edge exists between any two agents that

are Voronoi neighbors. This graph is that of the Delaunay

triangulation.

Let Ni = {j | {vi, vj} ∈ E} be the neighbor set of vertex

vi. Let A be the adjacency matrix of G, defined element wise

by

A(i, j) = A(j, i) =

{

1 for {vi, vj} ∈ E

0 otherwise.

The graph Laplacian is defined as L = diagn
i=1(|Ni|) − A.

Loosely, a graph is connected if there exists a set of edges

that defines a path between any two vertices. The graph

of any triangulation is connected, specifically, the graph is

connected in our application. It is well known [19] that

for a connected graph L ≥ 0 and L has exactly one zero

eigenvalue, with the associated eigenvector 1 = [1, . . . , 1]T .

In particular, L1 = 1
T L = 0, xT Lx ≥ 0 ∀x, and xT Lx = 0

imples x = 0 or x = 1c for some c ∈ R.

III. ADAPTIVE CONTROLLER WITH PARAMETER

CONSENSUS

We will design a control law with an intuitive interpre-

tation and prove that it causes the network to converge to

a near centroidal Voronoi configuration, while causing the

parameter vectors for all robots to converge to the same

vector. The control law will integrate sensory measurements

available to each robot to form an on-line approximation of

the centroid of its Voronoi region. The controller is like the

one from [1], with the key modification that the adaptation

laws among Voronoi neighbors are coupled.

Let the robots have dynamics

ṗi = ui, (9)

where ui is the control input. We can equivalently assume

there is a low-level controller in place to cancel existing

dynamics and enforce (9). We propose to use the control

law

ui = K(ĈVi
− pi), (10)

where K is a (potentially time-varying) uniformly posi-

tive definite control gain matrix, which may have a skew-

symmetric component to encourage other tasks, for example

1044

exploration [20]. The parameters âi used to calculate ĈVi
are

adjusted according to an adaptation law which is introduced

below.

Define two quantities,

Λi =
∫ t

0
w(τ)Ki(τ)Ki(τ)T dτ, (11)

and λi =
∫ t

0
w(τ)Ki(τ)φi(τ) dτ.

These quantities can be calculated differentially by robot

i using Λ̇i = w(t)KiKT
i , and λ̇i = w(t)Kiφi, with zero

initial conditions. The function w(t) ∈ L1, where w(t) ≥
0, determines a data collection weighting which will be

discussed further in section III-A.

Also define

Fi =

∫

Vi

K(q)(q − pi)
T dqK

∫

Vi

(q − pi)K(q)T dq
∫

Vi

φ̂i(q) dq
, (12)

which can also be computed by robot i as it does not require

any knowledge of a.

We use the quantities above to compute the parameter

adaptation law

˙̂apre
i
= −Fiâi − γ (Λiâi − λi) − ζ

∑

j∈Ni

(âi − âj), (13)

where γ, ζ ∈ R+ are scalar gains. Each term in (13) has

an intuitive interpretation. The first term compensates for

uncertainty in the centroid position estimate. The second

term carries out a gradient descent to minimize the sensory

function error φ̃i(pi) integrated over time. The last term

is the consensus coupling term, which causes all of the

robots’ parameters to reach a common value. We stress that

a distributed implementation requires that each robot adapts

its own parameter vector using local information available to

it. If one were interested, instead, in designing a centralized

adaptation law, one could simply use a common parameter

vector that is adapted using the information from all robots.

We also point out that (13) will have discontinuities when

robots join or leave the set of Voronoi neighbors of robot i,

and our convergence analysis takes this into account.

Equation (13) is the main adaptation law, however the

controller (10) has a singularity at âi = 0 (since M̂Vi
is

in the denominator of ĈVi
). For this reason we prevent the

parameters from dropping below amin > 0 using a projection

law [21]

˙̂ai = Γ(˙̂apre
i
− Iproj

i

˙̂apre
i
), (14)

where Γ ∈ R
m×m is a diagonal, positive definite adaptation

gain matrix, and the diagonal matrix Iproj
i

is defined element-

wise as

Iproj
i
(j) =

0 for âi(j) > amin

0 for âi(j) = amin and ˙̂apre
i
(j) ≥ 0

1 otherwise,

(15)

where (j) denotes the jth element for a vector and the jth

diagonal element for a matrix.

The controller described above with ζ = 0 will be referred

to as the basic controller, and with ζ > 0 as the consensus

controller. The performance of the basic controller was

described previously in [1]. The behavior of the consensus

controller is formalized in the following theorem.

Theorem 1 (Convergence Theorem): Under Assumption

1, for the system of agents with dynamics (9) and the control

law (10),

(i) limt→∞ ‖ĈVi
(t) − pi(t)‖ = 0 ∀ i ∈ {1, . . . , n},

(ii) limt→∞ K(pi(τ))T ãi(t) = 0 ∀ τ | w(τ) > 0
and ∀ i ∈ {1, . . . , n},

(iii) limt→∞ ‖âi − âj‖ = 0 ∀ i, j ∈ {1, . . . , n}.

Proof: We will define a lower-bounded function and

show that it is non-increasing along the trajectories of the

system, and that its time derivative is uniformly continuous.

Theorem 1 is then a consequence of Barbalat’s lemma.

Let

V = H +

n
∑

i=1

1

2
ãT

i Γ−1ãi. (16)

Taking the time derivative of V along the trajectories of the

system gives

V̇ = −
n

∑

i=1

[

M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) +

γ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ +

+ãT
i Iproj

i

˙̂apre
i

]

−
n

∑

i=1

ãT
i ζ

∑

j∈Ni

(âi − âj). (17)

In [1] we showed that all the terms within the large brackets

are non-negative. Please refer to that work for details. Now

consider the last term, which comes from the parameter

consensus coupling. We can rewrite this term using the graph

Laplacian defined in Section II-C as

n
∑

i=1

ãT
i ζ

∑

j∈Ni

(âi − âj) = ζ

m
∑

j=1

α̃T
j L(t)α̂j ,

where αj = a(j)1, α̂j = [â1(j) · · · ân(j)]T , and

α̃j = α̂j −αj . We simply have regrouped the parameters by

introducing the αj notation. The Laplacian is a function of

time since as the agents move around they may acquire new

neighbors or lose old ones. Fortunately, we are guaranteed

that L(t) will have the properties discussed in Section II-C

for all t ≥ 0. From Section II-C we saw that αT
j L(t) =

a(j)1T L = 0. This gives

ζ

m
∑

j=1

α̃T
j Lα̂j = ζ

m
∑

j=1

α̂T
j Lα̂j ≥ 0,

since L(t) ≥ 0 ∀t ≥ 0. Thus all terms in (17) are non-

positive, and we have V̇ ≤ 0.

Also, the facts that ui is continuous ∀i, V has contin-

uous first partial derivatives, V is radially unbounded, and

V̇ ≤ 0 imply that V̇ is uniformly continuous, therefore, by

1045

Barbalat’s lemma limt→∞ V̇ = 0. This implies (i) and (ii)

from Theorem 1 (again, please refer to [1] for details).

Finally, recall that xT Lx = 0 imples x = 0 or x = c1.

Therefore limt→∞ α̂T
j L(t)α̂j = 0 and âi(j) ≥ amin imply

that limt→∞ α̂j = afinal(j)1 ∀j ∈ {1, . . . , m}, where afinal ∈
R

m is some undetermined vector, which is the common final

value of the parameters for all of the agents. This proves (iii)

from Theorem 1.

Remark 1: Theorem 1 (i) implies convergence to what we

call a near optimal sensing configuration. The estimated po-

sition errors go to zero, but not necessarily the true position

errors. For the robots to converge to the true centroids of

their Voronoi regions, an extra sufficient richness condition

must be satisfied.

Remark 2: Theorem 1 (ii) states that the sensory function

estimate φ̂i will converge to the true sensory function φ for

all points on the robot’s trajectory with positive weighting

w(τ). This does not, however, imply that φ̂i(q) → φ(q)
∀q ∈ Q. Again, this would require an extra sufficient richness

condition as discussed in section IV.

Remark 3: Introducing parameter coupling greatly in-

creases parameter convergence rates and makes the controller

equations better conditioned for numerical integration, as will

be discussed in Section V.

Remark 4: There are many other ways to couple the pa-

rameters among neighbors to cause consensus. For example

the coupling strength can be a smoothly decaying function

of distance to the neighbors [16] (which, among other things,

avoids discrete jumps in the adaptation equation (13)), the

coupling function can be nonlinear in the parameters with

some contraction property [12], and the communication

between neighbors can incorporate asymmetries, time delays,

and significantly relaxed connectivity requirements [14].

A. Weighting Functions

The form of the function w(·) can be designed to encour-

age parameter convergence. One intuitive option is w(τ) =
‖ṗi‖2. This weighting normalizes the effects of the rate

of travel so that all new data is incorporated with equal

weighting. Also, when the robot comes to a stop, the value

of φ(pi) at the stopped position does not overwhelm the

learning law. However, there is an analytical technicality: to

ensure that Λi and λi remain bounded we have to prove that

ṗi ∈ L2. To get around this, we can set w(τ) = 0 after some

fixed time.

We can also set w(t, τ) = exp{−(t−τ)}, which turns the

integrators Λi and λi into first order systems. This essentially

introduces a forgetting factor into the learning law which has

the advantage of being able to track slowly varying sensory

distributions.

IV. PARAMETER CONVERGENCE ANALYSIS

As a separate matter from the convergence behavior in

Theorem 1, one may wonder how quickly parameters con-

verge to their final values, and under what conditions the

final parameter values are the true parameters. In this section

we show that parameter convergence is not exponential,

though under some conditions it can be shown to converge

exponentially to an arbitrarily small error. The rate of this

convergence is shown to be faster for the controller with

parameter consensus than for the basic controller. We neglect

the projection operation, as the discrete switching consider-

ably complicates the convergence analysis.

From (13) and (14), neglecting the projection, we have

˙̂ai = −Γ
(

Fiâi + γ(Λiâi − λi) + ζ
∑

j∈Ni

(âi − âj)
)

.

To analyze parameter convergence, we must consider a

concatenated vector consisting of all the robots’ parameter

errors

Ã = [ãT
1 · · · ãT

n]T .

Also, define the block diagonal matrices F = diagn
i=1(ΓFi),

Λ = diagn
i=1(ΓΛi), and the generalized graph Laplacian

matrix

L =

Γ(1)L(1, 1)Im · · · L(1, n)Im

...
. . .

...

L(n, 1)Im · · · Γ(n)L(n, n)Im

.

The eigenvalues of L are the same as those of ΓL, but

each eigenvalue has multiplicity m. As for a typical graph

Laplacian, L is positive semi-definite.

The coupled dynamics of the parameters over the whole

network can be written

˙̃
A = −(γΛ + ζL)Ã − FÂ,

with Â defined in the obvious way. This leads to

d

dt
‖Ã‖ = − ÃT (γΛ + ζL)Ã

‖Ã‖
− ÃT FÂ

‖Ã‖
,

Let λmin(t) ≥ 0 be the minimum eigenvalue of γΛ(t) +
ζL(t). Then we have

d

dt
‖Ã‖ ≤ −λmin(t)‖Ã‖ + ‖FÂ‖. (18)

Now consider the signal ‖FÂ‖. We proved in Theorem 1

that ‖ĈVi
− pi‖ → 0 and all other quantities in Fiâi are

bounded for all i, therefore ‖FÂ‖ → 0. Also, λmin(0) = 0,

and λmin(t) is a nondecreasing function of time.

Suppose at some time T the robot network has a suffi-

ciently rich trajectory (so that γΛ(T) + ζL(T) is positive

definite), then λmin(t) > λmin(T) > 0 ∀t ≥ T . Then

from (18), ‖Ã‖ will behave like an exponentially stable first

order system driven by ‖FÂ‖. Finally, the gains Γ, γ, and

ζ can be set so that ‖FÂ‖ is arbitrarily small compared

to γΛ + ζL without affecting stability. Thus, if the robot

network’s trajectory is sufficiently rich, exponentially fast

convergence to an arbitrarily small parameter error can be

achieved.

To compare with the performance of the basic controller

(ζ = 0) consider that γΛ ≤ γΛ+ζL. Therefore the minimum

eigenvalue for the consensus controller is always at least as

large as that for the basic controller implying convergence is

at least as fast. In practice, as we will see in the next section,

parameter convergence is orders of magnitude faster for the

consensus controller.

1046

V. NUMERICAL SIMULATIONS

Simulations were carried out in a Matlab environment.

The dynamics in (9) with the control law in (10), and the

adaptation laws in (14) and (11) for a group of n = 20 robots

were modeled as a system of coupled differential equations.

The fixed-time-step numerical solver was used to integrate

the equations of motion of the group of robots. The region

Q was taken to be the unit square. The sensory function,

φ(q), was parameterized as a Gaussian network with 9

Gaussians. In particular, for K = [K(1) · · · K(9)]T ,

each component K(j) was implemented as

K(j) =
1

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (19)

where σj = .18. The unit square was divided into an even 3×
3 grid and each µj was chosen so that one of the 9 Gaussians

was centered at the middle of each grid square. The param-

eters were chosen as a = [100 amin · · · amin 100]T ,

with amin = .1 so that only the lower left and upper right

Gaussians contributed significantly to the value of φ(q),
producing a bimodal distribution. The robots in the network

were started from random initial positions. Each robot used a

copy of the Gaussian network described above for K(q). The

estimated parameters âi for each robot were started at a value

of amin, and Λi and λi were each started at zero. The gains

used by the robots were K = 3I2, Γ = I10, γ = 1000 for the

basic controller, and γ = 100 and ζ = 5 for the consensus

controller. In practice, we find that choosing Γ small and

γ comparatively large (putting more weight on the second

term, which is responsible for integrating measurements of

φ(pi) into the parameters) improves performance. The spatial

integrals in (2) and (13) were approximated by discretizing

each Voronoi region Vi into a 7 × 7 grid and summing

contributions of the integrand over the grid. Voronoi regions

were computed using a decentralized algorithm similar to the

one in [2].

Figure 4 shows the positions of the robots in the network

over the course of a simulation run for the parameter

consensus controller (left column) and the basic controller

(right column). The centers of the two contributing Gaussian

functions are marked with ×s. It is apparent from the final

configurations that the consensus controller caused the robots

to group more tightly around the Gaussian peaks than the

basic controller. The somewhat jagged trajectories are caused

by the discrete nature of the spatial integration procedure

used to compute the control law.

The left of Fig. 5 shows that both controllers achieved a

near optimal configuration—one in which the estimated error

converges to zero, in accordance with (i) from Theorem 1.

However, the true position error also converged to zero for

the consensus controller, indicating that it achieved a true

centroidal Voronoi configuration, as shown in the right of

Fig. 5. The basic controller did not reach a true centroidal

Voronoi configuration. Furthermore, convergence was so

much faster for the consensus controller that we have to use

a logarithmic time scale to display both curves on the same

(a) Consensus Initial Config. (b) Basic Initial Config.

(c) Consensus Trajectories (d) Basic Trajectories

(e) Consensus Final Config. (f) Basic Final Config.

Fig. 4. Simulation results for the parameter consensus controller are shown
in the left column (4(a), 4(c), and 4(e)), and for the basic controller in the
right column (4(b), 4(d), and 4(f)). The Gaussian centers of φ(q) are marked
by the red x’s.

plot. Again, the somewhat jagged time history is a result of

the discretized spatial integral computation over the Voronoi

region.

Fig. 6(a) shows that the consensus controller obtained a

lower value of the Lyapunov function at a faster rate than the

basic controller, indicating both a lower-cost configuration

and a better function approximation. Figure 6(b) shows

the normed parameter error ‖ãi‖ averaged over all of the

robots. The parameter errors for the consensus controller

all converge to zero, indicating that, in fact, the robots

trajectories were sufficiently rich. This was also evidenced

in Fig. 5(b). For the basic controller, on the other hand,

the parameters did not converge to the true parameters.

Finally, the quantity
∑n

i=1
ãT

i

∑

j∈Ni
(âi − âj) representing

the disagreement among the parameter values of robots

is shown in Fig. 6(c). The parameters were initialized to

amin for all robots, so this value starts from zero in both

cases. However, the consensus controller clearly causes the

parameters to reach consensus, while for the basic controller

the parameters do not converge to a common value.

1047

(a) Mean Estimated Position Error (b) Mean True Position Error

Fig. 5. The true position error, ‖CVi
−pi‖, and the estimated position error,

‖ĈVi
− pi‖, averaged over all the robots in the network is shown for the

network of 20 robots for both the basic and parameter sharing controllers.
The true position error converges to zero only for the parameter consensus
controller, 5(b). However, in accordance with Theorem 1, the estimated error
converges to zero in both cases, 5(a). Note the logarithmic time scale.

(a) Lyapunov Function (b) Mean Normed Parameter Error

(c) Consensus Error

Fig. 6. The value of the Lyapunov function is shown for both the basic and
parameter consensus controllers on the top left, and the normed parameter
error ‖ãi‖ averaged over all robots is on the top right. The parameter
error converges to zero for the consensus controller indicating that the
robot trajectories were sufficiently rich. The bottom plot shows a quantity
representing a measure of the disagreement of parameters among robots.
The disagreement converges to zero for the consensus controller, as asserted
in Theorem 1, but does not converge for the basic controller. Note the
logarithmic time scale.

VI. CONCLUSION

In this work we introduced parameter coupling into an ex-

isting decentralized adaptive control law to drive a network of

robots to a near optimal sensing configuration. The controller

was proven to cause the robots to move to the estimated

centroids of their Voronoi regions, while also causing their

estimate of the sensory distribution to improve over time until

the estimate converged to the true sensory distribution over

the robot’s trajectory. Parameter coupling was introduced

in the adaptation laws to increase parameter convergence

rates and cause parameter consensus among the robots. The

control law was demonstrated in numerical simulations of

a group of 20 robots sensing over an area with a bimodal

Gaussian distribution of sensory information.

We expect that the technique used in this paper will

find broader application beyond the problem chosen here.

It appears that consensus algorithms could be fundamental

and practical tools for enabling distributed learning, and have

compelling parallels with distributed learning mechanisms in

biological systems.

REFERENCES

[1] M. Schwager, J.-J. Slotine, and D. Rus, “Decentralized, adaptive
control for coverage with networked robots,” in Proceedings of Inter-

national Conference on Robotics and Automation, Rome, April 2007.
[2] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control

for mobile sensing networks,” IEEE Transactions on Robotics and

Automation, vol. 20, no. 2, pp. 243–255, April 2004.
[3] Z. Drezner, Facility Location: A Survey of Applications and Methods,

ser. Springer Series in Operations Research. New York: Springer-
Verlag, 1995.

[4] S. Salapaka, A. Khalak, and M. A. Dahleh, “Constraints on locational
optimization problems,” in Proceedings of Conference on Decision

and Control, Maui, Hawaii, USA, December 2003.
[5] J. Cortés, S. Martı́nez, and F. Bullo, “Spatially-distributed coverage

optimization and control with limited-range interactions,” ESIAM:

Control, Optimisation and Calculus of Variations, vol. 11, pp. 691–
719, 2005.

[6] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots,” in Proceedings of

Robotics: Science and Systems, Philadelphia, PA, August 2006.
[7] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle

River, NJ: Prentice-Hall, 1991.
[8] J. N. Tsitsiklis, “Problems in decentralized decision making and com-

putation,” Ph.D. dissertation, Department of EECS, MIT, November
1984.

[9] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algo-
rithms,” IEEE Transactions on Automatic Control, vol. 31, no. 9, pp.
803–812, 1986.

[10] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Prentice Hall, 1989.
[11] D. P. Bertsekas and J. N. Tsitsiklis, “Comments on ”coordination of

groups of mobile autonomous agents using nearest neighbor rules”,”
IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 968–969,
2007.

[12] W. Wang and J. J. E. Slotine, “On partial contraction analysis for
coupled nonlinear oscillators,” Biological Cybernetics, vol. 23, no. 1,
pp. 38–53, December 2004.

[13] ——, “A theoretical study of different leader roles in networks,” IEEE
Transactions on Automatic Control, vol. 51, no. 7, pp. 1156–1161, July
2006.

[14] R. Olfati-Saber and R. R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, September 2004.

[15] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June
2003.

[16] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans-

actions on Automatic Control, vol. 52, no. 5, pp. 852–862, May 2007.
[17] R. Sanner and J. Slotine, “Gaussian networks for direct adaptive

control,” IEEE Transactions on Neural Networks, vol. 3, no. 6, 1992.
[18] M. Cannon and J. Slotine, “Space-frequency localized basis function

networks for nonlinear estimation and control,” Neurocomputing,
vol. 9, no. 3, 1995.

[19] C. Godsil and G. Royle, Algebraic Graph Theory. New York:
Springer, 2004.

[20] M. Schwager, F. Bullo, D. Skelly, and D. Rus, “A ladybug exploration
strategy for distributed adaptive coverage control,” in Proceedings of

International Conference on Robotics an Automation, Pasadena, CA,
May 2008.

[21] J. Slotine and J. Coetsee, “Adaptive sliding controller synthesis for
nonlinear systems,” International Journal of Control, vol. 43, no. 4,
1986.

1048

