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Abstract— Assume a swarm of mobile robots is in the act of
transporting a large object in the plane, by applying unilateral
forces to the perimeter of that object. We address the question

of where a new robot, joining the group, should establish contact
with the object to maximally improve the manipulation capabil-
ities of the swarm. Inspired by the literature on multi-fingered
hands, we synthesize a grasp by incrementally optimizing a
grasp quality function. We adapt the quality function in several
important ways to accommodate the distributed nature of the
swarm problem. We show that the objective function is quasi-
concave, which has important implications for uniqueness and
scalability of the solution; and present a solution methodology.
We apply the resulting framework to the example of a large
swarm of autonomous tug boats towing a barge, taken from our
larger research program.

I. INTRODUCTION

Large groups of relatively simple mobile robots, known

as robot swarms, can offer more capability, flexibility and

robustness in certain applications as compared with using a

single larger, special-purpose robot. One example of such an

application is that of non-prehensile cooperative manipula-

tion, where a group of non-articulated mobile robots attempts

to transport a larger object in the plane, by applying forces

to its perimeter. Applications include material transport, tug

boats towing disabled ships, and search and rescue robots

clearing rubble and moving victims to safety. In such ap-

plications it can be difficult to design a single robot large

enough to achieve an enveloping grasp and powerful enough

to complete the task. The advantages of the swarm are: (1) its

ability to distribute applied forces over a large area; and (2)

the maximum wrench the swarm can exert increases linearly

as the number of swarm members increases.

The challenge in swarm manipulation lies in the fact that,

unlike multi-fingered robot hands, each robot must select its

contact point and applied forces independently – perhaps with

limited information about the locations and actions of the

other swarm members. Thus grasps must be synthesized and

executed in a distributed fashion. Army ants transporting prey

offer a proof of concept in nature [23] and studies have shown

that they do not communicate directly while manipulating an

object. Roboticists have begun to study their behavior [2].
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Inspired by our work on autonomous tugboats [4], in this

paper we address the problem of incrementally synthesiz-

ing planar grasp configurations for an N-robot swarm, as

depicted in Figure 1. Specifically, we address the question

of where a new robot, joining the group, should a establish

contact with the object in order to maximally improve the

manipulation capabilities of the swarm. Once the robots are

in contact with the object, we assume they have a method

of attachment that enables them to apply bounded, unilateral

forces, though we do not address force control here (see our

group’s other work [19]). In Section II we review related

work. In Section III we give a formal problem statement.

Section IV shows that this problem is equivalent to a quasi-

concave optimization problem and discusses the implications

of this. An example problem motivated by our autonomous

tugboat project is solved in Section V.

II. BACKGROUND AND RELATED WORK

Related work can be partitioned into two categories: de-

centralized approaches used in swarming and flocking work,

where each robot makes its own decisions; and centralized

approaches used in manipulation, such as those used for

multi-fingered hands controlled by a single processor.

A. Decentralized Approaches

Decentralized swarm control is an active area of research

(ex. [15], [22] and [3]). However, those frameworks are

limited to kinematic (i.e. position and velocity) objectives,

such as collective motion (i.e., flocking), sensor coverage and

mapping tasks; ignoring forces and contact mechanics.

Cooperative object manipulation, both prehensile and non-

prehensile ( [18], [12]) has certainly been considered before

before in the context of small groups of robots (usually 1-

3). Though it is generally unclear how to extend these to the

distributed setting. Larger groups have been studied using a

behavior-based framework ([7], [9], [16]), but no attempt at

formal grasp synthesis was made. Two very closely related

works on distributed swarm manipulation are [21], and [17].

Within these works, controllers were designed to force robots

to surround the object. Termed “caging”, the inter-robot spac-

ing was constrained to be small enough that it is impossible

for the object to “escape”, meaning that as the robots move,

so must the object. While this approach is decentralized,

the primary difference with our work is that they essentially

treat the task as a position control problem, ignoring the
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dynamic forces, actuator limitations, contact mechanics and

momentum, limiting its applicability to marine settings or

heavy object transport. Our other work [20] addresses how,

once the swarm members are in position, the applied forces

should be selected to track a trajectory.

B. Centralized approaches

The literature on traditional grasping and manipulation with

multi-fingered robot hands is vast. It addresses most of the me-

chanics issues mentioned above however it is difficult to apply

to swarms for two reasons. First, most proposed applications

involve a small number of contacts (usually 2-3, but no more

than 5 fingers), which occasionally permit analytical solutions.

Second, each of the contacts is controlled by a centralized

decision maker, and centralized power supply. We review

some fundamental concepts used in the sequel. A wrench

is a generalized force. For planar grasps it takes the form

w = [Fx, Fy, Mz]
T . Force closure is defined as the ability of

a grasp to resist or apply a wrench in an arbitrary direction.

Due to the unilateral constraint that pushing (pulling) forces

are positive (negative), in order to achieve force closure the set

of possible applied wrenches at all the contacts wrench must

positively span R
3; this condition is easily tested (see [14]).

In the absence of motion constraints on the fingers, stating

that the grasp is a force closure configuration, is equivalent to

saying that the position and orientation of the object is small

time locally controllable, under the constraint that the applied

forces are nonnegative. It is a well known result that at least

4 contacts [14] are required to satisfy this condition for the

class of objects and contact types considered here. Therefore,

in this paper we assume that the swarm size N ≥ 4.

Force closure grasps are not unique; so, once the closure

criterion is met, a secondary grasp quality function can

be defined. Common choices include “Max Normal Force”

and “Min Analytic Center” [6], [11], which are important

robustness measures for friction assisted grasping. In the case

of the swarm manipulation problem considered here, we adopt

the “Max Transfer” quality function, [8], [5], [13], [24], which

measures the ability of the grasp to resist or apply an arbitrary

net wrench. The approach used here, synthesizing a grasp by

applying some numerical optimization method to the quality

function, has been used in grasp analysis and synthesis before,

see for example [10] and [11].

The primary differences between the work described here

and related work on multi-fingered hands is the distributed

nature of swarm operation. As such:

• the number of contacts is significantly larger than three;

• the quality function must use an L∞ norm to take into

account distributed actuator limitations;

• the placement of each contact is not coordinated by a

centralized decision maker, although our approach does

require knowledge of the positions of the entire swarm.
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Fig. 1. Swarm Manipulation Scenario. N − 1 robots (dark circles) are
attached to the object (shaded polygon); and can apply forces at some fixed
incident angles. The position of the ith robot is determined by angle θi and
the push direction by the angle αi. The Nth robot joining the group must
compute its best attachment configuration.

III. PROBLEM STATEMENT

A. Notation: Contact Configuration Description

Assume the object to be manipulated (see Figure 1) is

defined by a closed convex polygon O ⊂ R
2. Its boundary is

denoted by ∂O. Define a body-fixed coordinate frame ( î, ĵ)
attached to the centroid of O, called the object frame. Since O
is convex we can parameterize contact points on the boundary

using the angle θ, measured counter clockwise, relative to the

x-axis of the object frame {x(θ) î + y(θ)ĵ ∈ ∂O, ∀θ ∈ S
1}.

Define a second parameter α ∈ S
1 which indicates the

direction of a robot’s push force, measured counter clockwise

relative to the x-axis of the object frame. Then the contact

configuration of the ith robot can be described by a vector

Bi(θi, αi) =





sin αi

cosαi

−y(θi) cosαi + x(θi) sinαi





and a configuration of N robots is described by the ma-

trix B ∈ R
3×N , constructed by concatenating the column

vectors B1, . . . , BN . The net wrench on the object, w =
[Fx, Fy, Mz]

T can be computed as w = Bu where u =
[u1, . . . uN ]T ∈ U is a vector of input push force magnitudes

for each robot. The set U is described as 0 ≤ ui ≤ umax, ∀i ∈
[1, N ] and models the power limitations of the robots as well

as the fact that we do not run the actuators in reverse.

Note that there is no constraint on the allowed push

directions αi, as there would be in the case of friction assisted

grasping, since we assume the robots have some attachment

method. These assumptions model how tugboats are operated

in practice: they always “tie up” to the barge fixing their

attachment point, They often have thrusters which allow them

to select a precise thrust direction, the props are not run in

reverse while pushing, and there is some limit on the safe

maximum engine RPM.
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B. Grasp Synthesis

We use the Max-Transfer grasp quality function [5], [13]

defined as

Q(B) = min
w

max
u∈U|w=Bu

‖w‖
‖u‖∞

. (III.1)

In words, the quality function measures the swarm’s ability

to apply, or resist, the worst-case net wrench, w, using the

minimum u. Obviously a larger value of Q is desirable.

Figure 2 provides a graphical interpretation.

It is very important to note that in the case of u, we select

the L∞ norm to reflect individual swarm members’ power

limitations. Selecting the appropriate norm on w is classically

difficult due to a unit mismatch between forces and torques.

Let ‖w‖ =
√

wT Aw, where A = diag[a1, a2, a3]. Note that

a1 �= a2 can be used to weight certain preferential directions

of motion over others. For example, in the tug boat application

we can weight forward thrust more heavily than lateral thrust

capability – reflecting the fact that most marine vessels are

designed to move along the bow direction. Also, a3 must

be chosen to resolve the unit mismatch between forces and

torques. A common choice is a3 = 1/r2

max
where rmax is 1/2

the length of the principle axis of the object to be manipulated.

With no loss of generality, we set A equal to the identify

matrix for the remainder of this paper, in which case it reverts

to the standard Euclidian norm.

Some simplification of eq. III.1 is possible. Since all norms

are homogeneous, the ratio in eq. III.1 is not affected by pure

scaling of w or u. Therefore, with no loss in generality we

can consider the case when ‖u‖∞ = 1 vice umax, removing

the denominator from consideration. Therefore an equivalent

definition of the Max-Transfer function is as follows.

Definition 3.1: Max-Transfer Grasp Quality Function Let

Q(B) = min
w∈∂W

‖w‖, (III.2)

where the Wrench Set W = {w|w = Bu, 0 ≤ ui ≤ 1} is

the compact set of all wrenches that can be generated with a

given configuration B, and ∂W denotes the boundary of that

set. Note that this function can be interpreted as the maximum

wrench that can be generated in the worst case direction.

C. Problem Statement

Assumptions: Robots 1, ..., N − 1 are currently in contact

with the object. Robot N wishes to establish contact with

the object. It knows the object geometry, O, the total number

of robots in the swarm, N , and the actuator limitation umax.

There is a wireless network that allows the robots to share

information ((θi, αi)) as needed.

Problem: Distributed Grasp Synthesis (full information)

Given the pushing angles α1, . . . αN−1 and contact points

θ1, . . . , θN−1, compute the new swarm member’s configura-

tion vector BN such that

max
BN

Q(BN ; B1, . . . , BN−1). (III.3)

IV. APPROACH

To solve the grasp synthesis problem it is first necessary to

understand the set W . Based on the properties of W we can

develop an appropriate approach to maximizing Q.

A. Geometry of the Wrench Set

Since U is a closed convex polyhedral set, it follows that

its image under B is a closed convex polyhedral set in R
3.

W can be constructed by taking the Minkowski sum of

the columns of B: {B1, . . . , BN}. Zonohedra are polyhedra

described by Minkowski sums of a finite list of vectors, known

as generators. They have the following important properties

that will be exploited later:

• given N generator wrenches, the polyhedron has P =
N(N−1) facets in R

3, each of which is a parallelogram;

• the outward unit normals of the facets are

njk =
Bj × Bk

‖Bj × Bk‖
, ∀j �= k ∈ [1, . . . , N ]× [1, . . . , N ];

• since Bj × Bk = −Bk × Bj the polyhedron exhibits

central symmetry; and

• the corresponding distances from the origin to the hy-

perplanes that comprise the facets are

djk =

N
∑

i=1

max(0, njk · Bi).

• Also note that the origin is always contained in W . If it

lies in the interior of W it implies that B is a force closed

grasp. Else, it lies on the boundary and some djk = 0.

Eq. III.3 asks us to find the smallest wrench on the

boundary of W , which is equivalent to finding the closest

point on the surface of the polygon to the origin. It is easily

shown that the closest point on a convex polyhedra to a point

in its interior lies on a facet, not a vertex. Therefore,

Q(B) = min
jk∈N×N

djk (IV.1)

= min
jk∈N×N

N
∑

i=1

max(0,
Bj × Bk

‖Bj × Bk‖
· Bi).

B. Maximizing Q

A function is said to be quasi-concave if all its super-

level sets are concave. It is a generalization of concavity that

includes functions whose derivatives may be zero at some

non-extremum points (i.e. plateaus). Most importantly, like

concave functions, they have a single global maximum; and

they are well conditioned to numerical solution techniques.

Proposition 4.1: The objective function Q, defined in

eq. IV.1 is quasi-concave in the variable BN . The rather

inelegant proof of this fact is relegated to the Appendix.

Remark 4.2: Q is not strictly concave because, due to the

max(0, ∗) term in eq. IV.1. When BN is not in the same half-

plane as the outward normal of the closest facet of the wrench
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Algorithm 1 Computing grasp BN to max Q(B).

Compute Q(B1, . . . , BN−1) and normal of closest facet n∗.

Set Qlower = Q(B1, . . . , BN−1),
Set Qupper = Qlower + ‖BN‖max, set Qbisect = Qupper

while Qupper − Qlower < ǫ do

Feasible? Find B∗
N such that Q > Qbisect

if Feasible then

Qlower ← Qbisect

else

Qupper ← Qbisect

end if

Set Qbisect = (Qupper − Qlower)/2
end while

Determine attachment (θN , αN ) to physically realize B∗
N .

polygon generated from {B1, . . . , BN−1}, ∂Q/∂BN = 0
even though this is clearly not the maximum. In fact, the

optimal BN vector must lie in the same half-plane as the

outward normal of the closest facet. This fact is used generate

initial guesses for the optimization algorithm out lined below.

C. Algorithm

Remark 4.3: Since the objective function is quasi-concave,

there are no equality constraints, and the feasible set for BN

is convex, a unique global maximum can be efficiently found.

The optimization method outlined in Algorithm 1 is used

to compute a global maximizing value for BN to an arbitrary

tolerance, ǫ. It is based on the quasi-convex optimization

method in [1], which in turn is based on the classic bisection

method. Bisection begins with an upper and lower bound of

the objective function, which in this case are easily computed.

It follows that it computes the maximizing BN in exactly

log
2
(‖BN‖max/ǫ) iterations. ‖BN‖max =

√

1 + r2
max

is the

largest wrench that a single robot can apply with a unit force

if rmax is the distance to the point on the object furthest from

the center of mass. Note that the initial guess Qbisect is not

actually the bisector, because we found that in practice the

global optimum frequently occurs when Bn is normal to the

closest facet. The feasibility query: Find BN , Subject To

Q(B) ≥ Qbisect, ‖ [Bx
N , By

N ] ‖ ≤ 1, Bz
N ≤ rmax,

is described in detail [1] for the interested reader. Note that

the normal to the closest facet, n∗ provides a good initial

guess for this problem.

V. EXAMPLES

Test Bed Example: We are interested in the application

of a team of autonomous tug boats towing a disabled ship.

Figure 3 shows our experimental apparatus which consists of

6 thrusters (each representing tug boat) that can be mounted

at different locations and orientations along the hull of a scale

B
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 d
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w

w

, 1w Bu u
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 d

Fig. 2. Graphical interpretation of the wrench polyhedra.

Fig. 3. An experimental vessel with six re-mountable thrusters. The boat
is a 1 meter scale replica of a US Navy Training Vessel. The thrusters are
made from submersible marine bilge pumps.

model of a Navy training vessel (1 meter long). The thrusters

provide forces in the range of [0, 0.5] Newtons.

Figure 4 (left) depicts a simplified rectangular model of

the object, originally with with 5 robots in contact. The

blue lines terminating in circles indicate the contact location

and orientation. For this example, robots are constrained to

pull in an outward direction relative to the contact facet.

The optimization method was used to compute the optimal

configuration of the 6th robot, indicated with a red line ter-

minating in a star. Figure 4 (right) shows the original wrench

polyhedra W (shaded gray), along with the optimized wrench

polyhedra (dark wire frame). Originally Q = 0 (not force

closed), and the optimized value is Q = 0.39 – demonstrating

that the method automatically generates force closed grasps

when possible. The example executed in 0.816 seconds. All

examples in this paper were solved on a P4 desktop, using

MATLAB, version R2006a, and the optimization toolbox.

Computation times do not include the time required to render

the graphics.

Large Scale Example: Figure 5 can be interpreted in an

identical manner, except that it involves 15 robots initially.
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Fig. 4. Grasp synthesis example with 6 robots. (Left) A group of 5 robots
(blue/circle line segments) grasps a rectangular object. A sixth robot computes
its optimal contact point (green/ ∗ line segment). (Right ) The original wrench
polyhedra (shaded gray) and the optimized wrench polyhedra (wire-frame).

Originally Q = 2.26, the optimized value is Q = 2.67. The

example executed in 2.72 seconds.

Figure 6 plots the computation time required to compute

the optimum for 10 randomly generated configurations for

each swarm size from 5 to 25 robots. The thick red line

shows the median computation time (sec) vs. swarm size;

the upper dashed blue line the worst-case computation time;

and the lower dashed blue line the best-case time. Overall

computation time is O(N 2), as expected since the number

of algorithm iterations is independent of swarm size, while

the time per iteration is dominated by the evaluation of the

objective function which is an “all pairs” computation. In

our opinion, this is expected in a swarm cooperation scenario

requiring global knowledge. Curve fits of the form T comp =
CN2 were computed; the constants were Cmin = 0.0059,

Cmed = 0.0104, and Cmax = 0.1841 implying that, typically

the algorithm has positive scalability attributes. The best-case

to median times occur when the optimum value is at or near

the initial guess (BN is normal to the closest facet of W );

the worst case times appear to be relatively isolated outliers.

VI. CONCLUSIONS

In this paper we consider the problem of synthesizing

grasps for a swarm of mobile robots looking to coopera-

tively transport polygonal objects in the plane. Specifically

we address the question of where a new robot, joining the

group, should a establish contact with the object in order

to maximally improve the manipulation capabilities of the

swarm. The contributions of this paper are as follows.

• We cast the grasp synthesis problem to reflect the dis-

tributed nature of the swarm’s actuation capabilities.

• We showed that the objective is quasi-concave, meaning

a global maximum can be computed in a finite number

of iterations.
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Fig. 5. (Left) A group of 15 robots (blue/circle line segments) grasps a
rectangular object. A 16th robot computes its optimal contact point (green/∗
line segment). (Right) The original wrench polyhedra (shaded gray) and the
optimized wrench polyhedra (wire-frame).
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Fig. 6. Best-case, worst-case and median computation time vs. swarm size.

• We presented a numerical solution algorithm and show

it automatically incorporates the force closure criteria.

• Regarding the scalability of the method, the best case run

time is nearly constant, while the median runtime scales

as O(N2).

Future work will focus on two objectives. First, we plan to

complete a full experimental demonstration of the autonomous

tug boat swarm, preliminary efforts are illustrated in Figure 7.

Second, the author feels that one of the most unrealistic

assumptions in the paper is that Robot N knows the exact

pose of the remaining robots in the swarm – primarily be-

cause it requires full information sharing between the robots,

adversely affecting scalability, but also because it is unlikely

that each robot would have an accurate estimate of its own

position to share. Given a set valued estimate B̂1, . . . B̂N−1

of the poses, the author intends to pursue a min-max strategy

to compute the N th robot’s optimal contact point under the

worst-case configurations of the remaining robots.

APPENDIX: PROOF THAT Q IS QUASI-CONCAVE

First note that max(0,
Bj×Bk

‖Bj×Bk‖
·Bi) is quasi-concave in each B vector;

and the objective function eq. IV.1 consists of the minimum of the sum of a
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Fig. 7. Experimental test bed. A group of 6 unmanned tugboats (0.5 meters
long) and a scale model flat bottomed barge (2 meters long). The tugs have
articulated magnetic attachment devices used to grab the barge.

rvIlvI

NB

NB\
Closest Facet

New Left Facet 

Right  Facet

rfI
lfI

Left Facet 

cfd rvdlvd

rfd
lfd

Fig. 8. A cross section of the new wrench polytope.

set of quasi concave functions. Unfortunately, in general, the sum of quasi-
concave functions is not quasi-concave – making an algebraic proof difficult
using that formulation. However the facet distances can be rewritten without
using a repeated summation. Note a function is quasi-concave iff it is quasi-
concave when restricted to any line segment intersecting its domain. To that
end, consider the 2-D cross section of the polytope W ⊂ R

3 in Fig. 8. We
look at the individual dij ’s and show they are quasi-concave in θ = dir(BN )
and ‖BN‖. Also note, the addition of BN to the list of generators can change
the distance to any facet if BN · nij > 0 but it suffices to consider only
the four cases shown in the picture. Let CF denote the closest facet to the
origin and RF , LF and RV , LV the facets and vertices to the immediate
right and left along the cross section. A quantity with a prime, denotes the
new value after taking the Minkowski sum with BN . θ is measured CCW
with resect to CF . The addition of BN changes the following quantities:

d′cf = dcf + ‖BN ‖max[0, cos(θ − π/2)] (VI.1)

d′(r,l)f = d(r,l)f + ‖BN‖max[0, cos(θ − φ(r,l)f )], (VI.2)

which are all quasi-concave in both the magnitude and direction, θ. In
addition, it also adds a new facet on either the left or right side

d′n(r,l)f = d(r,l)v sin(θ + φ(r, l)v). (VI.3)

The new right facet only appears when 0 < θ ≤ φrf − π/2; the left when
φlf +π/2 < θ < π. sin is concave when restricted to this range. Therefore,
all of these functions are quasi-concave, as seen in Fig. 9, and the min of a
set of quasi-concave functions is quasi-concave.
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