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Abstract— This paper presents two novel approaches for accu-
rate intrinsic and extrinsic camera calibration. The rationale be-
hind them is the widespread violation of the traditional assump-
tion that the metric structure of the calibration object is perfectly
known. A novel formulation parameterizes a checkerboard cali-
bration pattern in such a way that the calibration performs op-
timally irrespective of its actual dimensions. Simulations and ex-
periments show that it is very rare for traditional calibration me-
thods to come by the accuracy readily attained by this approach.

I. INTRODUCTION

Camera calibration is the process of estimating the parame-
ters of a camera model that is capable of adequately reflecting
the operation of the actual camera at hand. This is usually
accomplished by comparing its expected model-based opera-
tion with the actual one, followed by a sensible minimization
of the resulting discrepancies. The parameterized model will
enable the user to infer in 3D Euclidean space from the
evidence of the 2D information in the image projections.

In this work we proceed on the assumption that the camera
cannot intrinsically change during operation, but only extrin-
sically in its pose (i.e. position and orientation) with respect to
(w.r.t.) the scene. It is therefore possible for the user to estimate
the parameters in advance of regular operation. Moreover,
since cameras only passively record the environment, it makes
sense to set conditions on the scene during calibration in order
to support both robustness and accuracy. Frequently, these
conditions concern some a priori knowledge of the metric
structure of the scene and are aimed at maximizing both the
amount of data for calibration as well as the quality of the
predicted operation during calibration:

• The more diverse the scene is (e.g. a general 3D scene),
the more independent evidence for the calibration will be.

• The more accurate knowledge of the scene exists, the
more accurate predictions of the camera operation will be.

Unfortunately, these points imply a trade-off since ad-
vantageous conditions (e.g. general precisely known scenes)
suggest elaborated and expensive calibration setups, which are
cumbersome for general computer vision applications. On the
other hand, less advantageous but convenient conditions, such
as planarity or point correspondences, are not sufficient for
accurate camera calibration; these approaches are called self-
calibration and are usually less reliable, e.g. [1].

But for all that, the authors consider that research on camera
calibration for computer vision applications has arrived at a
point where most of its components have become standard
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Fig. 1. Stereo camera mounted at the top of the DLR Light-Weight Robot 3.

practice: The perspective projection model (pinhole camera
model) [2], the radial and tangential lens distortion models
[3], the imaging noise assumption [4], the feature detection
algorithms [5], the planar calibration object [6], and even
the estimation algorithms [7], [8] meet the demands of the
computer vision community. Next we summarize the most
significant contributions that led us to this point.

Until the mid eigthies there only was photogrammetric
work, which mainly relied on full-scale nonlinear optimiza-
tions for very elaborate models of imaging and calibration
objects – refer to the work of Brown and Faig. This was not
suitable for computer vision applications since firstly, their
hardware requirements (computational among others) were too
high and secondly, the complexity of their camera models
exceeded the required for solid-state imaging devices. The
work of Abdel-Aziz and Karara paved the way for com-
puter vision applications; their direct linear transformation
simply consists in finding solutions to linear equations based
on the basic camera model of collinearity. However, since
ignoring lens distortion is mostly unacceptable, Tsai in the
mid eigthies used a more complete camera model [6]. He
was able to simplify the formulation by using the radial
alignment constraint, which reduces the dimensionality of the
problem and allows its decomposition in two independent
stages – at the risk of losing valuable information in the radial
component when the distortion is small. There still apply
severe scene restrictions: the procedure requires either 3D
calibration objects or accurately moving a planar calibration
plate in its perpendicular direction (2.5D). Both the works of
Weng et al. [3] and Faugeras and Toscani differ in algorithms,
but are subject to similar requirements. The former used a
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very extensive lens distortion model, which was the reason
for them to strongly rely on an iterative coupling of local
nonlinear optimizations.

A major contribution towards simplicity in camera calibra-
tion was simultaneously made in the late nineties by Zhang [7]
and Sturm and Maybank [8]. The suitability of their algorithm
in computer vision applications made both their algorithmics
and the used models standard practice. They presented a
closed-form solution by linear least-squares techniques for the
initialization of a nonlinear optimization. Most importantly,
they relax conditions on the scene allowing for freely moving
a precisely known planar calibration pattern for collecting data.
In short, it recovers the intrinsic camera parameters from
the readily obtained object-to-camera homographies using
the camera model as well as rigid body motion constraints.
The approach represented a step towards self-calibration since
no purely implicit 3D information was required anymore, but
only 2D. Malm and Heyden [9] extended this formulation for
the case of stereo camera systems by the addition of further
rigid body motion constraints.

Moreover, it is frequently the case that the camera system
is rigidly attached to the end-effector of a robot manipulator
(eye-in-hand system), and its pose w.r.t. the latter (hand-eye
transformation) is required. For literature on this kind of
extrinsic calibration (hand-eye calibration) see Ref. [10].

As regards the intrinsic calibration, historically there was
a steady reduction in complexity of the calibration objects:
Faugeras (3D calibration object) ; Tsai (2.5D) ; Zhang,
Sturm, and Maybank (2D). It was mostly motivated by the fact
that this deskills the calibration procedure, which of course
is a valuable asset for computer scientists most impatient
to concentrate all efforts on the end applications. In this
work the authors agree on this trend, but do not completely
agree on its motivation. We instead argue that, since the
principal purpose of calibration is achieving highest accuracy
in the estimation of the parameters, the best substantiation
of significance of a calibration approach is necessarily the
improvement of accuracy – if it ever exists. That is because
eventual erroneous operation of the end applications originates
in part in erroneous calibration (along with noisy operation or
model simplifications), but not in any way in the simplicity
or the speed of the calibration process. Erroneous calibration
in turn mainly stems from deviations of the models from the
actual systems (the topic of this paper), and secondarily from
non-optimal definition of the residuals (the topic of Ref. [10]).

In this spirit we still advocate procedures concerning a
relaxation of diversity conditions on the scene, since this also
tends to increase estimation accuracy. This is not because ex-
tensive knowledge compromises accuracy but because lighter
conditions prevent damage to the calibration process from hu-
man inaccuracies and mistakes (e.g. while measuring the ca-
libration object), being a by-product of lighter conditions that
they also deskill the procedure. Several works (e.g. recently
Ref. [4]) give experimental evidence on this point. On top of
that the authors consider it necessary to take the matter further,
relaxing requirements on the knowledge of the scene and thus

narrowing the gap on the self-calibration approaches while still
performing accurate ground truth based camera calibration.

Planar calibration objects do indeed provide convenient
ground truth for camera calibration for different reasons:
Firstly, they are easy to manufacture, use, and store; secondly,
they are naturally well adapted to the calibration of lens dis-
tortion since they can easily occupy whole images; thirdly and
most importantly, high geometrical accuracy can be (cheaply)
achieved. However, that is unfortunately not the case for the
2D pattern imprinted on it. Regular printers dramatically lack
of accuracy and it is therefore standard practice to gauge it
by hand, which is in turn prone to errors because of the
use of inaccurate or inappropriate rulers, or even the indolent
commitment of the user.

In this work we aim at a calibration method that relaxes
restrictions on accurate knowledge of the imprinted pattern
dimensions, while still taking advantage of a priori knowledge
of both its planarity and the regularity of the pattern. We fur-
thermore claim that in most common systems highest accuracy
camera calibration is still possible by this means. This would
be a significant contribution in order to avoid commonplace
mistakes and therefore increase calibration accuracy.1

The remainder of this article is as follows: Section II
presents the state of the art of camera calibration and expounds
its problems, which are best alleviated with the novel methods
of Section III. Sections IV and V illustrate it by means of
simulations and experiments, and conclude with a discussion.

II. PROBLEM DESCRIPTION: CAMERA CALIBRATION

In this section the conventional approach to camera calibra-
tion – along with its shortcomings – is presented.

Firstly, the general procedure has to be appointed. We opt
for off-line (stereo) camera calibration with a priori ground
truth knowledge of the scene: a known calibration object
is imaged by the camera from N different vantage points.2

The discrepancies between the expected and the actually
detected projections are to be minimized to refine the intrinsic
parameters. If the camera is a constituent part of an eye-
in-hand system, the extrinsic hand-eye transformation can be
collected at the same time if the N poses of the end-effector
at the different imaging moments are also recorded.

Secondly, adequate models are assigned. The calibration
object is a planar checkerboard pattern3 and the 2D relative

1 The authors of Ref. [11] bring forward a similar argument. However, they
deal with 3D calibration objects and assume independent randomly distributed
errors in the 3D coordinates of the control points. Thus, the estimation
process lacks of any knowledge of the structure of the scene (but the required
accurate initial estimation) and therefore corresponds to the photogrammetic
bundle adjustment problem, which is provably worse conditioned for camera
calibration than the work that will be presented here.

2 Multiple vantage points are not always necessary for camera calibration,
but they facilitate intrinsic initialization and allow for hand-eye calibration.
In addition to that, the central limit theorem states that when the amount
of independent and identically distributed (i.i.d.) data grows, the error dis-
tribution tends to Gaussianity, which eventually facilitates optimal estimation
(especially the hand-eye [10]). In fact, at least 10 vantage points are repeatedly
recommended in the literature, cf. Refs. [1], [6]–[8], [10].

3 The authors opt for a checkerboard pattern since it was recently appointed
as the most convenient one in terms of accuracy in points detection [5], [12].
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positions of its control points are perfectly known – this
condition is about to be lifted in part in Section III. The control
points are then perspectively projected by the camera to 2D
images that stack up into a discrete memory array consistently
with the discretized pinhole camera model. The subsequent
detection of the points is performed with sub-pixel accuracy
and with errors according to a 2D i.i.d. zero-mean Gaussian
distribution.4 Other than that, in the case of an eye-in-hand
system it is quite natural that the absolute pose of the end-
effector is also erroneous to some extent, see Ref. [10].

Thirdly, the estimation algorithms are specified. Intrinsic
and extrinsic calibrations are separatedly performed.5

A. Intrinsic camera calibration

Intrinsic camera calibration aims at the estimation of the
intrinsic parameters of the camera model and, as a by-product,
of the absolute poses of the camera in the world/object frame
(here called absolute extrinsics). Next we outline the well-
known approach of Refs. [7], [8].

It is critical for accurate camera calibration to start out pro-
perly on the detection and identification of the control points
0xi =[xi yi zi 1]T perspectively projected onto the image fra-
me, and erroneously detected in image n∈{1, ..., N} as nm̃i,
see Ref. [12]. These are to be compared with the expected ones
nm̂i =[nui nvi 1]T which are estimated using an Euclidean de-
composition of the perspective projection matrix P as follows:

s m̂ = A CT 0︸ ︷︷ ︸
P 3×4

0x =

α γ u0

0 β v0
0 0 1

 [
r1 r2 t

]
︸ ︷︷ ︸

H3×3

xy
1

 (1)

where s is an arbitrary scale factor, A the camera intrinsic
matrix [7], and CT 0 the rigid body transformation from
the camera frame to the object/world frame in the image n
(indexes i and n have been omitted for the sake of clarity).
Since z = 0 the formulation can be simplified to the linear
projective transformation H = [h1 h2 h3], which equals the
homography between the calibration plane and the image. The
N homographies Ĥn can be readily estimated up to scale on
the basis of both 0xi and nm̃i. After imposing Ĥ∝A [r1 r2 t]
and the orthonormality restrictions6 r1 ·r2 = 0, r1 ·r1 = 1,
and r2 ·r2 = 1, i.e. CR0∈SO(3), and sorting the scale out:

(A−1h1)
T ·(A−1h2) = 0

(A−1h1)
T ·(A−1h1)

−(A−1h2)
T ·(A−1h2) = 0

}
⇔ hT

1 ω∞ h2 = 0
hT

1 ω∞ h1 = hT
2 ω∞ h2

}
(2)

with the so-called absolute conic ω∞=A−TA−1. These two
equations hold for every N images, leading to 2N constraints

4 It is a tacit assumption that these errors actually encompass both the
pinhole camera model simplification error and its discretization error as well.

5 This is the commonly used method. However, on occasions (e.g. with very
low resolution images, high noise, or narrow field of view) it may be mean-
ingful to estimate the intrinsic parameters and the hand-eye transformation at
the same time in order to make full use of the extrinsic positioning accuracy.

6 The geometrically inclined reader may prefer the interpretation concerning
the constraints on the critical points of each calibration plane by the intersec-
tion of the lines at infinity of the respective planes with the absolute conic (at
the plane at infinity). This projective interpretation belongs together with a
complexification of the homogeneous Euclidean vector space, cf. [2], [7], [8].

for 5 intrinsic unknowns, which in this particular case can be
solved for with a linear least-squares criterion if at least three
different views are available. It is worth noting that they only
depend on the orientation of the plane and not on its distance
or scale, i.e. the formulation works both on Euclidean and
similarity geometries [2].

If a stereo configuration exists (i.e. Nc additional cameras
rigidly attached to the main one), it is possible to unify
their absolute extrinsics, see Ref. [9]. The rigid body con-
straint Cc

T 0 = Cc
T C

CT 0 for every additional camera Cc,
c ∈ {1, 2, ..., Nc}, can be easily transcribed for homogra-
phies: h1 =sc/s cH∞ ch1 and h2 =sc/s cH∞ ch2 for every N
images and Nc additional cameras, from where the infinite
homographies cH∞=A CRCc

cA
−1 can be estimated. These

result in constraints for the intrinsic matrices as follows:
ω∞= cH

T
∞ cω∞ cH∞. These six linear constraints may stack up

in the system of 2N linear equations (2) for the Nc cameras.
After determining the intrinsic matrix, the absolute extrin-

sics for image n are readily computed from the homogra-
phies as follows: r1 =1/s A−1h1, r2 =1/s A−1h2, r3 =r1×r2,
t=1/s A−1h3, and s= ||A−1h1||= ||A−1h2||.

Unfortunately, lens distortion spoils the neat linear projec-
tive formulation of any camera.7 Although it is possible to
estimate exclusively the distortion parameters with a linear
least squares criterion, this only works – to some extent – in
alternation with the former intrinsic estimation [7], [14]. For
accurate estimation it is still necessary to perform a subsequent
nonlinear optimization process, which can be initialized with
the above described estimations. This nonlinear optimization
will necessarily be exclusively responsible for the final pre-
cision of the calibration if the initialization ends up within a
fairly broad convergence region in the parameter space.

Using the maximum likelihood criterion, and since the only
data considered as erroneous is the detected projections nm̃i

of the control points in the images (viz. with i.i.d. zero-mean
Gaussian error distribution), it follows the optimal parameters
estimation that minimizes the sum of squared prediction errors
in the projections of the control points:

Ω̂? = arg mincΩ
N∑

n=1

∑
i

||nm̃i − d
nm̂i(Ω̂, Υ(0xi))||2 (3)

where d
nm̂i are the distorted8 projections of the control points

0xi expected in the image frame. They depend both on the
calibration parameters Ω to be estimated (intrinsic, distortion,
and absolute extrinsic parameters) and on the system models
Υ, which include the camera and lens distortion models as
well as the calibration object model (e.g. 0xi).

7 For centuries lenses take the place of the notional pinholes mainly in
order to increase light gathering while widely maintaining sharpness. The
complex path of light in a lens accounts for deviations from the straight line
projection assumption. This problem cannot be completely avoided since there
are multiple factors to be concurrently optimized in lens design [13].

8 Distorted projections are mostly calculated following an undistorted-to-
distorted (U-D) model like in Ref. [7] – optionally including decentering and
thin prism distortions [3], [12]. Although in the past the distortion direction
was differently applied [15], the U-D model is usually closer to the radial
distortion reality than the opposite D-U one. Admittedly this statement – like
many others in this area – is still subject to the equipment at hand.
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As mentioned in Section I, most of these models are widely
accepted in the computer vision community and it does not
seem necessary to question their suitability anymore. However,
it is apparent that there still exists one potential error source
that has not yet been addressed, namely the allegedly known
positions of the control points in the calibration object, that
on the one hand support calibration accuracy, but on the other
very easily feed incorrect data into the estimation. In fact,
the pattern on the calibration plate is usually inaccurately
imprinted. Off-the-shelf printers especially fail in scaling the
pattern, which independently (and regularly) occurs in the
two perpendicular directions – skew patterns rarely occur. In
order to cope with this problem it is standard practice to
carry out subsequent 2D measurements of the positions of the
control points, which is difficult to perform by hand with high
accuracy9 – Figs. 2 (a), 3, and 4 in Section IV-A.1 explicitly
show the negative effects of this limitation.

However, it is still possible to rescale the pattern back to the
truth with only two parameters. For this purpose, in Section III
the scaling factor κ and the aspect ratio ν are introduced for
the parameterization of the calibration pattern.

B. Extrinsic camera calibration
In the context of eye-in-hand systems we define extrinsic

camera calibration (or hand-eye calibration) as the estimation
of the rigid body transformation tT

C relating the end-effector
frame of the robot manipulator (hand) to the camera frame
(eye) – full details in Ref. [10]. In short, this is implemented
minimizing the discrepancies (On) between expected and mea-
sured transformations. Expected values stem in part from the
intrinsic calibration by the absolute extrinsics C T̂

0

?. Measured
values correspond to the (erroneous) motion readings of the
manipulator bT̃

t
. Following the notation of Ref. [10]:

{tT̂
C

?, bT̂
0

? }= arg min
t

bT C, b
bT 0

∑N
n=1On(tT̂

C
, bT̂

0
, C T̂

0

?, bT̃
t
).

From this it follows that wrong absolute extrinsics inevitably
lead to wrong extrinsic camera calibration. In Section III it will
be shown that a correct intrinsic camera calibration can still
provide erroneous absolute extrinsics depending on the scaling
factor κ used. Again, Fig. 2 (b) in Section IV-A.1 explicitly
shows these negative effects.

III. TWO NOVEL METHODS FOR THE SIMULTANEOUS
DETERMINATION OF THE GRID DIMENSIONS

The last section suggested that slightly incorrect data on
the pattern dimensions leads to biased calibration results. We
proposed a parameterization for the grid pattern of the planar
calibration object by two parameters only: the scaling factor κ
and the aspect ratio ν. This is a convenient parameterization
not only because it very closely corresponds to the actual lim-
itations of conventional printing equipment, but also because
the effects of these parameters on the calibration process can
be clearly differentiated: whereas an erroneous aspect ratio
ν̃ does affect the estimation of the intrinsic parameters, an

9 Conventional rulers are accurate to say 1 mm markers [4].
The reader is invited to check different rulers against each other.

erroneous scaling factor κ̃ allows optimal intrinsic calibration;
it only affects (in range) the absolute extrinsics of each camera.
Furthermore, they are a tight object model representation that
makes it still possible for the calibration process to take
advantage of accurate knowledge of the scene in the form
of the high planarity and regularity of the imprinted pattern.

In this section, we present two different methods for camera
calibration that do the job properly irrespective of these
unknown parameters; this mostly goes with the simultaneous
estimation of these parameters. We furthermore claim that very
often the accuracy of these estimations surpasses the accuracy
that the common user is able to give gauging it by hand.

The authors build upon the planar approach of Refs. [7],
[8] (intrinsic calibration) and the hand-eye calibration of Ref.
[10] (extrinsic calibration). Firstly, the intrinsic parameters
are roughly estimated with linear least-squares techniques.
Secondly, the complete set of parameters of the camera model
is refined by nonlinear optimization. Thirdly, the extrinsic
parameters are also roughly estimated. Lastly, the extrinsics
are refined by nonlinear optimization.

A. Initial intrinsic closed-form solution
Since the actual Euclidean coordinates of the control points

0xi are no longer known, but only the erroneously scaled
ones 0x̃i, the solution of the system of Eqs. (2) may lead
strongly biased results. That is because the decomposition of
the calculated homographies Ĥ (so that s m̂ = Ĥ [x̃ ỹ 1]T )
has changed – cf. Eq. (1). Now:

Ĥ∝

α γ u0

0 β v0
0 0 1

[
r1 r2 t

]κν 0 0
0 κ 0
0 0 1

 such that
r1 · r2 = 0
r1 · r1 = 1
r2 · r2 = 1

}
(4)

∀ ν, κ ∈R / ν, κ 6=0, and it follows:
(A−1h1)

T ·(A−1h2) = 0

1/ν2 · (A−1h1)
T ·(A−1h1)

−(A−1h2)
T ·(A−1h2) = 0

}
⇔ hT

1 ω∞ h2 = 0
hT

1 ω∞ h1 = ν2 · hT
2 ω∞ h2

}
.

The introduction of one further unknown (the aspect ratio ν)
does away with the former linear formulation in part. Although
ν could be otherwise calculated (it is unique for the N images),
there is no point bothering about it since intrinsic calibration
is not about estimating the value of ν, but of the intrinsic
parameters only. It is possible to only orthogonalize both r1

and r2 (i.e. hT
1 ω∞ h2 = 0) without normalizing them (i.e.

without forcing hT
1 ω∞ h1 =ν2 ·hT

2 ω∞ h2) thereby resulting
in N constraints for 5 intrinsic unknowns, and there still are
more equations than unknowns after all. In addition, the stereo
constraints in Ref. [9] still hold (unmodified) in this case. This
formulation is now closer to the actual intrinsic and absolute
extrinsic values than the traditional one in the ubiquitous case
of erroneous knowledge of the aspect ratio ν.

However, the authors actually recommend to decrease the
number of unknowns in this first estimation. It is a pointless
effort to aim at success in accurately estimating very sensitive
parameters, such as the skew γ or the principal point10

10 This is because the principal point suffers from a severe identity disorder,
its key role being largely to locate the origin of the radial lens distortion [6].
In addition to that, partial imaging of the calibration object can also lead to
problems in the estimation of the principal point [9].
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[u0, v0], prior to the estimation of the lens distortion. It is more
advisable to include some prior knowledge of the parameters
in the following form: γ = 0 and [u0, v0] be located at the
image center, solely remaining the scale factors α and β to
be estimated. It is more likely that the estimations resulting
from this method fall in the convergence region required for
successful nonlinear optimization, rather than the numerous
former parameters afflicted with biases. Alternatively, the
iterative method in Ref. [14] could be used with the omission
of the normalization constraint. Nevertheless, it is fair to say
that the traditional approach does also mostly fall in that region
– simulations and experiments show that most parameters can
be safely initialized with an inaccurate prior without affecting
the eventual accuracy after the nonlinear optimization.

After determining the intrinsic matrix, the absolute extrin-
sics for every image n are computed from Eq. (4) as follows:
r1 =ν/sκ A−1h1, r2 =1/sκ A−1h2, r3 =r1×r2, t=1/sκ A−1h3,
sκ= ||A−1h1||, and even ν = ||A−1h1||

‹
||A−1h2||! Again,

these object-to-camera absolute extrinsics (and the camera-to-
camera translations in the case of stereo) may be incorrectly
scaled (in range), both after this initial estimation and after
the following nonlinear optimization, if the assumed scaling
factor κ is far from reality; the potential extrinsic calibration
will be able to correct them, though. The intrinsic parameters
remain unaffected, since they can be estimated irrespective of
the latter – recall Eqs. (4).

These values finally do pave the way for an optimization
of the intrinsic parameters similar to Eq. (3), with subsequent
extrinsic calibration, the only difference being the additional
unknown parameters aspect ratio ν and scaling factor κ.

B. Method #1: aspect ratio ν from projection errors minimi-
zation; scaling factor κ from extrinsic transformation errors
minimization

Since an erroneous aspect ratio ν̃ implies systematic errors
between the estimated m̂ and the actually projected m̃ control
points in the image, the Gaussian distribution of the error
metric is violated which prevents (unbiased) optimal estima-
tion of the intrinsic parameters. In addition to that, it can be
observed in the simulations in Section IV-B that the released
intrinsic parameters cannot completely compensate for these
systematic errors if multiple images from different vantage
points are taken. From these observations it follows that firstly,
only the correct value for ν truly minimizes the projection
errors after nonlinear optimization (see Fig. 4), and secondly,
the aspect ratio can be estimated at the same time along with
the other parameters. In this way, the erroneous data is again
the projections nm̃i of the control points in the images only.
The following minimization provides now the optimal internal
parameters:

Ω̂
s

? = arg mincΩs

N∑
n=1

∑
i

||nm̃i − d
nm̂i(Ω̂

s
(ν̂), Υ(0x̃i))||2. (5)

In contrast to Eq. (3) here the optimization vector of calibration
parameters Ωs includes the aspect ratio ν that in turn, together
with the erroneous object model in the vector of system models
Υ, eventually generates 0x̂i =[κ·ν ·x̃i κ·ỹi 0 1]T.

If a subsequent hand-eye calibration is required, it has to be
considered the above mentioned fact that the estimated abso-
lute extrinsics C T̂

0

? may strongly differ from the actual ones.
The transformation errors in the rotational and translational
metrics within SE(3) do not present the required unbiased
Gaussian distributions anymore, and the optimal estimation
process becomes strongly corrupted [10]. Therefore, the hand-
eye calibration algorithm has to be modified in order to esti-
mate the scaling factor κ in which the intrinsic calibration was
actually performed. In doing so, the absolute extrinsics (and,
if stereo, the camera-to-camera transformations11 as well)
have to be scaled accordingly. Since the released extrinsic
parameters cannot compensate for erroneous scales/ranges in
all the absolute extrinsics at the same time, the simultaneous
estimation of the hand-eye transformation and the scaling fac-
tor κ for multiple images tends to restore the error distribution
to its reputed unbiased Gaussian nature, and the calibration
along with it to optimal (unbiased) operation:

{tT̂
C

?, bT̂
0

?, κ̂?}= arg min
t

bT C, b
bT 0, κ̂

∑N
n=1On(Φ(C T̂

0

?, κ̂), bT̃
t
, ...) (6)

where the function Φ scales the estimated absolute extrinsics
C T̂

0

? in range according to the estimated scaling factor κ̂.

C. Method #2: both aspect ratio ν and scaling factor κ from
extrinsic transformation errors minimization

Alternatively, and only if a subsequent hand-eye calibration
has to be performed, it is also possible to estimate the aspect
ratio ν – and again the scaling factor κ – by minimizing the
extrinsic transformation errors. As mentioned above, any in-
trinsic calibration with incorrect aspect ratio ν will yield
erroneous parameters and thus erroneous absolute extrinsics
along with them – not only in range. This will necessarily com-
promise the hand-eye calibration (even if it also estimates κ)
and therefore once again only the correct value for the aspect
ratio ν will make it to truly minimize the extrinsic residuals:

{tT̂
C

?, bT̂
0

?, κ̂?, ν̂?}=arg min
t

bT C, b
bT 0, κ̂, ν̂

∑N
n=1On(Φ(C T̂

0

? , κ̂), bT̃
t
, ...)

with C T̂
0

? ∈ arg mincΩ
N∑

n=1

∑
i

||nm̃i − d
nm̂i(Ω̂, Υs(ν̂, 0x̃i))||2

where ν is not included in the optimization vector of the in-
trinsic estimation Ω anymore, but in the new vector of system
models Υs. This method is computationally more expensive
since a complete optimization for calculating C T̂

0

? is taking
place for every single extrinsic iteration. Its main motivation
are systems where the positioning accuracy is very high, the
errors in the chosen metrics in SE(3) close to Gaussian, and
the imaging errors are neither small nor Gaussian (e.g. with
very low resolution or oddly distorted images). In this case, a
feasible solution can be obtained as follows: A first solution
by Method #1 can serve as a good initialization for Method #2,
which in this way could only consist of a very restricted local
search on ν over both the traditional intrinsic optimization in
Eq. (3) and the subsequent extrinsic optimization in Eq. (6).

11 The transformation CcT
C can actually be considered as an intrinsic

parameter of a more abstract camera system concerning stereo cameras.
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IV. SIMULATION RESULTS

Simulations were conducted in order to illustrate the funda-
mental weaknesses of the traditional calibration methods and
to put the novel methods presented in the last section to the
proof. Ground truth data was adopted from the intrinsic and
extrinsic results of the real (monocular12) camera calibration
of Section V (left-hand side of Fig. 6) and the assumed pattern
dimensions. In doing so, the ideal image projections and robot
motions were calculated, and noisy image and positioning data
generated on them. Next, the effects of errors in the assumed
pattern dimensions and noise levels are studied.

A. Effects of erroneous pattern dimensions
In this section the errors in the estimation of the parameters

of the camera model after traditional calibrations with inaccu-
rate knowledge of both pattern parameters ν and κ from 0.99
to 1.01 is shown – ground truth actually amounts to ν=κ=1.
Afterwards, the camera performance is assessed.

Noisy visual data was generated over the ideal image
projections with σu =σv =0.15 p. For the extrinsic calibration,
random noisy transformations 0T̃

t
were generated from the

N ideal absolute extrinsics and the ground truth hand-eye
transformation. The noise was added to the ideal pose of the
end-effector of the robot as follows: The angles θ of the angle-
axis representation {θ,p} of the added noise follow a zero-
mean Gaussian distribution with σθ = 0.05◦ and their axes p
are uniformly distributed, i.e. their azimut and elevation angles
φ and ψ are φ ∈ [−90◦, 90◦) according to the probability
density function pdf(φ) = 180−1 [◦]−1 and ψ ∈ [−90◦, 90◦)
with pdf(ψ) ∝ arcsin(ψ/90) [◦]−1. The translation errors t
also follow a zero-mean Gaussian distribution in range with
σt=0.25mmand the directions are again uniformly distributed.

1) Erroneous estimation of the parameters: Figs. 2 and 3
represent the erroneously estimated camera parameters in
relation to the assumed parameters ν and κ. Fig. 2 (a) shows
notable drifts in the intrinsic parameters of the camera model
in relation to the assumed aspect ratio (irrespective of κ).
Fig. 3 does the same for the resulting absolute extrinsics. The
results with ν 6=1 will of course also imply erroneous extrinsic
calibration. Even if ν=1 there still exists the possibility that
an erroneous scaling factor κ 6=1 yielded badly scaled absolute
extrinsics (in range), even though the intrinsic parameters
were optimally estimated. Fig. 2 (b) shows the error in the
estimation of the hand-eye transformation in this last case.

2) Performance after erroneous calibration: Erroneous ca-
libration sharply deteriorates performance. In Fig. 4 the RMS13

of the intrinsic projection errors between the expected and the
actually imaged projections of the real calibration object for
all images are shown. The expected projections are obtained
with the intrinsic parameters from traditional calibrations with
ν̃∈ [0.99, 1.01] but with ground truth absolute extrinsics. For
optimal calibration (ν = 1) the projection error is expectedly

12 Monocular calibration is used since it is worse conditioned than stereo.
13 RMS: Root Mean Square error, mostly in projected pixel distances.

In this section only the RMS error representation is used for performance
assessment since other meaningful evaluation metrics show similar trends [4].
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Fig. 2. Percent of error in the intrinsic parameters (a) and translation error in
the hand-eye transformation (b) in relation to the pattern scaling parameters
assumed for traditional calibration. The actual parameters are ν =1 and κ=1.

2 4 6 8 10 12 14

0

1

2

3

4

Image number

A
bs

. e
xt

r. 
tra

ns
. e

rr
or

 [m
m

]

0.00

0.05

0.10

0.15

0.20 A
bs

. e
xt

r. 
or

i. 
er

ro
r[

º]

xy

z

ν={1, 1.001, ..., 1.010}

ν={1, 1.001, ..., 1.010}

Fig. 3. Error in translation and orientation of the absolute extrinsics in relation
to the aspect ratio assumed for traditional calibration. In reality ν =1.

minimal and identical to the “virtual” residual after calibration
(0.21 p. RMS). On the contrary, for traditional calibrations with
ν 6=1 the error scales up (approx. linearly) to e.g. 0.4 p. RMS
for ν = 0.9975 (0.25 % aspect ratio error, i.e. only 0.75mm
discrepancy between the x and y lengths when measuring a
30×30 cm section of the pattern as a whole). In addition, the
“virtual” residuals after calibration with ν̃ ∈ [0.99, 1.01] are
depicted; these reflect the operation of Eq. (5) relative to the
assumed aspect ratio ν, where erroneous absolute extrinsics try
their hardest to compensate for erroneous intrinsic parameters.
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If the intrinsic calibration was followed by the extrinsic one,
Section III showed that the extrinsic estimation may also
become inaccurate, and naturally the eventual performance
will get worse as well. The set of curves on the right-hand
side in Fig. 4 show the projection errors where the actual noisy
readings of the manipulator 0T̃

t
, along with the traditionally

estimated hand-eye transformations tT̂
C

with ν̃ ∈ [1.00, 1.01]
and κ̃ ∈ [0.99, 1.01], take the place of the former absolute
extrinsics. For the ground truth parameters (ν = κ = 1) the
error scales up to 0.65 p. RMS. The (small) noise in the
manipulator readings accounts for this increment. Slightly
erroneous pattern parameters skyrocket the error.

It is worth noting that in this last case and for traditional
hand-eye calibration it clearly exists a fundamental uncertainty
region where it is not possible for the user to assess the
calibration accuracy, since it is subject to the absolute accuracy
of the ruler at hand – refer to Footnote 9. For incorrect aspect
ratio ν̃ this is not clearly defined, since relative dimensions
can be determined with high precision using inaccurate rulers.

B. Convergence of the novel estimation methods under noise
Simulations were conducted with variable noise levels in the

positions of the control points detected in the images, and in
the positioning accuracy of the robot manipulator. Fig. 5 shows
the “virtual” residuals after traditional intrinsic calibrations
with different image noise levels σ{u,v} ∈ [0.1, 1.0] p. and
assumed aspect ratios ν̃∈ [0.99, 1.01], as percentage w.r.t. the
optimal results when ν=1. The residuals reflect the operation
of Eq. (5). The minimum residual is unequivocal for the opti-
mal solution ν=1 and shows that in this context the erroneous
intrinsic and absolute extrinsic parameters cannot completely
compensate for erroneous knowledge of the aspect ratio of
the calibration pattern (refer to Section III-B). This result is
basis for the intrinsic optimization in Eq. (5) of Method #1,
since it clearly shows the existence of an unique unbiased
minimum for the optimization. Similar results are achieved for
the extrinsic calibration with scaling factor codetermination
in Eq. (6), as well as for the optimizations of Method #2.
In general, the methods do not only converge for the initial
parameters shown in these simulations, but for significantly
worse ones; aspect ratio and scaling factor errors of up to
only ±1 % were used in this section in order to visualize the
absence of biases in the final estimations.
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Fig. 5. Minimized virtual image projection errors in relation to the aspect
ratio and different image noises σ{u,v}∈{0.1, 0.2, ..., 1.0} p.

Fig. 6. The fifteen images used for calibration with the AVT Marlin camera
(left, 780×580 p.) and the TyphoonTM EasyCam camera (right, 640×480 p.).
The extrinsic poses were taken by a KUKA KR16. The pattern is size A2.

V. EXPERIMENTAL RESULTS

In this section the performance of the algorithms in real
systems is studied in order to validate both models and
algorithms. Since the validity of the traditional camera ca-
libration methods is out of the question,14 here only the
novelty concerning the codetermination of the pattern scaling
parameters ν and κ is evaluated. Fortunately, and in contrast
to the intrinsic parameters estimation, in doing so it is possible
to directly assess the accuracy in the determination of these
pattern parameters, since they can also be directly measured.
If the determination is accurate, the estimation of the further
parameters is necessarily the equivalent of the well-established
traditional calibration methods, which consequently validates
the novel methods in this work for the systems in test.

With the idea of validating in a wide range of systems,
two different (monocular) cameras were used: On the one
hand, an accurate progressive scan AVT Marlin camera with
a SVGA 1/2” Sony CCD chip and a Sony VCL-06S12XM
6mm objective worth $1,500 altogether; on the other an
off-the-shelf VGA 1/4” CMOS 4-6mm TyphoonTM EasyCam
webcam worth $15. Both cameras are rigidly attached to the
end-effector of a precise robot manipulator KUKA KR16 and
take pictures of a precisely imprinted A2-sized checkerboard
calibration plate, see Fig. 6.

Starting out on the experiment, ground truth data was
obtained by visually measuring an extended patch of the
checkerboard pattern with a metallic precision ruler – it was
assumed that the checkerboard pattern regularly spreads in x
and y directions. Specifically, the lengths dx and dy of the
segments defined by 28 and 19 squares the size of ux×uy

(ux≈uy≈2 cm) were measured, and the optimal parameters
ν? = κ? = 1 were assigned to them. After that, Methods #1
and #2 were used to estimate the correcting parameters ν̂
and κ̂ against potentially erroneous pattern data, which in turn
lead to the estimated lengths d̂x and d̂y . The results in Tab. I
show a formidable consistency of the estimated and measured

14 This statement refers to the common set-up concerning cameras with rela-
tively high resolution, reasonable field of view, and known pattern dimensions.
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dimensions, even though the algorithms were initialized with
dramatically wrong dimensions like ux =3 cm and uy =1 cm.

TABLE I

κ ν dx dy RMSint

Precision ruler 1.00000 1.00000 559.6 379.0 —

AVT Marlin
M. #1 0.99906 1.00096 559.59 378.63 0.1735

M. #2 0.99936 0.99910 559.34 379.55 0.1737

TyphoonTM M. #1 0.99967 1.00056 559.47 378.78 0.6452

EasyCam M. #2 1.00081 0.99780 558.82 379.31 0.6453

[mm] [mm] [pixel]

These values are more accurate than the ones any user is
able to obtain with the sole aid of a regular ruler over a
smaller patch of the pattern.15 As regards the computational
costs – which is a quite immaterial issue for general calibration
to begin with, Method #1 hardly affects them, especially
if the parameters are reasonably close to the true values.
Method #1 increases the lengths of the optimization vectors
in only one parameter each, being them usually the size of
5+2+(6×N) parameters intrinsically, and 6×2 extrinsically.
In contrast, Method #2 does significantly increase costs, since
it implies an iterative process of numerical optimizations.
In this work the Levenberg-Marquardt optimization method
was used both for the intrinsic and the extrinsic calibrations.

These results call for the following discussion: In general
systems, where the Gaussian image noise assumption largely
holds, optimal intrinsic camera calibration is only attained if
the aspect ratio of the pattern is perfectly known. Since this
never holds outside of simulation scenarios, the user should
opt for one of the methods in this work if he or she is not
able to determine the aspect ratio ux/uy with an accuracy of
say one part in a thousand (i.e. 0.3mm in a 30×30 cm patch).
As to which method to use, the fact that the projection resi-
duals in the images are mostly numerous and small, and con-
versely the camera vantage points fewer (typically 10 to 15)
and their positioning errors of arbitrary size (depending on the
system), suggests that the former errors distributions present
much more a Gaussian nature than the latter ones. Therefore,
Method #1 should usually perform more accurately than
Method #2 for the codetermination of the aspect ratio ν.
As regards the extrinsic calibration, the user should also opt
for one of these methods if he or she is not able to determine
the size of the plate with an accuracy of say one part in a
thousand (i.e. 0.3mm accuracy in 30 cm), which actually is
very often the case.
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15 To be precise, the upper and lower lengths dx of the measured patch
actually differ as much as 0.3 mm – here the mean value of 559.6 mm
was used. In addition to that, the measurements were in general the result of
an interpolation between two different metallic precision rulers which differ
in length about 0.3 mm over their whole length of 1 m. Thus, these results
come by the highest measurable accuracy that the authors were able to achieve.

VI. CONCLUSION AND FUTURE WORK

The two novel approaches presented in this paper fix a
shortcoming that frequently arises out of the traditional camera
calibration methods. We note that highly accurate knowledge
of the dimensions of the calibration pattern rarely exists, and
furthermore that this violation has very negative effects on the
proper estimation of the camera parameters.

This work starts out with an overview of the literature on
camera calibration. We bring into focus that there is a tendency
to decrease the complexity of the calibration object, motivated
by the fact that this deskills the calibration procedure. We
elaborate on this motivation and suggest that in fact this trend
is appropriate, as less complex objects prevent damage to
the calibration due to metric inaccuracies. Yet we take the
matter further, easing requirements of knowledge of the metric
dimensions of the calibration pattern.

It turns out that there is a simple parameterization of the
checkerboard pattern that on the one hand corresponds to the
actual inaccuracies resulting from regular printing equipment,
and on the other allows for optimal intrinsic and extrinsic
calibration irrespective of the actual values of the parameters.

We substantiate our allegation on accuracy improvement
with simulations and impressive experimental results. The
camera calibration toolbox DLR CalDe and DLR CalLab [12]
will offer these algorithms in the near future.
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