
Fast 3D Reconstruction of Human Shape and Motion Tracking by
Parallel Fast Level Set Method

Yumi Iwashita∗1, Ryo Kurazume∗1, Kenji Hara∗2, Seiichi Uchida∗1, Ken’ichi Morooka∗3, Tsutomu Hasegawa∗1
∗1Graduate School of Information Science and Electrical Engineering

∗2Graduate School of Design ∗3Digital Medicine Initiative
Kyushu University, Fukuoka, JAPAN

yumi@is.kyushu-u.ac.jp

Abstract— This paper presents a parallel algorithm of the
Level Set Method named the Parallel Fast Level Set Method,
and its application for real-time 3D reconstruction of human
shape and motion. The Fast Level Set Method is an efficient
implementation algorithm of the Level Set Method and has
been applied to several applications such as object tracking
in video images and 3D shape reconstruction using multiple
stereo cameras. In this paper, we implement the Fast Level Set
Method on a PC cluster and develop a real-time motion capture
system for arbitrary viewpoint image synthesis. To obtain
high performance on a PC cluster, efficient load-balancing and
resource allocation algorithms are crucial problems. We develop
a novel optimization technique of load distribution based on
the estimation of moving direction of object boundaries. In this
technique, the boundary motion is estimated in the framework
of the Fast Level Set Method, and the optimum load distri-
bution is predicted and performed according to the estimated
boundary motion and the current load balance. Experiments
of human shape reconstruction and arbitrary viewpoint image
synthesis using the proposed system are successfully carried
out.

I. INTRODUCTION

Arbitrary viewpoint image synthesis is a key technology
for developing a 3D interactive television system. In this
system, a viewer can select an arbitrary viewpoint of his
choice and the system synthesizes the virtual image from
the viewpoint. Efficient cooperative work in shared virtual
space will also be realized with this system. For generating
arbitrary viewpoint images of realistic objects, image-based
approach [1] and model-based approach [2] [3] [4] have been
proposed so far.

The image-based approach is based on the appearance of a
target. In this approach, multiple cameras are placed around
the target, and the arbitrary images are synthesized from a
number of captured images. In general, though more realistic
images can be obtained than the model-based approach,
dozens of cameras have to be installed densely around the
target to synthesize realistic virtual images.

On the other hand, the model-based approach is based
on the reconstruction of the 3D shape of a target. In this
approach, the 3D model of the target is reconstructed using
silhouette or stereo images captured by multiple cameras
firstly, and the arbitrary viewpoint images are synthesized
by capturing rendered images of the textured 3D model.
Although the 3D shape reconstruction is computationally
expensive, a wide range of viewpoints can be chosen as
virtual viewpoints around the target. The number of cameras

required is also smaller than the image-based approach.
Therefore, we adopt the model based approach in this paper.

For recovering the 3D shape of a target with multiple video
cameras, the volumetric intersection technique [5] [6] and
the multi-view stereo technique [2] [7] have been proposed
so far. The volumetric intersection technique is based on a
silhouette constraint, that is, a 2D silhouette of an object
constrains the object inside a frustum produced by back-
projecting the silhouette from the corresponding viewpoint
[5] [6]. Franco et al. [8] reconstructed a 3D model by
estimating object occupancy probabilities from silhouette in-
formation. They extended the system [8] to recover occluders
in a 3D scene[9]. Since the volumetric intersection technique
cannot reconstruct a complex shape such as a concave
object, photometric information is additionally utilized for
recovering an accurate model such as voxel carving method
[10] [11]. However, these methods need large calculation
costs.

Though the multi-view stereo technique can deal with a
concave shape, it is also computationally expensive due to the
stereo correspondence between multiple images. In addition,
most of conventional systems based on these techniques are
designed for a single and an isolated target. In case that
there are multiple objects in the scene, it is quite difficult to
reconstruct a 3D model of each object separately due to the
mutual occlusion.

To overcome these problems, we have proposed a motion
capture system using multiple stereo cameras and the Fast
Level Set Method (FLSM) [12]. The FLSM is an efficient
implementation algorithm of the Level Set Method [13]
[14] and has been applied to several applications such as
object tracking in video images [12]. In the proposed system,
multiple stereo cameras are located around targets, and the
accurate 3D models of multiple targets are reconstructed sep-
arately and robustly against mutual occlusion by integrating
stereo range data using the FLSM.

In this paper, we implement the proposed system on a PC
cluster and develop a real-time motion capture system for
arbitrary viewpoint image synthesis. To obtain high perfor-
mance on a PC cluster, efficient load-balancing and resource
allocation algorithms are crucial problems. We develop a
novel optimization technique of load distribution based on
the estimation of moving direction of object boundaries.
In this technique, the boundary motion is estimated in the
framework of the Fast Level Set Method, and the optimum

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 980

load distribution is predicted and performed according to the
estimated boundary motion and the current load balance.
Experiments of human shape reconstruction and arbitrary
viewpoint image synthesis using the proposed system are
successfully carried out.

II. FAST LEVEL SET METHOD

The Level Set Method (LSM) [13] [14], introduced by
Osher and Sethian, has attracted much attention as a method
that realizes a topology free active contour model. Various
applications based on the LSM have been presented so far
including motion tracking, 3D geometrical modeling, and
simulation of crystallization. However, the calculation com-
plexity remains an open problem. To overcome this problem,
the Fast Level Set Method (FLSM) [12] was proposed as a
high speed execution technique, and it was applied to real-
time applications, such as 2D real-time tracking of moving
objects in video images. In this section, basic ideas of the
LSM and the FLSM are described.

A. Level Set Method and its high speed execution algorithm

The LSM utilizes an implicit function Φ which is defined
in a space one dimensional higher than that of where a
contour (surface) of interest is described. This function Φ,
which is defined as a distance function from a current contour
in general, is updated according to a next PDE (Partial
Differential Equation).

Φt = −F (κ) | ∇Φ | (1)

where, κ is a local curvature of Φ, and F is a speed function.
The contour to be tracked is detected as the cells with a
value of zero of the implicit function (zero level set), that
is, the contour line of Φ = 0. In the implementation of
the LSM, the space is uniformly split by cells, and Eq. (1)
is solved iteratively using numerical schemes such as the
upwind scheme.

To solve Eq. (1), the speed function F (κ) has to be
determined at each cell for every update process of Φ. The
distribution of the F (κ), which is known as the extension
velocity field [15], is constructed as follows: i) at the current
zero level set cell, F is calculated according to the intensity
of the current image at first; ii) next, at each cell except the
zero level set cell, the speed function F is copied from the
nearest zero level set cell. However, finding the nearest zero
level set cell needs large calculation cost.

To overcome these problems, several techniques have been
proposed in the past, such as the Narrow Band Method [14]
and the Fast Marching Method [14].

B. Fast Level Set Method

Though the Narrow Band Method is high speed execution
algorithm compared with the conventional Level Set Method,
the computational cost is still expensive. To overcome this
problem, the Fast Level Set Method (FLSM) was proposed
[12].

The key idea of the FLSM is the use of a reference map
(Fig.1 (a)). This map indicates the classification of cells

according to a distance from a center cell. For example, the
class Rr consists of cells which are located

√
r away from

the center cell.

01

1

1

1

2 2

2 2

4

4

4

4

5

5

5 5

5

5

55

9

9

9

9

10

10

10

10 10

10

10

10

88

8 8

Rr

F1

F1 F1

F1

F1F1

F2

F6F3

F7F4

F5

F1F1

F1

zero level set
(b1) Rr = 10

F1F2

F6F3

F7

F5

F1

F1

F2

F6F3

F7

F5

F1

F6 F3

F7

F5

F1F2

F6F3

F7F4

F5

F1 F5

F1

F1

F1

(b2) Rr = 10

(b3) Rr = 9

F1F2

F6F3

F7F1

F1

F2

F6F3

F7

F5

F1

F6 F3

F5

F1F2

F6F3

F7F4

F5

F1 F5

F1

F1

F1

F1

F1

F1

F1

(b4) Final result

F1F2

F6F3

F7F4

F5

F1F2

F6

F3 F7

F4

F5

F1

F2 F6

F3

F7F4

F5

F1

F2

F6

F7

F4

F5

F1

F2

F6

F3

F7

F4

F5F1F2

F6

F3

F7

F5F1F2

F3

F5F2

F5

F4

(a) Reference map

Fig. 1. Reference map and the construction process of the extension
velocity field.

The extension velocity field is constructed efficiently using
the reference map. Here, it is assumed that the speed function
at the zero level set cell has already been determined. At first,
one of the zero level set cells is chosen. Then, using the class
Rδ(δ+1) in the reference map, all cells which are located√
δ(δ + 1) away from this zero level set cell are selected,

and the speed function at the zero level set cell is registered to
these cells tentatively. This procedure is repeated for all the
zero level set cells. Next, the same procedure is performed
using the next class Rδ(δ+1)−1. In case that some value has
already been registered at the cell, new value which is in
the closer zero level set cell is overwritten. This process
is repeated until all the classes in the reference map are
selected. After this registration processes, the speed function
of the “nearest” zero level set cell is registered at each cell,
and the extension velocity field is constructed consequently
(Fig.1 (b)).

III. FAST 3D SHAPE RECONSTRUCTION BY THE
PARALLEL FAST LEVEL SET METHOD

In this section, we describe the fast 3D model recon-
struction system of real objects using multiple cameras and
the FLSM [16]. Then, we introduce a new system using a
PC cluster, and propose a new optimization technique for
dynamic load balancing and resource allocation on the PC
cluster based on the estimation of moving directions of object
boundaries.

A. Reconstruction of 3D models against occlusion

Figure 2 shows the developed system using multiple
stereo cameras. In this system, each 3D model is recovered
according to the following procedure [16].

1) At first, multiple stereo cameras (Point Grey Research,
BumbleBee) are installed as shown in Fig.2. For cam-
era calibration, 3D stereo range data of an object with
known shape is captured by all stereo cameras, and

981

mutual camera positions are estimated by applying the
iterative closest point (ICP) algorithm to the range data
and the object surface. Internal camera parameters are
assumed to be calibrated beforehand.

2) Synchronized depth images of the target objects are
captured from stereo cameras.

3) Depth images are backprojected onto the 3D voxel
space, and voxels containing stereo range data are
extracted.

4) The FLSM is applied to the extracted voxels and the
isolated smooth surfaces of each person are recon-
structed. In an occluding region, the surface remains
stationary to keep closed and smooth shape.

5) Repeat steps (2) to (4).

B. Implementation on a PC cluster system

For achieving real-time processing, the above process is
implemented on a PC cluster consisting of eight PCs (Pen-
tium Xeon, 3.06 GHz). Each PC of this system is connected
with Myrinetxp and three stereo cameras are hooked to three
PCs as shown Fig.3. At first, synchronized depth images are
captured from stereo cameras. Next, the depth images are
sent to four PCs which execute the FLSM calculation (PC1-
PC4). Here, the 3D space is divided into four regions, and
each region is assigned to one of four PCs, respectively. Since
each PC has two CPUs, the FLSM calculation is executed
in parallel. Finally, the results of the FLSM calculation are
sent to a PC for displaying 3D models.

Stereo camera 5 Stereo camera 4

Stereo camera 3Stereo camera 1

Stereo camera 6

Stereo camera 2

2.5 m

1.5 m

Fig. 2. 3D shape reconstruction system using multiple stereo cameras [16].

Stereo
camera

PC1

PC3

PC2
PC4

3D voxel space

PC cluster system

PC PC PC

PC1 PC2 PC3 PC4

PC

Camera-PCs

FLSM-PCs

Display-PC

Fig. 3. PC cluster system.

C. Optimization method of load distribution for the Parallel
FLSM

Let’s consider the case that the 3D space is divided into
4 regions uniformly. Since the computational complexity of
the FLSM changes due to the position and the shape of the
reconstructed 3D model, it may be occurred that the load
is concentrated to some PCs as shown in Fig.4 (a). (Fig.4
shows the cross section of the 3D space.) In addition, in case
the target moves quickly, update calculation of the surface
has to be executed frequently so as not to cause delay. For
allocating resource among PCs dynamically, we develop an
effective technique to ensure an enough number of update
calculation by decreasing the number of handling voxels
of the particular PCs. This optimization technique of load
distribution is based on the estimation of moving direction
of object boundaries. In this technique, the boundary motion
is estimated in the framework of the FLSM, and the optimum
load distribution is predicted and performed according to the
estimated boundary motion and the current load balance. The
flow of the optimization technique is as follows.

1) At first, the 3D model of the target is reconstructed in
four regions of the 3D space assigned to FLSM-PCs.
The moving direction of object boundary is also esti-
mated in the framework of the FLSM simultaneously.

2) Results of the reconstructed 3D model and the es-
timated moving direction are sent to the Display-
PC from each FLSM-PCs, and then every result is
integrated in the whole 3D voxel space.

3) For optimizing the load distribution for the FLSM,
division planes of the 3D space are updated in the
Display-PC as the following procedure.

a) The division planes are set according to the
position of the target and the number of voxels
of the reconstructed 3D model.

b) The division planes set in step (3.a) are updated
according to the estimated moving direction.

4) Results of the division planes updated in step (3) are
sent to the FLSM-PCs.

5) Repeat steps (1) ∼ (4).

C-1. Estimation of moving direction of object boundary

In this section, an estimation method of moving direction
of object boundary is described. Firstly, we extract a surface
voxel Z(t, j) at time t (0 ≤ j < num(t), num(t) is the
number of voxels of the reconstructed 3D model) which
is located along the normal direction of a surface voxel
Z(t − ∆t, i) at time t − ∆t (Fig.5). Corresponding voxel
along the normal direction can be detected without additional
calculation cost in the framework of the FLSM explained in
Section II.B. Firstly, we attach a label L(t−∆t, i) uniquely
to a surface voxel Z(t − ∆t, i) as shown in Fig.6 (a). By
overwriting with the label at the same time as the process
of construction of the velocity field, the label of the nearest
surface voxel is stored at each voxel (Fig.6 (a)). Then, the
surface is updated at time t, and the corresponding surface
voxel along the normal direction can be detected by checking

982

the label stored in the surface voxel Z(t, j) (Fig.6 (b)).
By assuming that local shape of the surface is kept

between time t−∆t and t, the correctness of the correspon-
dence between the surface voxels Z(t−∆t, i) and Z(t, j) can
be evaluated by comparing directions of their normal vectors.
For example, in case the surface moves upward as shown in
Fig.5, the degree of the correctness of the correspondence
between the normal direction N(t − ∆t, i1) and N(t, j1),
which are calculated at the surface voxels Z(t−∆t, i1) and
Z(t, j1) respectively, is high. Therefore the normal direction
can be considered as the moving direction of the surface. On
the other hand, in case the degree of the correctness of the
correspondence between the normal direction N(t−∆t, i2)
and N(t, j2) at the surface voxels Z(t−∆t, i2) and Z(t, j2)
is low, it can be considered that the normal direction doesn’t
coincide with the moving direction of the surface. Thus, the
moving direction md(t, j) of the surface voxel Z(t, j) is
estimated as the following equation.

md(t, j)

= F (Z(t, j))|(N(t − ∆t, i),N(t, j))|N(t, j)∆t (2)

where F (Z(t, j)) is the speed function of the FLSM and
N(t, j) is the normal direction at surface voxel Z(t, j) as
follows:

N(t, j) =
∇ψ(t, j)
|∇ψ(t, j)| (3)

Then moving directions of local areas of the surface, that
is, the local moving directions are estimated by the following
procedure.

1) At first, the surface voxel Z(t, j) is extracted if the
magnitude of the moving direction md(t, j) of the
surface voxel is larger than a certain threshold c (Fig.7
(a)).

2) Suppose a cube with d on a side, which is centered
at the extracted surface voxel Z(t, j). We define this
cube as a local moving region Ll+1 (l is the number
of extracted moving regions beforehand), and calculate
the moving direction and the number of voxels of
the region Ll+1 as Lmdl+1=md(t, j) and lnuml+1,
respectively.

3) In case the vertex of the cube is involved in other
local moving region Lk(0 ≤ k ≤ l), local moving
regions Lk and Ll+1 are connected each other (Fig.7
(b)). The local moving direction and the number of
voxels of the new local moving region are calcu-
lated as Lmdk ← (lnumk×Lmdk+lnuml+1×Lmdl+1)

(lnumk+lnuml+1)

and lnumk ← lnumk + lnuml+1, respectively.
4) Repeat steps (1) ∼ (3).

Here, c and d are constants.
One of other methods for estimating the moving direction

of the target is a method based on time-series data of the
centre of gravity of the reconstructed 3D model. However,
in case the local areas of the object are moved, it is difficult to
estimate the local moving direction of each area by the above
method. On the other hand, the proposed method can esti-
mate the moving directions of the local areas of the object.

Moreover, the moving directions of the object are estimated
without additional calculation cost in the framework of the
FLSM.

(a) (b)

Object

Division
planes

Updated
division planes

PC4 PC3

PC1 PC2

PC4 PC3

PC1 PC2

x

z

y

Fig. 4. Division of 3D voxel space according to target’s shape.

Moving
direction

Consistent

Zero level set
(time: t-∆t)

Zero level set
(time: t)

Z(t, j1)

Z(t-∆t, i1)

Z(t, j2)

Z(t-∆t, i2)

N(t, j1)

N(t-∆t, i1)

Inconsistent
N(t, j2)

N(t-∆t, i2)

Fig. 5. Estimation of moving direction of object boundary.

(a) time: t-∆t (b) time: t

L1L2

L6L3

L7L4

L5

L1L2

L6

L3 L7

L4

L5

L1

L2 L6

L3

L7L4

L5

L1

L2

L6

L7

L4

L5

L1

L2

L6

L3

L7

L4

L5L1L2

L6

L3

L7

L5L1L2

L3

L5L2

L5

L4

surface voxel

L1L2

L6L3

L7L4

L5

L1L2

L6

L3 L7

L4

L5

L1

L2 L6

L3

L7L4

L5

L1

L2

L6

L7

L4

L5

L1

L2

L6

L3

L7

L4

L5L1L2

L6

L3

L7

L5L1L2

L3

L5L2

L5

L4

Fig. 6. Detection of surface voxel along the normal direction.

C-2. Optimization method of load distribution for the
Parallel Fast Level Set Method based on the estimated
moving direction

As shown in Fig.4, the positions of the division planes of the
3D voxel space are set according to the position of the target
and the number of voxels of the reconstructed 3D model as
follows: the reconstructed 3D models are sent from FLSM-
PCs to the Display-PC, and these 3D models are integrated in
the 3D voxel space. Then, firstly the data of the reconstructed
3D model is sorted according to the x-coordinate value. A yz-
plane dividing the 3D voxel space is set with the central value
Dx of the sorted data, and the 3D voxel space is divided into
two regions. Next, the data of the 3D model in each region
is sorted according to the z-coordinate value. Two xy-planes
dividing the two regions are set with the central values Dz1

983

(b)

Integrated moving
region L

Z(t,j)

(a)

d
Local moving
region L l+1

k

Lmdl+1

t-∆t

t

Moving
direction

Fig. 7. Estimation of local moving direction.

and Dz2 of the two sorted data. By this procedure, the 3D
voxel space is divided into four regions so that the number
of voxels of the 3D model is equalized as shown in Fig.4
(b).

Next, for allocating resource among PCs dynamically,
the division planes are updated so as to ensure the enough
number of update calculation for the PC which contains the
moving surfaces. This optimization procedure is realized by
considering the number of handling voxels of the PC and the
estimated local moving direction Lmd. Let’s consider the
case shown in Fig.8(a). In this case, according to the local
moving direction Lmd and the local moving region (dotted
lines), the z coordinate value Dz1 of the division plane P1

is updated as the following equation.

Dz1 ← Dz1 + e
min(p1, p2)
(p1 + p2)

Lmdz (4)

where Lmdz is the value of the local moving direction
Lmd along z axis, p1 and p2 are the lengths of the local
moving region from the division plane P1 along z axis,
and e is constant. If the local moving region contains the
division plane P1, e is set to 5.0, otherwise e is set to
0.0. By moving the division plane according to the above
procedure, the number of update calculation of the FLSM
can be increased, since the load of the PC1 which involves
the moving surface is reduced. As a result, the object surface
can be tracked without delay even if the target moves quickly.
In the same way, the positions of other division planes are
updated according to the estimated local moving direction of
the object surfaces.

(b)(a)

PC4 PC3

PC1 PC2

Division plane P1

Lmd

p1

p2

PC4 PC3

PC1 PC2

Updated division

plane P1

x

z
Lmdz

y

Dz1

Fig. 8. Division of 3D voxel space based on estimated moving direction.

IV. EXPERIMENTS

In this section, firstly we show some experimental results
of the estimation of the moving direction with simulated
models. Next, the fast 3D shape reconstruction and arbitrary
viewpoint image synthesis of dance motion are shown.

A. Estimation of the moving direction with simulated models
Firstly, we carried out experiments of the estimation of the

moving direction using two kinds of simulated models. The
3D space is a cube 1.5m on a side, and the resolution of the
3D space is 100× 100× 100 (1.5cm voxel on a side). In an
experiment with a sphere as shown in Fig.9(a), the sphere is
translated toward y axis and rotated around y axis, and the
moving directions of the sphere are estimated. Table I shows
the average and the standard deviation of angles between
the estimated local moving direction and the correct moving
direction. The correct barycentric velocity of the sphere and
the estimated moving velocity are shown in Table II.

Next, in an experiment of an object combining two pillars
and two spheres as shown in Fig.9(b), the local moving
directions are estimated. In this experiment, the local regions
A and B are moved along the x-axis and z-axis, respectively,
and the local moving direction of these regions are estimated.
Table III shows the average and the standard deviation of
angles between the estimated local moving direction and the
correct moving direction.

(b)
(b1) (b2)

A

B

(a)
x

z
y

x

z

y

1.5 m

A

B

Fig. 9. Estimation of the moving direction.

TABLE I
ESTIMATION ERROR OF MOVING DIRECTION.

Average [deg.] Standard
deviation [deg.]

Translation toward y axis 2.81 1.68
Rotation around y axis 4.09 2.29

TABLE II
ESTIMATION ERROR OF MOVING SPEED.

Barycentric velocity [m/sec.] 0.045 0.060 0.075 0.090
Estimated moving velocity [m/sec.] 0.045 0.059 0.077 0.091

B. 3D model reconstruction of a moving target

Next, we captured the dancing motion using the devel-
oped stereo-based motion capture system, and tracked and

984

TABLE III
ESTIMATION ERROR OF LOCAL MOVING DIRECTION.

Average [deg.] Standard
deviation [deg.]

A 5.68 3.26
B 4.83 2.50

reconstructed the 3D model in real-time. Figure 10(a) shows
the motion of the right arm at t=1.7∼3.3 [sec.]. In this
experiment, the resolution of the 3D space is 80 × 80 × 80
(1.875cm voxel on a side), and the stereo range data is
calculated at every 100 [msec.].

Experimental conditions are as follows: (Exp.A) the 3D
space is uniformly divided into four regions, (Exp.B) the
3D space is divided according to the number of voxels
of the reconstructed 3D model, (Exp.C) the 3D space is
divided according to the estimated local moving direction for
increasing the number of update calculation of the FLSM
for a particular PC which involves the moving surface
(proposed method), and (Exp.D) the sufficient number of
update calculation of the FLSM is executed by offline
calculation. Figure 10 (b)∼(e) show the experimental results
of (Exp.A∼D). The number of voxels of the reconstructed
3D model in (Exp.A∼C) and (Exp.D) are shown in Figs.11
and 12, respectively. As seen from these results, the number
of voxels reconstructed by (Exp.C) and (Exp.D) are quite
similar compared to the number of voxels by (Exp.A) and
(Exp.B) at t=1.7∼3.3.

In this experiment, since the right arm is moved rapidly in
the region assigned to PC1, the number of handling voxels
of PC1 should be decreased for reconstructing the accurate
3D model. Table IV shows the calculation time of the FLSM
with PC1 in (Exp.A∼C). The average processing time for 1
updating period at t=1.7∼3.3 in Exp.C is 10.58 [sec.]. On the
other hand, the processing time in Exp.A and B are 16.24
and 12.79 [sec.], respectively.

Figure 13 and Table V show maximum, average, and
standard deviation of errors of the reconstructed 3D model
in (Exp.A∼C), respectively. The error is defined as the min-
imum distance between voxels in (Exp.D) and (Exp.A∼C).
From these results, we can conclude that accurate 3D model
is reconstructed by (Exp.C) compared to the models by
(Exp.A) and (Exp.B).

TABLE IV
COMPARISON OF CALCULATION TIME WITH PC1.

Average [msec.] Standard Max. [msec.]
deviation [msec.]

Exp.A 16.24 6.982 48.10
Exp.B 12.79 6.343 36.94
Exp.C 10.58 5.468 27.83

C. Generating arbitrary viewpoint images

We carried out experiments of arbitrary viewpoint image
synthesis using six stereo cameras (Fig.2). The resolution of
the 3D space is 100 × 100 × 100 (1.5cm voxel on a side).

t=2.0 [sec.] t=3.0[sec.]t=2.5 [sec.]
(a)

(b) Exp.A (online, divided uniformly)

(c) Exp.B (online, divied according to
 the number of voxels)

(d) Exp.C (online, the proposed method)

(e) Exp.D (offline, ground truth)

t=2.0 [sec.] t=3.0[sec.]t=2.5 [sec.]

t=2.0 [sec.] t=3.0[sec.]t=2.5 [sec.]

t=2.0 [sec.] t=3.0[sec.]t=2.5 [sec.]

t=20 [sec.] t=30[sec.]t=25 [sec.]

Fig. 10. 3D shape reconstruction of moving object.

TABLE V
COMPARISON OF ERRORS OF RECONSTRUCTED 3D MODEL.

Average [cm] Standard Max. [cm]
deviation [cm]

Exp.A 0.5839 1.101 17.18
Exp.B 0.3774 0.8658 13.26
Exp.C 0.3017 0.7217 7.016

Figures 14 (a1) and (a2) show examples of captured color
images and Figs. 14 (b1) and (b2) are synthesized images.
The 3D voxel model is converted into triangular patches
by the Discrete Marching Cubes algorithm, and then the
captured texture images are mapped to the triangular patches.

V. CONCLUSION

This paper proposed a parallel and efficient algorithm of
the Level Set Method named the Parallel Fast Level Set
Method and the optimum load distribution technique on
a PC cluster which realizes dynamic load balancing and
resource allocation. The proposed technique is based on the
estimation of the moving directions of object boundaries,
and the boundary motions are estimated in the framework of
the Fast Level Set Method. The optimum load distribution is
predicted and performed according to the estimated boundary

985

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 1.0 1.5 2.0 2.5 3.0 3.5
[sec.]

1.7 3.3

[Number of voxels]

Exp.C

Exp.A Exp.B

Fig. 11. Number of voxels of reconstructed 3D model in (Exp.A ∼ C).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 10 15 20 25 30 35
[sec.]

17 33

Exp.D

[Number of voxels]

Fig. 12. Number of voxels of reconstructed 3D model in (Exp.D).

motion and the current load balance. The efficiency of the
proposed method was verified through the tracking exper-
iments of dance motion. In the future work, we have the
following two plans: i) we implement the proposed system
on a PC cluster with sixteen PCs and generate more precise
arbitrary viewpoint images in real-time; ii) we apply the
proposed system to acquisition system of human skill for
robot applications.

REFERENCES

[1] M. Levoy, P. Hanrahan, ”Light Field Rendering”, ACM SIGGRAPH,
pp.31-42, 1996

[2] T. Kanade, P. Rander and P. Narayanan, ”Virtualized Reality:
Constructing Virtual Worlds from Real Scenes”, IEEE Multimedia,
Immersive Telepresence, vol.4, No.1, pp.34-47, 1997

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3

(Exp.A)

(Exp.B)

(Exp.C)

[sec.]

[cm / 1voxel]

Fig. 13. Errors of reconstructed 3D model.

frame #12

frame #175

(a1) (b1)

(b2)(a2)

Fig. 14. Generating free viewpoint images.

[3] S. Vedula and S. Baker and T. Kanade, ”Image-Based Spatio-
Temporal Modeling and View Interpolation of Dynamic Events”, ACM
Transactions on Graphics, vol.24, No.2, April, 2005

[4] J. Carranza and C. Theobalt and M.A. Magnor and H.-P. Seidel, ”Free-
viewpoint video of human actors”, ACM SIGGRAPH, pp.569-577,
2003

[5] W. Martin and J. Aggarwal, ”Volumetric description of objects from
multiple views”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.5, No.2, pp.150-158, 1983

[6] A. Laurentini, ”The visual hull concept for silhouette-based image
understanding”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.16, No.2, pp.150-162, 1994

[7] O. Faugeras and R. Keriven, ”Complete dense stereovision using
level set methods”, In Fifth European Conference on Computer Vision,
vol.1, pp.379-393, 1998

[8] J.-S. Franco and E. Boyer, ”Fusion of multi-view silhouette cues using
a space occupancy grid”, IEEE Intl. Conf. on Computer Vision, vol.2,
pp.1747-1753, 2005

[9] L. Guan and J.-S. Franco and M. Pollefeys, ”3D Occlusion Inference
from Silhouette Cues”, IEEE Conf. on Computer Vision and Pattern
Recognition, pp.1-8, 2007

[10] K. Kutulakos and S. Seitz, ”A theory of shape by space carving”,
International Journal of Computer Vision, vol.38, No.3, pp.199-218,
2000

[11] S. Nobuhara and T. Matsuyama, ”Heterogeneous Deformation Model
for 3D Shape and Motion Recovery from Multi-Viewpoint Images”,
Proc. of the 2nd International Symposium on 3D Data Processing,
Visualization, and Transmission, pp.566-573, 2004

[12] Y. Iwashita and R. Kurazume and T. Tsuji and K. Hara and T.
Hasegawa, ”Fast Implementation of Level Set Method and Its
Realtime Applications”, IEEE International Conference on Systems,
Man and Cybernetics, pp.6302-6307, 2004

[13] J. Sethian, ”A fast marching level set method for monotonically
advancing fronts”, Proceedings of the National Academy of Science,
vol.93, pp.1591-1595, 1996

[14] J. Sethian, ”Level Set Methods and Fast Marching Methods, second
edition”, Cambridge University Press, UK, 1999

[15] D. Adalsteinsson and J. Sethian, ”The fast construction of extension
velocities in level set methods”, J. Computational Physics, vol.148,
pp.2-22, 1999

[16] Y. Iwashita and R. Kurazume and T. Tsuji and K. Hara and T.
Hasegawa, ”Robust Motion Capture System against Target Occlusion
using Fast Level Set Method”, Proc. of IEEE International Conference
on Robotics and Automation, pp.168-174, 2006

986

