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Abstract— The pose detection of three-dimensional (3-D)
objects from two-dimensional (2-D) images is an important issue
in computer vision and robotics applications. Specific examples
include automated assembly, automated part inspection, robotic
welding, and human robot interaction, as well as a host of
others. Eigendecomposition is a common technique for dealing
with this issue and has been applied to sets of correlated images
for this purpose. Unfortunately, for the pose detection of 3-D
objects, a very large number of correlated images must be
captured from many different orientations. As a result, the
eigendecomposition of this large set of images is very compu-
tationally expensive. In this work, we present a method for
capturing images of objects from many locations by sampling
S2 appropriately. Using this spherical sampling pattern, the
computational burden of computing the eigendecomposition can
be reduced by using the Spherical Harmonic Transform to “con-
dense” information due to the correlation in S2. We propose
a computationally efficient algorithm for approximating the
eigendecomposition based on the spherical harmonic transform
analysis. Experimental results are presented to compare and
contrast the algorithm against the true eigendecomposition, as
well as quantify the computational savings.

I. INTRODUCTION

Over the last several decades, pose detection of three-
dimensional (3-D) objects from two-dimensional (2-D) im-
ages has become an important issue in computer vision and
robotics applications. Specific examples include automated
assembly, automated part inspection, robotic welding, and
human robot interaction, as well as a host of others. Subspace
methods represent one computationally efficient approach
for dealing with this class of problems. Subspace methods,
also referred to as eigenspace methods, principal component
analysis, or the Karhunen-Loeve transformation [1], [2],
have been applied in a variety of application domains. All
of these applications are based on the fact that a set of
highly correlated images can be approximately represented
by a small set of eigenimages [3], [4]. Once the principal
eigenimages of an image data set have been determined,
using these eigenimages is very computationally efficient for
the on-line classification of 3-D objects. Unfortunately, the
off-line calculation for determining the appropriate subspace
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dimension, as well as the principal eigenimages themselves
is computationally expensive. This drawback has been ad-
dressed using several different approaches based on either
iterative power methods, conjugate gradient algorithms, or
eigenspace updating [5]–[7]. A fundamentally different ap-
proach was proposed by Chang et al. [8] where the authors
show that the FFT may be used to approximate the desired
subspace dimension, as well as the principal eigenimages if
the image data set is correlated in one dimension. In [9] the
computational efficiency of Chang’s algorithm is increased
further by using the low resolution properties of the image
data set.

In this paper, we exploit the work of [8] and extend this
to full 3-D object classification using theory from spectral
analysis. In general, if recognition and pose detection of 3-
D objects is desired, the training image data set needs to
contain views of the object from many different orientations.
The approach taken here to capture images of the object from
a large number of orientations is to consider an imaginary
unit sphere with the object placed at the sphere’s center. If
a specified number of samples are defined on the sphere,
the object’s image data set may be generated by capturing
images of the object at each of the specified sample points.
Once the image data set is constructed in this manner,
we take advantage of the spherical sampling pattern by
using the Spherical Harmonic Transform (SHT) in place of
the FFT to capture the frequency information of this data
set. We then propose a computationally efficient algorithm
for approximating the subspace dimension, as well as the
principal eigenimages using the resulting SHT analysis.

The rest of this paper is organized as follows. In Section
II, we explain the fundamentals needed to apply an eigen-
decomposition to a related image data set, much of which is
discussed in [8]. In Section III, we give a brief introduction to
spherical harmonics and the SHT. In Section IV we propose
a computationally efficient algorithm for approximating the
subspace dimension, as well as the principal eigenimages.
Experimental results are given in Section V, with conclusions
and future work outlined in Section VI.
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II. PRELIMINARIES

In this work, a gray-scale image is described by an
h×v array of square pixels with intensity values normalized
between 0 and 1. Thus, an image will be represented by
a matrix X ∈ [0, 1]h×v . Because sets of related images
are considered in this paper, the image vector f of length
m = hv is obtained by “row-scanning” an image into a
column vector, i.e., f = vec(X T ). The image data matrix
of a set of images X1, . . . ,Xn is an m×n matrix, denoted X ,
and defined as X = [f1, · · · ,fn], where typically m > n
with fixed n. Because we will be sampling images on the
unit sphere, it should be noted that f = f(ξp) where ξp,
p ∈ {0, . . . , n − 1} is the unit vector pointing at the angle
of co-latitude θp ∈ [0, π] measured down from the upper
pole, and the angle of longitude φp ∈ [0, 2π), which is the
parameterization of the sphere in spherical coordinates.

The singular value decomposition (SVD) of X is given by

X = UΣV T , (1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ =
[Σd 0]T ∈ Rm×n where Σd = diag(σ1, · · · , σn) with σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0 and 0 is an n by m − n zero matrix.
The columns of U , denoted ui, i = 1, . . . ,m, are referred to
as the left singular vectors or eigenimages of X , while the
columns of V , denoted vi, i = 1, . . . , n are referred to as
the right singular vectors of X . The left singular vectors (or
eigenimages) of X can be interpreted as the eigenvectors of
the covariance matrix of the image vector. The eigenimages
provide an orthonormal basis for the column space of X ,
ordered in terms of importance; the corresponding singular
values measure how “aligned” the columns of X are with the
associated eigenimage. The components of the ith column of
V measure how much each individual image in X contributes
to the ith eigenimage.

In practice, the left singular vectors ui are not known or
computed exactly, and instead estimates ũ1, . . . , ũk which
form a k-dimensional basis are used. The accuracy of a
practical implementation of subspace methods then depends
on three factors: the properties of X , the dimension k, and
the quality of the estimates ũi. The measure we will use
for quantifying this accuracy is the “energy recovery ratio”
denoted ρ, and defined as

ρ(X, ũ1, . . . , ũk) =

k∑
i=1

||ũT
i X||2

||X||2F
(2)

where || · ||F denotes the Frobenius norm. Note that if
the ũi are orthonormal, ρ ≤ 1, and for any given k
achieves a maximum value of (

∑k
i=1 σ2

i )/(
∑n

i=1 σ2
i ) when

span(ũ1, . . . , ũk) = span(u1, . . . , uk). It should also be noted
that if the columns of X are intensity normalized (which
is typical in subspace methods, see for instance [3]), then
||X||2F is simply equal to the number of images in X .

The principal calculation required with subspace methods
is the precomputation of estimates of the left singular vectors

ũ1, . . . , ũk of the m × n matrix X . This is a very com-
putationally expensive operation when m and n are large.
Reducing this computational expense by exploiting corre-
lation between images has been the topic of much previous
research [5]–[9]. In [8], Chang et al. showed that if the image
data matrix was correlated in one dimension, then the FFT
may be used to approximate the desired subspace dimension
k, as well as the principal eigenimages ũ1, . . . , ũk. This result
is based on the fact that for a large class of objects, most of
the energy in the image data matrix X is contained in the low
frequency harmonics of FFT(X). Because our objects are no
longer correlated in one dimension however, the direct FFT
approach is no longer effective. Furthermore, because we are
sampling on the sphere, the FFT is multivalued at the poles
and thus not well posed in the latitude direction. Our solution
to this problem follows the work of Chang, however we
use the SHT in place of the FFT to calculate the frequency
information of this data set. Using the resulting SHT analysis,
it is possible to approximate the desired subspace dimension
k, as well as the principal eigenimages of the image data
matrix X . A brief introduction to spherical harmonics and
the SHT is presented in the next section.

III. SPHERICAL HARMONICS

A. Introduction

Spherical harmonics have been applied to a variety of
problems that arise on the surface of the unit sphere (denoted
as the 2-sphere or S2). They have been used for solving
PDE’s in spherical geometry for weather and climate mod-
els [10], geophysics [11], [12], quantum mechanics [13],
[14], as well as a host of other related applications. Over
the last decade, spherical harmonics have been gaining
popularity in the computer vision and computer graphics
arena. Spherical harmonics have been applied to several
computer vision applications with unknown lighting [15]–
[18], as well as 3-D model retrieval [19], [20], and 3-D
shape descriptors [21]. Spherical harmonics have also been
applied to rotation estimation and convolution of spherical
images [22].

In the context of modern computer vision applications,
the information received is in digital format, thus the de-
velopment of a discrete SHT is needed to process the data.
This topic has been addressed in various ways dating back
to the 1800’s [23]. Swarztrauber et al. proposed a method
for computing the discrete SHT using the Gauss-Legendre
quadrature [24], [25], as well as an efficient method for
computing the quadrature weights and points [26]. Alterna-
tively, Driscoll and Healy proposed a method for computing
the discrete SHT using an equi-angular grid of Chebyshev
nodes [27], [28]. In [29], Górski et al. propose the Hierar-
chical Equal Area isoLatitude Pixelization (HEALPix) which
has the advantage that the samples have equal area weighting
over S2, as a result, they don’t oversample the polar regions.
In [30], the authors compare and contrast the three above
mentioned tessellations and it was determined that for this
particular application, the HEALPix tessellation performed
the best in terms of better angular resolution in sampling, and
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better estimation of the eigenspace. For the aforementioned
reasons, in this paper, we use the HEALPix tessellation to
define the sampling pattern over S2 used for the construction
of a discrete SHT (see Fig. 1 for an example of the HEALPix
sampling pattern).

Spherical harmonics, typically denoted Y m
l , are the angu-

lar solutions to Laplace’s equation in spherical coordinates,
and have the factorization

Y m
l (θ, φ) = κm

l Pm
l (cos(θ))ejmφ, (3)

where Pm
l (cos(θ)) is the associated Legendre polynomial of

degree l and order m, and κl,m is a normalization constant,
equal to

κm
l =

√(
2l + 1

4π

)
(l − |m|)!
(l + |m|)!

. (4)

Using the above normalization, the spherical harmonics
satisfy the condition∫ π

θ=0

∫ 2π

φ=0

Y m1
l1

(Y m2
l2

)∗sin(θ)dθdφ = δl1l2δm1m2 , (5)

where the superscript ∗ is the complex conjugate, i.e., they
form an orthonormal basis for S2. As a result, any square
integrable function f(θ, φ) ∈ L2(S2) may be projected onto
this basis, where L2 is the Hilbert space of square integrable
functions.

B. Discrete Spherical Harmonic Transform

A real valued band-limited function f(ξp) whose domain
is L2(S2) may be represented by its spherical harmonic
expansion as

f(ξp) =
lmax∑
l=0

∑
|m|≤l

fm
l Y m

l (ξp) (6)

where f(ξp) ∈ [0, 1] is a single pixel of the image data
vector f(ξp). Once again we remind the reader that ξp, p ∈
{0, . . . , n− 1} is the unit vector pointing at the angle of co-
latitude θp ∈ [0, π] measured down from the upper pole, and
the angle of longitude φp ∈ [0, 2π) is the parameterization
of the unit sphere in spherical coordinates. In the above
equation, it is assumed that the signal power for l > lmax
is insignificant, and lmax is chosen such that aliasing does
not occur. The expansion coefficients are calculated using

fm
l =

4π

n

n−1∑
p=0

f(ξp)Y
m
l (ξp), (7)

where Y m
l (ξp) is the real-valued spherical harmonic defined

by

Y m
l (ξp)=



√
2κm

l cos(mφp)Pm
l (x) if m > 0

√
2κm

l sin(|m|φp)P
|m|
l (x) if m < 0

κ0
l P

0
l (x) if m = 0

(8)

where P 0
l (x) = Pl(x) is the Legendre polynomial of degree

l and x = cos(θp).

IV. FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to estimate the desired subspace dimen-
sion k, as well as the principal eigenimages ũ1, . . . , ũk of
X such that ρ(X, ũ1, . . . , ũk) ≥ µ, where µ is the user
specified energy recovery ratio. The first step in computing
the desired subspace dimension k, as well as the principal
eigenimages, is to construct the image data matrix X . As
mentioned previously, the approach taken here is to consider
the object placed at the center of an imaginary unit sphere,
and sample S2 using the HEALPix sampling pattern (see
Fig. 1).

Fig. 1. Image acquisition using the HEALPix sampling pattern to obtain
the training image data matrix X . A sample image is taken at each black
dot on the sphere.

Using the HEALPix sampling pattern is based on sub-
dividing the sphere using the parameter Nside, resulting in
12N2

side images captured from various vantage points on the
sphere [29]. Setting lmax = 3Nside − 1, the Legendre poly-
nomials will not alias on the sphere. Furthermore, because
the sampling pattern is isolatitudinal, the computation of the
Legendre polynomials (which is the most computationally
expensive portion of the SHT) is minimized. In this paper,
we are using CAD generated ray-traced images, examples of
which are shown in Fig. 2, (the CAD models were provided
by [31]).

Fig. 2. Ray-traced CAD models courtesy of Kator Legaz [31]. Each object
is sampled as discussed above at a resolution of 128 × 128. Each of the
above images are both scale and intensity normalized.
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Once the image data matrix X has been constructed, we
compute the matrix F whose ith row is the SHT of the ith row
of X , denoted from this point forward as SHT(X). This can
be computed quickly using the methods described in [28],
however for small bandwidths the computational savings of
this method are slim. Alternatively, the SHT(X) can be cast
into a linear algebra problem as

F = XZ, (9)

where X ∈ Rm×(12N2
side) is the image data matrix with the

images ordered in terms of ξp as

X =
[
f(ξ0),f(ξ1), · · · ,f(ξ12N2

side−1)
]
, (10)

and Z ∈ R(12N2
side)×(9N2

side) is the matrix of spherical
harmonics ordered in terms of ξp, l, and m as shown in
(11). Note that in computing the SHT(X) the matrix Z may
be pre-computed for several different bandwidths and stored
for later use.

Even though the image data matrix X is correlated in S2

(i.e., correlated in both θ and φ), similar to [8], most of the
energy of X is contained in the low frequency harmonics
of F . An example of this is illustrated in Fig. 3, which is
the spherical harmonic power spectra of object (17) from
Fig. 2. As a result, the principal eigenimages ũ1, . . . , ũk

of SVD(F ) serve as excellent estimates to those of X .
Moreover, the accuracy of the approximated eigenimages
with power spectra centered around the lower frequencies
will tend to be better. We now propose an algorithm for
estimating the required subspace dimension k, as well as
the principal eigenimages of X , based on a user specified
energy recovery ratio µ.

SHT BASED EIGENDECOMPOSITION ALGORITHM

1) Form the matrix F which is the SHT(X).
2) Form the matrix H whose columns are the ordered

columns of F in descending order according to their
norm.

3) Set q = (3Nside)2[1− (1/2)N+1], with N=0 initially.

Fig. 3. This figure shows the spherical harmonic power spectra of object
(17) from Fig. 2. As can be seen from the figure, most of the energy is
concentrated around the low frequency harmonics.

4) Construct the matrix Hq which is the matrix consisting
of the first q columns of H .

5) Compute SVD(Hq). The key observation here is that
Hq contains q columns which is considerably less than
the 12N2

side columns of X .
6) If ρ(X, ũ1, . . . , ũq) < µ. Let N = N + 1 and repeat

Steps 3 through 6. Because the SVD of Hq is already
available, the eigenspace can simply be updated by
modifying the algorithm outlined in [7].

7) Return ũ1, . . . , ũk such that ρ(X, ũ1, . . . , ũk) ≥ µ.
Note that k ≤ q.

Note that for 12N2
side samples on the sphere, only 9N2

side

harmonic images are generated, as a result, it is not possible
to recover 100% of the energy. While this may be viewed
as a drawback in terms of image reconstruction, this is
actually an advantage in terms of computational complexity.
Furthermore, because subspace methods typically work well
with a much smaller subspace dimension, and as a result less
recoverable energy, the proposed algorithm has shown signif-
icant computational savings with little loss in performance.
The actual amount of recovorable energy is dependant on the
object, however for all 25 objects in Fig. 2, over 98% of the
energy was recoverable at Nside = 8.

V. EXPERIMENTAL RESULTS

The proposed algorithm detailed in Section IV was tested
on the objects shown in Fig. 2. The parameter Nside = 8
was used, resulting in 12N2

side = 768 images per object.
The images were then both scale and intensity normalized
to create the image data matrix X . Finally, the matrix F was
computed condensing the image data set from 768 images to
576 harmonic images. The true SVD(X) was also computed
for a ground truth comparison.

A. Performance and Computational Savings

Figure 4 shows a plot of the energy recovery ratio ρ as
a function of the subspace dimension k averaged across all
objects. As can be seen from the figure, the estimated left
singular vectors ũ1, . . . , ũk for the proposed algorithm are
very good approximations to the true left singular vectors as
computed by the SVD(X) in terms of being able to recover
the total energy in X . Note, this data is for the first split,
i.e., N = 0, in step 3 of the algorithm, if the entire N =
(9N2

side) harmonic images are used, the difference becomes
indistinguishable.

Table I shows the computation time required to calculate
the subspace dimension k, and estimate the left singular
vectors ũ1, . . . , ũk needed to meet the user specified energy
recovery ratio µ = 0.9. Also depicted in the table is the result
as computed by the true SVD(X). As is apparent from the
table, in most cases, the left singular vectors ũ1, . . . , ũk are
very good estimates of u1, . . . , uk at a significant computa-
tional savings for the proposed algorithm. Again, only the
first split, i.e., N = 0, in step 3 of the algorithm is required
to recover over 90% of the energy as depicted in the table.
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Z =


Y 0

0 (ξ0) Y −1
1 (ξ0) Y 0

1 (ξ0) Y 1
1 (ξ0) Y −2

2 (ξ0) · · · Y 3Nside−1
3Nside−1 (ξ0)

Y 0
0 (ξ1)

. . . Y 3Nside−1
3Nside−1 (ξ1)

...
...

Y 0
0 (ξ12N2

side−1) · · · Y 3Nside−1
3Nside−1 (ξ12N2

side−1)

 (11)

Fig. 4. This figure shows the energy recovery ratio ρ vs. subspace
dimension k averaged across all 25 objects in Fig. 2.

TABLE I
THIS TABLE SHOWS THE REQUIRED SUBSPACE DIMENSION k, AND THE

TIME REQUIRED TO ESTIMATE THE FIRST k LEFT SINGULAR VECTORS

FOR EACH OBJECT IN FIG. 2 TO EXCEED THE USER SPECIFIED ENERGY

RECOVERY µ = 0.9. THE RESULTS ARE COMPARED AGAINST THE TRUE

SVD USING MATLAB.

Object no. Dimension k Time [sec.]
True Proposed True Proposed

1 2 2 21.78 6.60
2 9 9 24.12 6.88
3 18 18 24.36 7.03
4 3 3 23.89 6.70
5 21 21 24.71 7.13
6 67 71 25.97 8.34
7 5 5 24.00 6.92
8 3 3 26.38 6.67
9 26 26 24.27 7.20
10 60 61 25.81 8.08
11 22 22 24.77 7.16
12 35 36 29.87 7.48
13 26 26 24.62 7.25
14 47 48 25.12 7.76
15 8 8 23.34 6.77
16 19 20 24.79 7.28
17 47 49 25.31 7.81
18 3 3 23.38 6.69
19 54 56 29.93 7.95
20 11 11 23.82 6.87
21 12 12 31.95 6.94
22 2 2 27.44 6.71
23 91 102 26.35 9.11
24 35 35 25.46 7.42
25 4 4 23.39 6.82

B. Error Analysis

Based on the data provided in Table I, it is obvious that
the proposed algorithm is capable of estimating the required

subspace dimension and left singular vectors of X at a
significant computational savings. Because the SHT is lossy
however, it is important to try to quantify the amount of
energy lost. To do this, all 9N2

side harmonic images were
used to estimate the left singular vectors of X . Using these
estimates, the energy recovery ratio ρ(X, ũ1, . . . , ũ9N2

side
) was

computed for each object in Fig. 2. The top plot in Fig. 5
shows the maximum amount of energy recovered per object.
The bottom plot shows the maximum difference in energy
recovery per object if only the first 9N2

side true left singular
vectors are used to recover the same energy, i.e., the bottom
plot shows max(ρ(X, u1, . . . , uk)−ρ(X, ũ1, . . . , ũk)) for all
k ≤ 9N2

side for each object. As seen in the figure, using
the proposed algorithm, over 98% of the energy in X is
recoverable for all objects. Furthermore, there is less than
a 2% difference between the energy recovered by the first
9N2

side true left singular vectors and the left singular vectors
computed by the proposed algorithm for all objects in Fig. 2.
Finally, using

1
4.5N2

side

4.5N2
side∑

i=2

[ρ(X, u1, . . . , ui)− ρ(X, ũ1, . . . , ũi)] (12)

the average error in energy recovery is computed for each
object in Fig. 2. The results are depicted in the top plot of
Fig. 6 which shows that the average error one could expect
to see for the objects of Fig. 2 is less than 1.5%. Note that
4.5N2

side is chosen in the summation of (12) because this
is the number of harmonic images resulting in the first split
(step 3) of the proposed algorithm. The bottom plot in Fig. 6
shows the error as a function of subspace dimension averaged
accross all objects in Fig. 2. Note that the first four splits are
shown and that there is less than 1% error accross all objects
regaurdless of the number of splits used.

VI. CONCLUSIONS AND FUTURE WORK

We have illustrated a computationally efficient algorithm
for estimating the eigendecomposition of images correlated
in S2 using the discrete SHT. The algorithm was tested
on a variety of 3-D objects with images captured from
different vantage points around the sphere. In addition to
significant computational savings as compared to the direct
SVD approach, we have shown that the estimated subspace
dimension is typically very close to that computed by the
direct SVD approach. We have also shown that the errors
associated with using the proposed algorithm are minimal
with respect to the computational savings. Future work will
focus on validating the proposed algorithm on true 3-D
objects rather than CAD models, and extending the algorithm
to the 3-D rotation group SO(3).
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Fig. 5. This figure shows the maximum achievable energy recovery ratio
ρ for each object in Fig. 2 [top], and the maximum difference in energy
recovery between the first 9N2

side true left singular vectors as computed by
SVD(X) and the estimated left singular vectors ũ1, . . . , ũ9N2

side
as computed

by the proposed algorithm [bottom].

Fig. 6. This figure shows the average error in energy recovery using the
true left singular vectors as computed by SVD(X), and the approximated
left singular vectors calculated using the proposed algorithm for each object
in Fig. 2 across the subspace dimension k [top]. The bottom plot shows the
error in energy recovery averaged across all objects in Fig. 2 using the
approximated left singular vectors calculated by the first four splits (step 3)
of the proposed algorithm.
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