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Abstract— Passive running robot can run down shallow slope
with no energy source without gravity. The robot can generate
a stable limit cycle. Dynamics of passive running is very
interesting target and important for developing the robot and
understanding the human locomotion. By the way, running high
jumper can jump very high. The point of jumping is to transfer
horizontal velocity into lifting momentum through the hinged-
movement. In this paper, we demonstrate the experimental
passive running based on the hinged-movement. Moreover, we
derive the fixed point of the passive running, and analyze its
stability.

I. introduction

Biped locomotion is a very attractive mode for robot

movement. Cutting-edge running robots can run fast and

stably. Main concerns of these robots are selection of ac-

tuator, mechanism design, and system control. Jumping is a

very difficult problem. While, passive running robot can run

by interaction between machine dynamics and environment

only. 1-legged [1][2][3], 2-legged [4][5], and 4-legged [6]

passive running exist. Each leg has a translational spring,

which allows for compression during stance, and the subse-

quent rebound into the flight phase.

Passive running can be regarded as a physical phenomenon

generated by the hybrid system, which consist of the contin-

uous dynamics of leg-swing motion and the discrete event

of collision. Passive running robot can exhibit a stable limit

cycle like passive walking [7][8][9][10]. When the state

keeps on the stable limit cycle, the running system is stable.

Passive running may give us an insight into understanding

the human locomotion and developing the robots.

By the way, a bar can jump rotating when it is properly

thrown out to the flat ground. The point of jumping is

to transfer horizontal velocity into lifting momentum. This

phenomenon is called “hinged-movement”. High jumper

can jump very high by the principle of hinged-movement.

This paper focuses on the running robot using the hinged-

movement and not the robot using spring [11][12][13].

In this paper, we propose a passive running based on the

hinged-movement. First, the hinged-movement is conformed

by the experiment, and is modeled based on the experimen-

tal result. Secondly, passive running based on the hinged-

movement is demonstrated by the experiment. Thirdly, fixed

point is derived analytically. Finally, stability of the fixed

point is demonstrated by the simulation.
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(a) Photo of glass fiber bar

(b) Shear deformation of urethane cap

Fig. 1. Hinged-movement bar

II. Hinged-movement

A. Basic experiment

Figure 1 (a) shows a bar, which was used in hinged-

movement experiments. The bar was made by the glass

fiber for pole vault. Diameter and length of the bar are

0.026 and 1.93[m] respectively. Mass is 0.78[kg]. Inertia

moment about center of gravity is 0.2424[kgm2]. Urethane

caps were attached in both ends of the bar. We did a basic

experiment for hinged-movement of the bar. Figure 1 (b)

shows a collision between the bar and the ground. The

urethane cap makes shear. Horizontal direction speed at the

collision is 4[m/s]. The contact time is only 8[ms].

Position of center of the bar x, y and posture θ are shown

in Fig. 2 (a), (b), and (c) respectively. Please see Fig. 3 for

the details of the coordinates. The bar had a collision with

ground at 0.063[s]. Posture of the bar is backward inclining.

After the collision, the bar jumped rotating.

B. Modeling

Figure 3 shows the model of hinged-movement. M is mass.

I is moment of inertia about center of gravity. l is distance

between the center of gravity and the end of bar. Horizontal

and vertical positions of the center of gravity are x and

y respectively. Equations of motion of flight phase can be

obtained as follows:


















Mẍ = 0

Mÿ = −Mg

Iθ̈ = 0

(1)

Collision is very short time (8[ms]). Therefore, we as-

sumed that the bar bounds in axial direction instantaneously.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3298



Time [s]

x 
[m

]

: Experiment
: Simulation

5

4

3

2

1

0
1.21.00.80.60.40.20.0

(a) x

Time [s]

y 
[m

]

2.0

1.5

1.0

0.5

0.0
1.21.00.80.60.40.20.0

(b) y

Time [s]

[r
ad

]

6

5

4

3

2

1

0

-1
1.21.00.80.60.40.20.0

(c) θ

Fig. 2. Position and posture of bar

Relational expression of axial velocity just before and after

collision can be obtained as

L̇+ = −eL̇− (2)

where

L̇− = ẋ− sin
(

θ+ + γ
)

+ ẏ− cos
(

θ+ + γ
)

L is length of the bar. θ+ = θ− holds. The “+” superscript

means “just after collision,” and the “−” superscript means

“just before collision”. e is coefficient of restitution at

collision (0 < e < 1).

In addition, angular momentum is conserved through

collision. From this conservation of angular momentum,

Fig. 3. Model of hinged-movement
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Fig. 4. Step length and maximum height

relational expression can be obtained as

θ̇+ =
Ml {ẋ− cos (θ+ + γ) − ẏ− sin (θ+ + γ)} + Iθ̇−

Ml2 + I
(3)

C. Simulation

Simulation results are shown in Fig. 2. Model parameters

were decided by the experimental bar. Coefficient of restitu-

tion e is decided by a simple collision experiment. e was set

to 0.44. As seen from Fig. 2, there are a few errors between

the simulation results and experimental results. Features of

the simulation results correspond to the those of experiment

results. Therefore, it seems that the model is appropriate.

We run simulations for various posture angles at collision

as shown in Fig. 4. The translational and angular velocities

just before collision are fixed. The horizontal axis denotes

the posture angle just before collision θ−. The vertical axis

denotes the jumping distance S and maximum height of the

center of mass Hmax. The continuous line represents the jump

distance S in case that opposite edge of bar collides on the

ground. The dashed line represents the jump distance S in

case that same edge of bar collides on the ground. The dash-

dot line represents the maximum height of the center of mass

Hmax.

As seen from Fig. 4, the maximum height Hmax changes

for the posture angle at collision. Hmax has maximum at θ−

= –35[deg]. In case of the high jump, this posture angle is

important. While, in case of the jump distance, it is desired

that posture angle θ− is near zero.
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Fig. 5. A photographic playback of passive running based on hinged-movement

III. Passive running based on hinged-movement

A. Experimental condition

On the level ground, the hinged-movement cannot be

continued because there is no energy supply. Therefore, we

did an experiment of hinged-movement on slope like passive

walking. We used a treadmill because experiment space

is limited. Length and width of the treadmill are 1.3 and

0.5[m] respectively. Belt speed of the treadmill is constant.

In addition, the bar was shortened.

In order to reduce the rotation speed of bar, a weight is put

in the bar. Length of bar is 57[cm]. Mass is 460[g]. Inertia

moment is 0.0125[kgm2]. When the bar was dropped on the

ground, rebound of the bar was very small.

B. Experimental results

Experiments by trial and error showed that the best

slope angle is 18.5[deg]. Belt speed of the treadmill is

about 14.5[km/h]. Though the success rate was not high,

we succeeded in 9 steps of passive running based on the

hinged-movement. Figure 5 shows a photographic playback

of passive running based on the hinged-movement. The

movement is beautiful like a floor exercise of the gymnast.

Figure 6 shows the experimental result. The horizontal axis

denotes the time. The vertical axis denotes the posture angle

of bar θ. The posture angle at collision is almost vertical. This

result means that best posture angle at collision is vertical.

IV. Fixed point

A. Collision time

Running system generates a cyclic trajectory. When the

trajectory is limit cycle, the state just after collision is fixed

as one point. This point is called “fixed point”. In this paper,

we analyze the fixed point of one cycle. The state just after

collision of k step is represent by θ+
k

, θ̇+
k

and L̇k
+
. In the fixed

point, θ+
k+1
= θ+

k
, θ̇+

k+1
= θ̇+

k
and L̇+

k+1
= L̇+

k
hold.
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Fig. 6. Experimental result of passive running

When the posture angle at collision of k steps is equal to

the one of k+1 steps, we can obtain the equation as follows:

θ−k+1 = θ
+
k + π (4)

Initial state is set to the state just after collision of k steps.

The position of center of gravity at time t can be obtained

as

xt = ẋ+k t yt = ẏ+k t −
1

2
gt2 (5)

From Eq. (5), the trajectory of center of gravity can be

derived as follows:

yt =
ẏ+

k

ẋ+
k

xt −
1

2

g

ẋ+2
k

x2
t (6)

In the fixed point, the posture just after collision of k + 1

steps is equal to the one of k. From this geometric condition,

the position of fixed point must be located on the line

trajectory as follows:

yt = −xt tan γ (7)
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From Eqs. (6) and (7), position x f of the fixed point can be

derived as

x f =
2ẋ+

k
(ẏ+

k
+ ẋ+

k
tan γ)

g
(8)

From Eqs. (5) and (8), the flight time t f of the fixed point

can be derived as follows:

t f =
2(ẏ+

k
+ ẋ+

k
tan γ)

g
(9)

In addition, the translation velocity and the angular velocity

just before collision of k+1 steps can be derived as follows.

ẋ−k+1 = ẋ+k (10)

ẏ−k+1 = ẏ+k − gt f

= −ẏ+k − 2ẋ+k tan γ (11)

θ̇−k+1 = θ̇+k (12)

B. Necessary condition of fixed point

From Eqs. (10) and (12), fixed point can be generated

when the equation (13) meets.

ẋ+k+1 = ẋ−k+1 θ̇+k+1 = θ̇
−
k+1 (13)

Equation (13) means that horizontal speed ẋ and angular

velocity θ̇ don’t change at collision. In order to meet Eq. (13),

the following relational equations must hold. This relational

equations can be obtained from Eq. (3).

θ+k = −γ lθ̇+k = ẋ+k (14)

Equation (13) means that the posture at collision is vertical,

and the horizontal velocity of edge of bar is zero. Therefore,

the bar collides with ground in the vertical direction. From

this condition, the equation can be obtained as follows:

ẏ−k+1 = −
ẏ+

k

e
(15)

L̇+k = ẏ+k (16)

The condition equation of fixed point (ẏ−
k+1
= ẏ−

k
) and Eq.

(15) are substituted for Eq. (11). So, we can obtain the

equation as

ẏ+k =
2e tan γ

1 − e
ẋ+k (17)

In addition, the bar must rotate by 180[deg] at the flight

phase in the fixed point. From this condition, we can obtain

the equation as

π = θ̇+k t

=
2θ̇+

k
(ẏ+

k
+ ẋ+

k
tan γ)

g
(18)
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C. Fixed point and average velocity

From Eqs. (14), (16), (17), and (18), fixed point of one

cycle can be derived as follows:

θ+f = −γ (19)

θ̇+f =

√

(1 − e) πg

2 (1 + e) l tan γ
(20)

L̇+f =

√

2e2πlg tan γ

(1 + e) (1 − e)
(21)

One fixed point exists when coefficient of restitution at the

collision is 0 < e < 1. In the fixed point, the posture angle

at collision is vertical. This feature corresponds with the

experimental feature that the posture angle at collision is

almost vertical.

From moving distance and time, average velocity of the

fixed point can be derived as follows:

v̄ f =
ẋ+

f
t f

t f cos γ

=

√

(1 − e)πlg

(1 + e) sin 2γ
(22)

Figure 7 shows the average velocity v̄ f with slope angles

γ. Model parameters were decided by the experimental bar.

Coefficient of restitution e was assumed to be 0.001. Small

circle in Fig. 7 represents the experimental result. Dashed

line represents the limit velocity of the treadmill.

When slope angle γ increases, the average velocity v̄ f

becomes slow. In case that slope angle γ is small, it is

very difficult to generate the passive running because the

moving velocity of the fixed point exceeds the limit velocity

of the treadmill. In the experiment, the slope angle γ must

be set to more than 16 [deg]. Slope angle γ of the exper-

iment is 18.5[deg]. In addition, the velocity of experiment

corresponds with the theoretical value.

V. Stability of fixed point

A. Unstable fixed point

State quantities of the state just after collision are ex-

pressed as x+
k
= [θ+

k
, θ̇+

k
, L̇+

k
]T . Successive states is related

3301



m
ax

 |
λ

|

100

80

60

40

20

0
20151050

5

4

3

2

1

0
201918171615

Slope angle      [deg]

Fig. 8. Slope angle and max |λ|

as

x
+
k+1 = f (x

+
k ) (23)

Fixed point is expressed as x+
f
. Fixed point is related as

x+
f
= f (x+

f
). For a small perturbation ∆x+

k
around fixed point,

f is expressed in term of Taylor series expansion as

x
+
k+1 = f (x

+
f ) +

∂ f

∂x+

∣

∣

∣

∣

x+=x+
f

∆x
+
k (24)

From Eqs.(23) and (24), linear discrete-time state equation

is derived as

∆x
+
k+1 =

∂ f

∂x+

∣

∣

∣

∣

x+=x+
f

∆x
+
k ≡ J f∆x

+
k (25)

where

J f =





























































∂θ+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

∂θ+
k+1

∂L̇+
k

∣

∣

∣

∣

∣

f

∂θ̇+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

∂θ̇+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

∂θ̇+
k+1

∂L̇+
k

∣

∣

∣

∣

∣

f

∂L̇+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

∂L̇+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

∂L̇+
k+1

∂L̇+
k

∣

∣

∣

∣

∣

f





























































(26)

If all absolute eigenvalues of Jacobian matrix J f are less

than one, fixed point is local asymptotically stable.

Figure 8 shows the maximum of absolute eigenvalues of

Jacobian matrix with slope angles γ. Jacobian matrix was

obtained from the simulation. The fixed point is unstable

because max |λ| is larger than one. When slope angle γ

increases, instability of fixed point decreases. In the experi-

ment, success rate of passive running increases when slope

angle γ increases. This experimental feature corresponds

with the theoretical analysis.

B. Simplification of Jacobian matrix

One of the eigenvalues of Jacobian matrix is almost zero

because the axial velocity just after collision L̇+ is almost

zero. Therefore, the state quantities of the state just after

collision can be expressed as x+
k
= [θ+

k
, θ̇+

k
]T . (∂θ̇+

k+1
/∂θ+

k
)| f

-4

-2

0

2

4

-4 -2 0 2 4

Eq.(30)

Eq.(31)

Eq.(32)

Stability region

Fig. 9. Stability region

and (∂θ̇+
k+1
/∂θ̇k)| f in J f can be obtained as follows:

∂θ̇+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

= a f

∂θ+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

(27)

∂θ̇+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

= a f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

+ 1 (28)

where

a f =
Mlπg

Ml2 + I

√

2(1 + e)l tan γ

(1 − e)πg

See the appendix for the detail of derivation of Eqs (27) and

(28).

Jacobian matrix J f of Eq. (26) can be written as follows:

J f =





































∂θ+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

a f

∂θ+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

a f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

+ 1





































(29)

C. Stability region of fixed point

From Eq. (29), equations of stability condition of the fixed

point can be derived as follows:

∂θ+
k+1

∂θ+
k

∣

∣

∣

∣

∣

f

< 1 (30)

a f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

< 0 (31)

−a f

∂θ+
k+1

∂θ̇+
k

∣

∣

∣

∣

∣

f

− 2
∂θ+

k+1

∂θ+
k

∣

∣

∣

∣

∣

f

< 2 (32)

When (∂θ+
k+1
/∂θ+

k
)| f and (∂θ+

k+1
/∂θ̇+

k
)| f meet Eqs. (30),

(31), and (32), the fixed point is local-asymptotically stable.

Figure 9 shows the stability region as the shaded

area. Horizontal and vertical axes denote (∂θ+
k+1
/∂θ+

k
)| f and

(∂θ+
k+1
/∂θ̇+

k
)| f respectively. (∂θ+

k+1
/∂θ+

k
)| f and (∂θ+

k+1
/∂θ̇+

k
)| f of

fixed poin are obtained by numerical analysis. The location

is overlaid as the small circle in Fig. 9. The fixed point
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is unstable because the small circle is not located in the

stability region. However, the stability region exists. In order

to stabilize the fixed point, (∂θ+
k+1
/∂θ+

k
)| f and (∂θ+

k+1
/∂θ̇+

k
)| f

must be put in the stability region.

VI. Conclusions

In this paper, we did experiments and analyzed a passive

running based on the hinged-movement. The results of this

study are summarized as follows:

(1) We realized passive running based on the hinged-

movement. The movement is beautiful like a floor

exercise of the gymnast. Average speed of the passive

running is very high (14.5[km/h]).

(2) Fixed point of the passive running was derived analyti-

cally. In the fixed point, the posture angle at collision is

vertical. When slope angle increases, the moving speed

becomes slow.

(3) Stability of the fixed point was demonstrated from

the eigenvalues of Jacobian matrix. The fixed point is

unstable. When slope angle increases, instability of fixed

point decreases.

(4) By simplifying Jacobian matrix, equations of stability

condition of the fixed point were derived analytically.

Though the stability region exists, the fixed point is not

located in the stability region. Therefore, the fixed point

becomes unstable.

Video footage of the experiment can be seen on WWW

(http://drei.mech.nitech.ac.jp/˜fujimoto/sano/walk eng.html).

In the future, we will derive the stabilization method of the

fixed point. We will realize a stable passive running based

on thehinged-movement.
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Appendix

Time tk+1 from k steps to k + 1 steps can be written as

follows:

tk+1 =
θ−

k+1
− θ+

k

θ̇+
k

=
θ+

k+1
− θ+

k
+ π

θ̇+
k

(33)

Horizontal and vertical velocities just after collision of step

k can be obtained as

ẋ+k = lθ̇+k cos
(

θ+k + γ
)

(34)

ẏ+k = −lθ̇+k sin
(

θ+k + γ
)

(35)

Translational velocity just before collision of step k + 1 can

be derived as follows:

ẋ−k+1 = ẋ+k = lθ̇+k cos
(

θ+k + γ
)

(36)

ẏ−k+1 = ẏ+k − gtk+1

= −lθ̇+k sin
(

θ+k + γ
)

− g
θ+

k+1
− θ+

k
+ π

θ̇+
k

(37)

From Eqs. (3), (36) and (37), discrete-time state equation of

θ̇+
k

can be derived as follows:

θ̇+k+1 =
Ml2θ̇+

k
cos
(

θ+
k
+ γ
)

cos
(

θ+
k+1
+ γ
)

Ml2 + I

+
Ml2θ̇+

k
sin
(

θ+
k
+ γ
)

sin
(

θ+
k+1
+ γ
)

Ml2 + I

+
Mlg
(

θ+
k+1
− θ+

k
+ π
)

sin
(

θ+
k+1
+ γ
)

θ̇+
k

(

Ml2 + I
)

+
Iθ̇+

k

Ml2 + I
(38)

By linearizing and differentiating Eq. (38), Eqs. (27) and (28)

can be derived.
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