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Abstract— Information Theory is concerned with the reliable
transmission of information through noisy environments. This
relates to communicating agents, as well as one agent commu-
nicating with the environment by taking measurements (e.g.,
robotic sensing). Typically information theory is formulated in
the context of probability on either discrete spaces or continu-
ous Euclidean spaces in which the operation of addition makes
sense. Some have extended information theory techniques to
differential geometric settings. However, only in the context
of group theory can the concept of addition be replaced in a
meaningful way with a group operation. This paper presents
concepts of information theory on Lie groups developed by
the author, and illustrates their application to mobile robotics
problems. In particular, the concepts of Shannon entropy,
Kullback-Leibler divergence, the Cramér-Rao bound for pose
data are developed, and some theorems about their properties
are proved. It is also illustrated how these concepts might be
integrated into pose estimation, localization, and odor-plume
source detection.

I. INTRODUCTION

Over the past decade, problems in mobile robotics have
received considerable attention. Two classes of problems that
both fall under the category of estimation are simultaneous
localization and mapping (SLAM) [21], [9] and odor source
detection [20], [19]. Both problems are probabilistic. In the
former, sensors such as sonar or optical range finders are
used to map the position and orientation (or “pose”) of the
robot in the plane or in space [14]. In the latter, the goal
is to find the position of the source of an odor plume using
artificial olfaction/chemical sensors.

In this paper it is shown how these two problems can
be put into the same analytical framework in which in-
formation gathering is combined with stochastic models of
robot sensing and locomotion capabilities. Since the space
of all poses (homogeneous transformation matrices) in n-
dimensional space together with the usual operation of
composition (matrix multiplication) forms a Lie group (the
special Euclidean group, SE(n)), and since the state of a
slow-moving mobile robot can be described by its pose,
the theory presented here has a natural Lie-group-theoretic
flavor. This has been exploited in related work including [17],
[11], and of course there is a huge literature on geometric
mechanics, much of which is summarized in [3], as well as
differential-geometric methods in computer vision [12], [13].
But to the knowledge of the author, the topic of information-
theoretic methods on Lie groups has not been explored
previously.
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For concreteness we will restrict the discussion to the
case of rigid planar motions here, but the methods apply
equally well to both spatial motions as well as articulated
bodies, the configurations of which can be described by more
complicated Lie groups. Unlike prior efforts in SLAM in
which the pose of a mobile robot is treated as a vector
[x, y, θ] ∈ R3, here poses are treated as group elements
g(x, y, θ) ∈ SE(2). Probability densities describing the
pose of a robot given a set of measurements are therefore
probability densities on the group SE(2).

The remainder of this introduction reviews recent work
on the use of information-theoretic methods in mobile robot
localization and odor-plume source finding. In both problems
the classical Cramér-Rao bound has been used in previous
works without consideration of the properties of SE(2). This
can be done when robots are considered to be points that
can move without consideration of nonholonomic constraints
in relatively uncluttered spaces. However, if one wants to
incorporate nonholonomic constraints and uncertainty in
robot actuation capabilities (in addition to the uncertainty
in sensing that has been addressed in prior work), then it is
difficult to avoid the properties of SE(2). And the extension
of information-theoretic tools to the Lie-group setting in
which such problems are addressed naturally is the main
contribution of this paper. In Section II the mathematics of
SE(2) is reviewed together with stochastic nonholonomic
models developed by the author and coworkers in prior
work. These models will be used to motivate the new proba-
bilistic and information-theoretic search strategies presented
in Section III. Because these strategies view data obtained
by a robot, as well as the motion capabilities of a robot,
as issues in the differential geometry of SE(2), and since
“information theory on Lie groups” has not been developed
in the literature, Section IV is devoted to stating some
theorems that will allow methods developed by others in the
context of Rn to be adapted easily to the Lie group setting.

A. A Review of Probabilistic Search Strategies in Euclidean
Space

1) Gradient-Following: It is believed that bacteria such as
E. coli obey simple rules for following resources [18], [2],
[1]. In particular, they execute stochastic search strategies in
SE(3) whereby they swim approximately straight forward
for some duration, randomize their orientation, and swim
straight again. The duration of the straight segments of these
trajectories is related to the strength of a chemical signal
(which for lack of a better word will be called odor here);
the stronger the odor, the shorter the straight portion of the
path. This stochastic search approach appears to serve E.
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coli well. However, at the macro scale air flows at Reynolds
numbers much larger than zero, and so gradient tracking
can be problematic. For this reason, a number of researchers
have developed information-based methods, as reviewed in
the following subsections

2) Motions Guided by the Cramér-Rao Bound: In a series
of recent papers Tzanos and Zefran [22], [23], [24] develop
an odor-source-location-detection algorithm based on the
Cramér-Rao bound. In that approach it is assumed that a
holonomic point robot takes measurements at known global
positions and compares them to what the corresponding
measurements would be in a database of maps in which
scent fields corresponding to sources at a variety of differ-
ent locations are calculated a priori. Then the Cramér-Rao
bound is used to estimate which of the stored scent maps
most accurately reflects the measurements that have been
taken. In that formulation, maps are parameterized by source
location and global knowledge of robot location. In separate
work unrelated to odor plumes, Censi [5], [4] bounded the
achievable accuracy of localization when a robot that does
not know its position uses noisy range-finders to attempt to
localize. In separate work, Cortez, Tanner, and Lumia [7]
use the information-theoretic concept of relative entropy to
drive mobile robots to perform radiation mapping. While
these are all significant advances, none use the nonholonomic
constraints inherent in the mobile robot, nor do they exploit
the geometric structure of the configuration space.

3) Infotaxis: Searching for Maximum Information Gain:
A probabilistic model of plume detection has been developed
recently in which the goal is to determine the location of
the source of an odor (e.g., smoke from a fire, chemical
pathogens in the environment, etc., which are collectively
referred to as “odor.”) under the conditions that the density of
the odor is governed by advection as well as diffusion. Under
this model, a closed-form expression for the probability of
registering the existence of an odor when positioned at x and
the source is at s is given and denoted as r(x | s). In that
work the model for the probability of the source location, s,
is given by the posterior probability density [25]

pt(s) = Ls(Tt)/
∫
Lx(Tt)dx

where

Ls(Tt) = exp
[
−
∫ t

0

r(x(τ) | s)dτ
] N∏
k=1

r(x(tk); s)

is a kind of likelihood function for the source location. Those
authors then proceed using an information criterion to guide
rectilinear (translation-only) motions that converge to the
source location.

It should be noted that a nonholonomic robot may not be
able to follow such a trajectory, and certainly not if there is
noise/slip in its locomotion system. Therefore this provides
an opportunity for applying Lie-theoretic tools.

As far as odor detecting robots are concerned, if two
chemical sensors are located at the ends of long booms
deployed at antipodal ends of a mobile robot, then this

gives the robot the ability to detect gradients in its body-
fixed frame. Such measurements are then naturally pose
measurements. Combining this information with stochastic
models of range sensing and locomotion provides a method
for estimating the source location of a plume as it appears in
the body-fixed frame of the robot, without global knowledge.

The literature on SLAM and odor detection have exten-
sively used techniques from probability and information the-
ory in Euclidean space. Concepts such as Shannon entropy,
Kullback-Leibler divergence, the Cramér-Rao bound, and
various filtering algorithms for data in Rn have been used.
However, when it comes to combining stochastic models
of sensor information and locomotion, there is no natural
way to decouple the group-theoretic nature of the prob-
lem, unless one artificially restricts attention to holonomic
robots with perfect locomotion capabilities. Unfortunately,
the probablistic/information-theoretic techniques mentioned
above have not been generalized to the Lie-group setting
which is natural for use in robotics. However, some of the
pieces are in place. For example, stochastic nonholonomic
models have been developed by the author and collaborators
in the context of wheeled vehicles and needle steering [27],
[16] together with “kinematic state estimation” [17]. Park and
coworkers have developed particle filters for SE(n) [11], etc.

The main emphasis of the current paper is the devel-
opment of concepts of Shannon entropy, Kullback-Leibler
divergence, and the Cramér-Rao bound for pose data, and
presents some new theorems about their properties.

II. METHODS

A. General Terminology

Three matrix Lie groups will play important roles in this
paper:

SO(n) = {R ∈ Rn×n |RRT = I,detR = +1};

SE(n) =
{(

R t
0T 1

) ∣∣∣∣ (R, t) ∈ SO(n)× Rn
}

(which is equivalent to the set of rotation-translation pairs
(R, t) with the operation ◦ defined by (R1, t1) ◦ (R2, t2) =
(R1R2, R1t2 + t1)); and

GL+(n,R) = {A ∈ Rn×n |detA > 0}.

The group operation for each can be viewed as matrix
multiplication.

From the polar decomposition of symmetric positive defi-
nite real matrices, we have that any A ∈ GL+(n,R) can
be written as A = RS where S = ST = (ATA)

1
2 ∈

SO(n)\GL+(n,R) and R = A(ATA)−
1
2 ∈ SO(n). Here

SO(n)\GL+(n,R) is the homogeneous space consisting of
all symmetric positive definite matrices. If × denotes the
Cartesian product of spaces, then the notation (SO(n) ×
(SO(n)\GL+(n,R)) → GL+(n,R) denotes the mapping
defined by the matrix multiplications R(R−1A) = A.

Let {f(x; θ) |θ ∈ Θ} denote a parameterized family
of multivariate probability distributions. Perhaps the most
common such family is the the Gaussian distribution on Rn,
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for which θ = (µ,Σ) and Θ = Rn × (SO(n)\GL+(n,R)).
Given such a family as a model for some probabilistic
phenomenon for which θ is a priori unknown, then an
estimate θ̂ ∈ Θ can be obtained from a set of observa-
tions {x1,x2, ...,xN} using an estimator. One of the most
popular estimators is the method of maximum likelihood,
which seeks θ̂ ∈ Θ such that the likelihood function is
maximized. That is, θ̂ = arg maxθ∈Θ

L(θ) where L(θ) =∏N
k=1 f(xk; θ). This is particularly convenient when f is

a Gaussian, but the concept applies equally well to other
parametric families. The Cramér-Rao bound provides a limit
on how accurate an estimator can be. This is not limited to
the maximum likelihood estimator, which is discussed above
only for the sake of concreteness.

B. Stochastic Models of Mobile Robots

The cart-like robot shown in Figure 1 moves around in
the plane by turning each of its two wheels. Relative to a
frame of reference fixed in the plane, the frame of reference
fixed in the robot moves as a function of the torque inputs
imparted by the motors to the wheels. This reference frame
can be thought of as the time-dependent rigid-body motion

g(x, y, θ) =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 (1)

where θ is the angle that the axle makes with the x-axis
of the world frame, and x and y are the components of the
translation of the center of the cart-like robot relative to the
frame of reference fixed in the plane. The group law for
SE(2), which is equivalent to the multiplication of matrices
of the form in (1) is

g(x1, y1, θ1) ◦ g(x2, y2, θ2) =

g(x1+x2 cos θ1−y2 sin θ1, y1+x2 sin θ1+y2 cos θ1, θ1+θ2).

Furthermore, pure translational and rotational motions can
be expressed as etX1 = g(t, 0, 0), etX2 = g(0, t, 0), and
etX3 = g(0, 0, t) where etXi is the matrix exponential and
X1, X2, X3 are respectively the matrices 0 0 1

0 0 0
0 0 0

 ;

 0 0 0
0 0 1
0 0 0

 ;

 0 −1 0
1 0 0
0 0 0

 .

Therefore we can write g(x, y, θ) = exp(xX1 +
yX2) exp(θX3). The logarithm map goes the opposite way
and converts elements of SE(2) into linear combinations of
the Xi matrices (which are basis elements for the Lie algebra
se(2)). The logarithm map does not work for some elements
of SE(2), but the set were it breaks down is a set of measure
zero. Later in Section II-E the way that the logarithm map is
used (under an integral) means that this set of measure zero
is irrelevant.

If the robot’s motion has been observed, then g(t) is
known for all times from t = 0 up to the present time.
However, the exact location of the future location of the robot
is uncertain until it actually happens since the wheels might
slip. Given models describing these uncertainties, what will

the most likely position and orientation of the robot be at a
given future time?

Let the two wheels each have radii r, and let the distance
between the wheels (called the wheelbase) be denoted as L.
Imagine that the angles through which the wheels turn around
their axes are governed by “stochastic differential equations”
of the form

dφ1 = ω(t)dt+
√
Ddw1 (2)

dφ2 = ω(t)dt+
√
Ddw2 (3)

where dwi each represent “uncorrelated unit white noise,”
D scales the strength of the noise, and ω(t) is what the
time-rate-of-change of θ(t) would be if D were zero. Then a
“stochastic trajectory” for g(t) in (1) is defined by stochastic
differential equations of the form [27](

dx

dy

dθ

)
=

(
rω cos θ

rω sin θ

0

)
dt+

√
D

( r
2 cos θ r

2 cos θ

r
2 sin θ r

2 sin θ

r
L

− r
L

)(
dw1

dw2

)
(4)

Stochastic trajectories, by definition, are not repeatable.
However, if such an equation is simulated many times,
each time starting from the same initial conditions (say,
x = y = θ = 0), then a function, f(x, y, θ; t) that records
the distribution of positions and orientations of the cart
at the same value of time, t, in each trajectory can be
defined. As explained in detail in [27], [8], a well-developed
theory for linking stochastic differential equations such as
(4) to functions such as f(x, y, θ; t) exists. This theory
produces a partial differential equation (called a Fokker-
Planck equation) for f(x, y, θ; t). In the present context, this
equation is of the form [27]

∂f

∂t
= −rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y
+

D

2

(
r2

2
cos2 θ

∂2f

∂x2
+
r2

2
sin 2θ

∂2f

∂x∂y
+
r2

2
sin2 θ

∂2f

∂y2
+

2r2

L2

∂2f

∂θ2

)
.

There is a very clean coordinate-free way of writing (4)
and the above equation. Namely (4) can be written as(
g−1 dg

dt

)∨
dt = rωe1dt+

r
√
D

2

 1 1
0 0

2/L −2/L

 dw

where ∨ is the “vee operator” defined in [15]. The
coordinate-free version of the Fokker-Planck equation is
given below.

C. Calculus on Euclidean Groups

Analogs of the usual partial derivatives in Rn can be
defined in the Lie-group setting as [6]

X̃if =
[
d

dt
f
(
g ◦ etXi

)]∣∣∣∣
t=0

, i = 1, 2, 3. (5)

These are called Lie derivatives. The Fokker-Planck equation
above can be written compactly in terms of these Lie
derivatives as [27]

∂f

∂t
= −rωX̃1f +

r2D

4
(X̃1)2f +

r2D

L2
(X̃3)2f. (6)
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And while efficient techniques for solving this sort of equa-
tion exist for both the long-time and short time cases (see e.g.
[27], [8]), the emphasis in the current paper is not solution
techniques, but rather an assessment of how pose information
can be obtained from (6) directly. The first observation that
can be made along these lines is that if the robot starts
from a known pose, g0 = g(x0, y0, θ0), then (6) is solved
subject to the initial condition fg0(g; 0) = δ(g−1

0 ◦ g) =
δ(x − x0, y − y0, θ − θ0). It will often be convenient to set
g0 = e = g(0, 0, 0), the identity, and use the notation ft(g)
as shorthand for fe(g; t). If the robot runs for a time t1 from
the initial pose g0 = e, the resulting pose distribution will be
f(g; t1). We will not know the robot’s pose at time t1, but
only a distribution of poses, the support of which contains
the actual poses.

In analogy with the way that natural generalizations of
partial derivatives exist for Lie groups as defined in (5),
so too do generalizations of the concept of integration. In
particular, for SE(2) the natural volume element is dg =
dxdydθ, and for SO(3) it can be written in terms of ZXZ
Euler angles as dR = sinβdαdβdγ. Both SO(3) and SE(2)
(and SE(3) as well) are examples of unimodular Lie groups,
which means that integration of arbitrary integrable functions
is invariant under shifts and inversions of the argument:∫

G

f(g)dg =

∫
G

f(g0 ◦ g)dg =

∫
G

f(g ◦ g0)dg =

∫
G

f(g−1)dg.

If the robot continues to move for an additional amount
of time, t2, then the distribution will be updated as a
convolution over G = SE(2) of the form

ft1+t2(g) = (ft1 ∗ ft2)(g) =
∫
G

ft1(h)ft2(h−1 ◦ g)dh. (7)

This sort of convolution has been used extensively by the
author and coworkers to describe manipulator workspaces
for more than a decade (see for example, [10]) but it applies
equally well to probabilistic mobile robotics with travel time
of a mobile robot replacing length along a manipulator arm
(a fact that appears to be unknown to the SLAM commu-
nity). Here the group operation, ◦, leads to the convolution
operation, ∗, in analogy with the way that addition in Rn
leads to the usual concept of convolution. It is the existence
and properties of the convolution operation that will allow
us to derive some inequalities that parallel those in classical
information theory. However, the important difference that
◦ (and therefore ∗) is not commutative (since in general
g1 ◦ g2 6= g2 ◦ g1) means that some aspects of the classical
information theory need to be modified.

D. Entropy and Relative Entropy on Euclidean Groups

Equipped with a method to integrate, all of the classical
definitions of continuous information theory can be general-
ized to the group setting. Namely, the Shannon entropy and
Kullback-Leibler divergence become

S(f) = −
∫
G

f(g) log f(g)dg

and
DKL(f ‖φ) =

∫
G

f(g) log
(
f(g)
φ(g)

)
dg

Fig. 1. A Kinematic Cart with an Uncertain Future Position and Orientation

where f(g) and φ(g) are probability density functions (i.e.,
they are nonnegative functions that integrate to unity).
Furthermore, many information inequalities formulated in
Euclidean space also hold in the context of Lie groups, as
exemplified by the following.

Theorem 1: The entropy of convolved pdfs increase, and the
data processing inequality holds:

S(f1 ∗ f2) ≥ max{S(f1), S(f2)}

and

DKL(f1 ‖ f2) ≥ max {DKL(f1 ∗ φ ‖ f2 ∗ φ), DKL(φ ∗ f1 ‖φ ∗ f2)} .

Proof: Follows from the convexity of the functions − log x
and x log x, and Jensen’s inequality.

E. Fisher Information and Covariance for SE(2)

The covariance of a concentrated probability density cen-
tered around the mean µ, which is defined as the point µ ∈ G
such that ∫

G

(log g)∨f(µ ◦ g)dg = 0,

can be defined as [26]

Σ(f) =
∫
G

(log g)∨[(log g)∨]T f(µ ◦ g)dg. (8)

The Fisher information matrix is defined here by its elements
as

Fij(f) =
∫
G

1
f

(X̃if)(X̃jf)dg, (9)

and the scalar Fisher information is the trace of F . Note
that if ρ(g) is a pdf with mean at the identity and f(g) =
ρ(µ−1 ◦ g) is a shifted version with mean at µ, then

F (ρ) = F (f),

which results from the invariance of integration over G.
The author and collaborators have investigated how the

covariance of the convolution of pdfs behaves, and have
obtained closed-form approximations when the pdfs are
“concentrated.” In particular, if ρ1 and ρ2 are two probability
distributions that are respectively centered around poses g1
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and g2, then it can be shown that ρ1 ∗ ρ2 is centered around
g1 ◦ g2 and the covariance propagates under convolution as
(see [26] and references therein)

Σρ1∗ρ2 = Ad(g−1
2 )Σ1Ad

T (g−1
2 ) + Σ2

where for SE(2)

Ad(g) =

 cos θ − sin θ y
sin θ cos θ −x

0 0 1

 .

Later in the current paper the properties of Fisher infor-
mation are explored and a group-theoretic version of the
Cramér-Rao bound is derived (with the case of SE(2) being
the one of primary interest for mobile robotics).

III. PROBABILISTIC SEARCH STRATEGIES ON
THE EUCLIDEAN GROUP

In this section several probabilistic strategies for local-
ization and plume source detection by mobile robots are
described as problems on SE(2). It is assumed that each
mobile robot has olfactory sensors at r1, ..., rn and range
sensors that project from the origin of the frame attached to
the robot through the points p1, ...,pn. Both {ri} and {pi}
are planar position vectors fixed in the body-fixed frame of
the robot. The case of a sensor deployed on a movable boom
or a laser range finder can be viewed within this framework
by letting m and n become large to represent finely sampled
data.

The problems of localization and guiding movement to the
source of a plume without hitting obstacles can be imple-
mented in a variety of ways as described in the subsections
that follow.

A. Localization by Optimization on SE(2)

Suppose that a robot is placed at random in a known
environment and it must localize itself (i.e. determine its
pose relative to a world frame) rapidly using distance mea-
surements from, e.g., a laser range finder. This will provide
a set of measurements µi = di +ni where di is the distance
to a wall along the line segment from laser source through
the point pi, and ni is a corresponding noise. These mea-
surements can be compared with the ideal values obtained
from a world model interrogated with different robot poses.
If mi(g) denotes the distance that the model would produce
for the ith sensor when the robot is assumed to be at pose
g, then a measure of goodness of fit between the model
and observations can be used to estimate g. For example,
a two-norm of the form c2(g) =

∑n
i=1(µi −mi(g))2 could

be used, or a Kullback-Leibler-divergence-like measure of
the form cKL(g) =

∑n
i=1 µi(g) log(µi(g)/mi(g)) could be

used. Regardless, the minimization of one of these costs over
g would provide an estimator, which is group valued.

Normally in robot localization problems, the fact that
SE(2) is a group is overlooked or ignored, and standard tools
from Bayesian analysis and classical information inequalities
such as the Cramér-Rao bound are used (essentially treating
SE(2) as if [x, y, θ] ∈ R3). This becomes problematic when

factoring nonholonomic constraints and the topology of the
configuration space, and becomes even more acute in three-
dimensional planning problems. This is therefore one motiva-
tion for the new theorems presented in Section IV. Additional
motivation is provided in the following subsection.

B. Searching Odor Plumes by Gradient Ascent on SE(2)

If the source of an odor plume is at the global position
s ∈ R2, and the resulting scent field (which for the moment
is assumed to be static on the time scale of robot motion)
is ρ(x; s), then the ith olfactory sensor on the mobile robot
will register measurement µi(g(t)) = ρ(g(t)r1·; s) + ni(t)
at time t where ni(t) is the time-varying (though stationary)
noise in this sensor. By constructing a vector µ(g(t)) =
[µ1(g(t)), ..., µn(g(t))]T and a cost function C(g(t)) =
1
2µ(g(t))TMµ(g(t)) for some positive definite M (such
as the identity matrix), then a natural way to drive the
robot toward s (without a priori knowledge of s) is by
gradient ascent on C(g). Since the robot is nonholonomic
and noisy and has a non-negligible size, it is not possible
to simply follow the gradient toward s. However, we can
perform a small-time average of C(g(t)) over the interval
ti ≤ t ≤ ti + ∆t while g(t) is fixed, thereby obtaining a
better estimate of C(g). Then a discretized version of the
derivatives X̃C can be computed as the robot moves.

C. Infotaxis on SE(2)

Two distinctly different forms of infotaxis can be perfomed
on SE(2) in the context of odor plume detection by mimick-
ing the Cartesian strategies reviewed in Sections I-A.2 and
I-A.3. In both forms, it will be assumed that olfactory sensors
are placed far enough apart (e.g. on deployable booms) so
that differences in the odor intensity distribution can be
sensed. In doing so, the problem immediately becomes one
that depends on the pose of the robot. The infotaxis approach
in Section I-A.3 then is cast within the SE(2) setting by
switching trajectories x(t) ∈ R2 into ones of the form
g(t) ∈ SE(2). Likewise the CRB approach reviewed in
Section I-A.2, in which maps of known environments are
parameterized by the global odor source location and the
assumption that a robot knows its global position, can be
converted to a form without global knowledge that depends
on the robot pose. Specifically, if a version of the CRB
for pose data existed, then the robot could, in principle,
take measurements at discrete poses or along a continuous
trajectory and compare these measurements with values in
maps as reviewed in Section I-A.2, but since there can be
uncertainty in the robot’s pose, the CRB would need to be
computed not only for the source position parameters that
define the maps, but also the pose trajectory of the robot. In
other words, the parameter in the estimation problem would
become a direct product of R2 and one or more copies of
SE(2). And it would be useful to have estimation methods
for this kind of group manifold.
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IV. FISHER INFORMATION INEQUALITIES ON
UNIMODULAR LIE GROUPS

Given the motivating problems described in the previ-
ous section, several new results are presented here that
link information-theoretic inequalities to the differential-
geometric properties of Lie groups that arise naturally in
mobile robotics problems.

A. Fisher Information and Diffusions on Lie Groups

If f(g, t) is a pdf that satisfies a diffusion equation such
as (6) and its generalizations (regardless of the details of the
initial conditions) then some interesting properties of Sf (t)
can be studied. One result is the following.

Theorem 2: If f(g, t) obeys a diffusion equation on a
unimodular Lie group (with or without drift) with diffusion
matrix D, then the rate of entropy increase of f(g, t) is
related to the Fisher information of f(g, t) by the equation

Ṡf =
1
2

tr[DF ].

Proof: Ṡf = dSf/dt, and differentiating under the integral
sign gives

Ṡf = −
∫
G

{
∂f

∂t
log f +

∂f

∂t

}
dg. (10)

But from the property that a diffusion equation preserves
total probability,∫

G

∂f

∂t
dg =

d

dt

∫
G

f(g, t)dg = 0,

and so the second term in the braces in (10) integrates to
zero.

Substitution of a diffusion equation with drift of the form

∂f

∂t
=

1
2

n∑
i,j=1

DijX̃iX̃jf −
n∑
k=1

dkX̃kf

(which generalizes (6)) into the integral for Ṡf and using
integration by parts gives

Ṡf = −
∫
G

1
2

n∑
i,j=1

DijX̃iX̃jf −
n∑
k=1

dkX̃kf

 log f dg

=
1
2

n∑
i,j=1

Dij

∫
G

1
f

(X̃jf)(X̃if) dg

=
1
2

tr[DF ].

The integral corresponding to the drift disappears, i.e.,∫
G

X̃kf dg = 0,

from the generalized Stokes theorem for manifolds [8]. Since
D and F are positive semidefinite, it follows that Ṡf ≥ 0.

B. Fisher Information and Convolution on Lie Groups

The decrease of Fisher information as a result of convo-
lution can be studied in much the same way as for pdfs on
Euclidean space.

The focus of this subsection is the following theorem

Theorem 3: Let ρi(g) be smooth pdfs on the unimodular Lie
group G. Then the following inequality holds for the Fisher
information matrix:

tr[F (ρ1 ∗ ρ2)P ] ≤ tr[F (ρi)P ] (11)

where i = 1, 2 and P is an arbitrary symmetric positive
definite matrix with the same dimensions as F .

Proof: Let

f12(h, g) = ρ1(h)ρ2(h−1 ◦ g).

Then
f1(h) =

∫
G

f12(h, g)dg = ρ1(h)

and
f2(g) =

∫
G

f12(h, g)dh = (ρ1 ∗ ρ2)(g).

It follows that

(X̃if2)(g) =
∫
G

ρ1(h)X̃iρ2(h−1 ◦ g)dh.

Then by the change of variables k = h−1 ◦ g,

(X̃if2)(g) =
∫
G

ρ1(g ◦ k−1)X̃iρ2(k)dk.

This means that

(X̃if2)(g)
f2(g)

=
∫
G

(X̃iρ2)(k)
ρ2(k)

ρ1(g ◦ k−1)ρ2(k)
f2(g)

dk. (12)

Therefore, from the Cauchy-Schwarz inequality,

Fii(f2) ≤ Fii(ρ2).

The above can be written as

tr[F (ρ1 ∗ ρ2)Λ] ≤ tr[F (ρ2)Λ]

for any positive definite diagonal matrix Λ with the same
dimensions as F . If this is true in one Lie-algebra basis
{Xi}, then the more general statement in (11) must follow
in another basis where P = QTΛQ = PT > 0 replaces Λ.
Since the initial choice of basis is arbitrary, (11) must hold in
every basis for an arbitrary positive definite matrix P . This
completes the proof.

C. The Cramér-Rao Bound On Unimodular Lie Groups

The focus of this subsection is the following theorem

Theorem 4: Let ρ(g) = ρ(g−1) be a pdf on a unimodular Lie
group G (e.g. SE(n) or SO(n)), and let f(g;µ) = ρ(µ−1 ◦
g). Given an unbiased estimator of µ, then the Cramér-Rao
bound holds for sufficiently small ‖Σ‖ in the following form

Σ ≥ F−1 (13)
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where Σ and F are defined in (8) and (9) and the above
matrix inequality is interpreted as λi(Σ − F−1) ≥ 0 for
i = 1, 2, ..., n where n is the dimension of G.

Proof: For a symmetric pdf, ρ(g) = ρ(g−1), the mean is
at the identity, i.e., g = e, and so∫

G

(log g)∨ρ(g)dg = 0. (14)

The invariance of integration under shifts then gives

φ(µ) =
∫
G

(log(µ−1 ◦ g))∨ρ(µ−1 ◦ g)dg = 0. (15)

Applying the derivatives X̃i to φ(µ) gives an expression for
X̃iφ(µ) = 0 that can be expanded under the integral using
the product rule X̃i(a · b) = (X̃ia) · b + a · (X̃ib) where in
the present case a = (log(µ−1 ◦ g))∨ and b = ρ(µ−1 ◦ g).
Note that when ρ(·) is highly concentrated, the only values
of g that significantly contribute to the integral are those for
which µ−1 ◦ g ≈ e. By definition

X̃i(log(µ−1 ◦ g))∨ =
d

dt
(log((µ ◦ etXi)−1 ◦ g))∨

∣∣∣∣
t=0

=
d

dt
[log(e−tXi ◦ µ−1 ◦ g)]∨

∣∣∣∣
t=0

.

Using the Baker-Campbell-Hausdorff formula

log(eXeY ) ≈ X + Y +
1
2

[X,Y ]

with X = −tXi and Y = log(µ−1 ◦ g) together with the
fact that µ−1 ◦ g ≈ e then gives∫

G

[X̃i(log(µ−1 ◦ g))∨]ρ(µ−1 ◦ g) ≈ −ei. (16)

The second term in the expansion of X̃iφ(µ) is∫
G

[log(µ−1 ◦ g)]∨ρ(e−tXi ◦ µ−1 ◦ g)dg
∣∣∣∣
t=0

=∫
G

[log h]∨ρ(e−tXi ◦ h)dh
∣∣∣∣
t=0

where the change of variables h = µ−1 ◦ g has been made.
Using the symmetry of ρ gives ρ(e−tXi ◦h) = ρ(h−1◦etXi),
and making the change of variables h → k−1 then reduces
this term to

∫
(log k−1)∨(X̃iρ)(k)dk. Letting i = 1, 2, 3, and

recombining all of the parts means that X̃iφ(µ) = 0 can be
written in the form

∫
G
ai(k)bj(k)dk = δij where ai(k) =

[ρ(k)]
1
2 (log k−1)∨ · ei and bj(k) = [ρ(k)]

1
2 X̃j [log ρ(k)].

Then, as in the proof of the classical Cramér-Rao bound,
using the Cauchy-Schwarz inequality gives the result in (13).

V. CONCLUSIONS

Information-theoretic methods on Lie groups are moti-
vated in the context of nonholonomic mobile robotics prob-
lems. The following four classical (continuous) information-
theoretic inequalities were extended to the Lie group context
in this paper: (1a) entropy increases under convolution of
pdfs (which is equivalent to the addition/composition of
random variables); (1b) the data processing lemma; (2) the

relationship between the rate of increase of entropy in a
diffusion process and the Fisher information; (3) the behavior
of Fisher information under convolution; (4) the Cramér-
Rao bound. The recognition of these properties means that
information-driven methods for robot localization and odor
source detection developed in the context of holonomic
robots in Euclidean spaces can be extended in a natural way
to nonholonomic robots moving in SE(2).
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