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Abstract— We consider the kinematic control problem for
nonholonomic mobile manipulators (NMMs) whose base con-
tains steering wheels. For all typical tasks, the steering velocity
inputs of such systems do not appear in the differential
relationship between the first-order time derivative of the task
output and the available NMM inputs. As a consequence,
these inputs are not used by velocity-level control laws based
on simple (pseudo)inversion of the task Jacobian, leading in
general to the impossibility of completing the task. We propose
two control solutions to this open problem based on the
framework of input-output feedback linearization. First, a static
feedback law is presented that defines the unspecified steering
velocities via an optimization action in the null space of the task
Jacobian. A dynamic feedback law is then proposed based on
the input-output differential map obtained by considering the
task acceleration. In this case, the velocity of the steering wheels
becomes an active input for task execution, together with the
manipulator joint accelerations and the driving accelerations of
the base. The feasibility and performance of the two kinematic
controllers are compared in simulation for a car-like base
carrying a planar manipulator.

I. INTRODUCTION

Mobile manipulators are robotic systems that combine the
unlimited workspace of a mobile base with the dexterity of an
on-board manipulator. When the base is a wheeled platform
subject to nonholonomic constraints, the robot is referred
to as a nonholonomic mobile manipulator (NMM). Motion
planning and feedback control of NMMs is an active subject
of research. Typically, a kinematic model with velocity inputs
for the base and the manipulator is used to describe the
system, mainly because these are the available commands
when implementing the controller within a closed archi-
tecture. In addition, the kinematic model already captures
the fundamental planning and control issues. For example,
once a suitable kinematic controller has been designed, one
can easily derive a corresponding dynamic (model-based)
controller with torque/force inputs (see, e.g., [1]).

Two main strategies can be used for devising feedback
controllers that allow an NMM to execute a given task with
robustness w.r.t. initial errors and disturbances.

1) Output tracking. The error between the desired and
the actual task (output) trajectory is used to drive
the system. This classical approach is also called
kinematic control [2] in robotics, in view of the fact
that the controller elaborates the task error using only
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the Jacobian associated to the task. Since NMMs are
redundant w.r.t. typical tasks, the controller may also
include a null-space action. This is designed using
local optimization techniques with the objective of
guaranteeing a satisfactory internal (state) behavior,
such as singularity or joint limit avoidance.

2) State tracking. First, a reference configuration (state)
trajectory is associated to the desired task trajectory
using some form of inverse kinematics, and then the
error between the desired and the actual configuration
trajectory is used to drive the NMM. The problem is
then solved by using one of the many existing tech-
niques for the stabilization of nonholonomic systems.

While state tracking guarantees a closer control of the
whole configuration of the NMM, the selection of an appro-
priate (among the infinitely many possible) reference state
trajectory that embodies a ‘good’ internal behavior is not
trivial. On the other hand, output tracking laws are easier
to design and implement, and can be embedded in a sensor-
based control architecture when the task is not fully known in
advance. For this reason, with the exception of [3] that takes
a somehow intermediate approach, most works on NMMs
focus on kinematic control, e.g., [4]–[9].

All the NMMs considered in the above works include
a mobile base with differential-drive kinematics, formally
equivalent to a unicycle. There is an acknowledged literature
gap for the case when the NMM base contains also steering
wheels. The peculiarity of such NMMs is that, for all
significant tasks, the velocity inputs that turn the steering
wheels do not appear in the expression of the first-order
time derivative of the output function. As a consequence, the
number of effective NMM inputs is reduced when working
at the velocity level, and the steering velocity inputs are
not used to execute the task. This ultimately leads to the
impossibility of performing the assigned tasks, due to the
loss of controllability of the NMM in its configuration space.
While this control problem has been pointed out in the recent
past [3], [10], no solution based on output tracking has been
proposed so far to the best of out knowledge.

The aim of this paper is to present kinematic control laws
for the class of NMMs whose base includes a combination
of fixed and steering wheels, as in car-like and Cycab-
like vehicles [11], [12]. In particular, we shall follow the
control framework of input-output feedback linearization
and provide to two different solutions. The first approach,
which leads to a static (instantaneous) feedback from the
NMM configuration, specifies the steering velocities as an
optimization term in the null-space of the task Jacobian. The
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second is a novel variant of dynamic feedback linearization,
where the task output is differentiated twice, dynamic exten-
sion is performed on selected inputs, and control design is
completed by inversion in terms of steering wheel velocities,
manipulator joint accelerations, and driving accelerations of
the base.

The paper is organized as follows. Section II presents
the kinematic model of the considered class of NMMs
and the problem formulation. Input-output linearization via
static feedback is discussed in Sect. III, while the design
of dynamic state feedback control is introduced in Sect. IV.
As a case study, a car-like mobile base carrying a planar
2R manipulator is considered in Sect. V and comparative
simulation results are discussed.

II. PROBLEM FORMULATION

A nonholonomic mobile manipulator (NMM) consists of a
manipulator mounted on a wheeled mobile base subject to
non-integrable differential constraints. Its configuration q,
which takes values in a νq-dimensional space, can be parti-
tioned as q = (qTm q

T
b )T , where qm is the νm-dimensional

configuration of the manipulator and qb is the νb-dimensional
configuration of the mobile base, with νq = νm + νb.

We model the manipulator as a fully actuated kinematic
system, i.e.,

q̇m = um, (1)

being um the µm-vector of joint velocity inputs (µm = νm).
The mobile base is a rigid body equipped with con-

ventional wheels that may be fixed or orientable w.r.t. the
base. As a consequence, qb itself can be partitioned as
qb = (pT φT )T , where p is the νp-dimensional pose (i.e.,
position and orientation) of the body and φ is the νφ-vector
that describes the orientation of the orientable wheels; it
is then νq = νm + νp + νφ. The kinematic model of the
nonholonomic mobile base is given by

q̇b = G(qb)ub,

where matrix G spans the null space of the matrix associated
to the wheel rolling constraints and ub is the µb-vector of
base velocity inputs, with µb < νb. In the following, we
assume that orientable wheels are either active and centered
(steering wheels) or passive and off-centered (castors), and
that at least one steering wheel is present. Therefore, the
kinematic model of the base becomes

q̇b =

(
ṗ

φ̇

)
=
(
Gp(qb) 0

0 Iνφ

)(
up

uφ

)
, (2)

where up is the µp-vector of driving velocities (µp < νp)
and uφ is the µφ-vector of steering velocities (µφ = νφ).
The orientations of the castors are not included in model (2)
as they have no influence1 on the evolution of the body
pose [13]. Similarly, since the maximum number of inde-
pendent steering velocities in a single-body base is two [14],
the orientations of steering wheels in excess of this number

1On the contrary, the structure of (2) would be lost in the presence of
active off-centered wheels, as ṗ would depend on their steering velocities.

would not appear in (2) because they must move as a function
of the independent wheels. Hence, vector φ actually contains
only the orientation of up to two independent steering
wheels, and thus νφ = µφ ≤ 2.

Wrapping up, the mobile bases included in our formulation
are of three possible types:

1) Car-like: one fixed (rear) and one steering (front) wheel,
with rear- or front-wheel driving (µφ = 1, µp = 1);

2) Cycab-like [11]: two steering wheels (rear and front),
with rear- or front-wheel driving (µφ = 2, µp = 1);

3) Justin-like [12]: more than two steering wheels, two of
which independently actuated and one of them drivable
(µφ = 2, µp = 1) or vice versa (µφ = 1, µp = 2).

The complete kinematic model of the NMM is given
by (1–2), with the input vector

u =
(
um
ub

)
=

 um
up
uφ


of dimension µu = µm + µb = µm + µp + µφ < νq .

Consider now a σt-dimensional robot task described by a
set of variables t. In all significant cases, the task will depend
on the arm posture qm and on the base pose p, but not on
the steering wheel orientation φ, i.e.,

t = f(qm,p). (3)

Our control problem is to track a desired task (output)
trajectory td(t) by using the available inputs u. The standard
approach is based on input-output linearization, and relies on
the inversion of the kinematic map at a suitable differential
level.

III. LINEARIZATION VIA STATIC FEEDBACK

The design of an input-output linearization control law by
static feedback proceeds by differentiating each output until
at least one input appears and the obtained differential map
is invertible [15].

In our case, assuming that td(t) ∈ C̄1, differentiation
of (3) w.r.t. time gives

ṫ =
∂f

∂qm
q̇m +

∂f

∂p
ṗ

= Jm(qm,p)um + Jp(qm,p)Gp(qb)up

=
(
Jm(qm,p) Jp(qm,p)Gp(qb) 0

) um
up
uφ


=
(
J̄(q) 0

)
u = J(q)u, (4)

having set J̄ = (Jm JpGp) and J = (J̄ 0). The
map (4) is invertible if the input-output decoupling matrix,
i.e., the σt × µu matrix J (also called the task Jacobian),
is full row rank. Since J has structurally zero columns in
correspondence of the steering inputs uφ, such condition
transfers to submatrix J̄ . Assuming that J̄ is full row rank
(this requires σt ≤ µm + µp), the canonical choice for the
control law is

u = K(q)(ṫd + Fe), (5)
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where e = td − t is the task error, F is a positive definite
(diagonal) gain matrix, and K is a generalized inverse of J ,
i.e., a matrix such that JKJ = J . The typical choice for
K is the pseudoinverse J†; in view of the structure of J , it
is

J† =
(
J̄†

0T

)
, (6)

being J̄† the pseudoinverse of J̄ . This leads to

ė = −Fe,

so that the task error converges exponentially (and in a
decoupled way) to zero, and is identically zero when the
NMM configuration matches the desired task at t = 0
(f(q(0)) = td(0)).

However, expression (6) clearly implies that the control
scheme (5) with K = J† will result in uφ ≡ 0, so
that the orientation φ of the steering wheels will remain
constant. Since the input vector uφ is essential for guaran-
teeing controllability of the kinematic model (1–2) in the
whole configuration space, this particular control strategy
will certainly lead to a singularity of J in the execution
of a generic task.

A better solution is to take advantage of the possibility of
performing additional motions in the null space of the task
Jacobian J , letting

u = J†(q)
(
ṫd + Fe

)
+ P (q)w, (7)

where P = I − J†J is the orthogonal projection matrix in
the null space of J and w is an additional µu-dimensional
velocity command. Unlike the first term, the second can be
chosen so as to move the steering wheels, and in particular in
such a way that the feasibility of generic tasks is preserved.
To this end, one should locally maximize the manipulability
index

H(q) =
√

detJ(q)JT (q) =
√

det J̄(q)J̄T (q).

that depends on φ through Gp in J̄ .
According to [8], the command vectorw in (7) that locally

realizes the maximum increase of H is

w(q) = α

 Iµm 0 0
0 GT

p (qb) 0
0 0 Iµφ

∇qH(q),

with a stepsize α > 0 to be determined via line search
techniques [16]. Taking into account the particular structure
of J , this leads to (dropping dependencies)

u =
(
J̄
†

0

)
(ṫd+Fe)+α

 P̄ ( Iµm 0
0 GT

p

)
0

0 Iµφ

∇qH
(8)

where P̄ = Iµm+µp − J̄
†
J̄ is the orthogonal projection

matrix in the null space of J̄ . From (8), it is easy to see that
uφ = ∇φH , i.e., the velocities of the steering wheels are
exactly the gradient of H w.r.t. their orientation φ.

It should be noted that, while P is structurally nonzero
due to the presence of zero columns in J , P̄ is nonzero

only when σt < µm + µp. When σt = µm + µp, the second
term in (8) only adds the steering velocities uφ = ∇φH to
the first term.

Differently from (5), the control scheme (8) will generate
steering velocities aimed at avoiding singularities of J̄ .
While this objective is often met, because of the local
nature of the optimization process there is no guarantee
that matrix J̄ does not lose rank during the motion (see
Fig. 7 in Sect.V-A). For this reason, a singularity-robust
pseudoinversion should be used when implementing (8), e.g.,
based on numerical filtering [17].

IV. LINEARIZATION VIA DYNAMIC FEEDBACK

A conceptually different way to let the velocity input uφ
come into play is to ignore the possibility of inverting (4) and
to proceed with further differentiation of the task output. In
fact, matrix J in (4) depends on φ through the term Gp(qb)
and therefore the task acceleration will be a function of the
steering velocity uφ as well. To avoid differentiation of the
input commands, we first add integrators on the channels
of the inputs appearing in the first-order map (4), namely
um and up (dynamic extension). These will become states
of the dynamic controller, while the new associated inputs
will be u̇m and u̇p. This approach2 is known as input-output
linearization via dynamic feedback [15].

Using the dyadic expansion for the term

Gp(qb)up =
µp∑
i=1

gp,i(p,φ)upi

and assuming that td(t) ∈ C̄2, differentiation of (4) w.r.t.
time gives

ẗ = Jm(qm,p) u̇m + Jp(qm,p)Gp(qb) u̇p

+Jp(qm,p)
µp∑
i=1

(
∂gp,i
∂p

Gpup +
∂gp,i
∂φ

uφ

)
upi

+ J̇m(qm,p)um + J̇p(qm,p)Gp(qb)up

=

(
Jm JpGp Jp

µp∑
i=1

∂gp,i
∂φ

upi

) u̇mu̇p
uφ


+

(
J̇mum + J̇pGpup + Jp

µp∑
i=1

∂gp,i
∂p

Gpupupi

)

= A(qm,p,φ,up)

 u̇mu̇p
uφ

+ b(qm,p,φ,um,up). (9)

As expected, the steering velocity uφ appears explicitly
in (9). The σt×µu matrix A is the input-output decoupling
matrix of the extended system, whose µu-dimensional input

2This is a non-canonical application of the original method. Assuming
that each row of J contains at least a non-zero element, the algorithm for
input-output linearization would simply stop without dynamic extension if
the rank ρ of J is equal to σt, or add ρ integrators on selected input
channels if ρ < σt. In the present case, we are adding a total of µm + µp

integrators, which may be more than the minimum number. However, this
procedure is computationally simpler.
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is given by the mixed3 set of accelerations and velocities
(u̇m, u̇p,uφ). The decoupling matrix A differs from matrix
J in (4) by a new set of columns that replaces the structural
0. These columns account for the effect of uφ on the task
acceleration and vanish for up = 0. This means that when
the base of the NMM is at rest, matrix A collapses to J and
any influence of uφ on ẗ is lost. This is consistent with the
physical intuition that the orientation of the steering wheels
only matters when the robot is in motion. However, when
the NMM base is moving (up 6= 0), the presence of the
new columns will typically help in keeping full row rank for
matrix A.

A kinematic control law can then be defined based on the
general form of inverse solutions to (9), similarly to what
has been done for the control law (7). We have u̇mu̇p
uφ

 = A† (ẗd + FDė+ F Pe− b
)

+
(
I −A†A

)
z,

(10)
where F P and FD are positive definite (diagonal) gain
matrices on the task error and its derivative, and z is an
additional µu-dimensional mixed velocity/acceleration com-
mand to be projected in the null space of A. From the first
term, it is apparent that the steering velocity uφ has now a
direct role in controlling the correct execution of the task.
Assuming that A is full row rank (this requires σt ≤ µu,
which is less restrictive than the corresponding condition for
J ), the task error under the action of (10) will satisfy

ë = −FDė− F Pe,

converging exponentially (and in a decoupled way) to zero.
When σt < µu, i.e., if the NMM is kinematically re-

dundant w.r.t. the task in the sense of [8], the additional
command z can be used for other objectives, among which
velocity damping is mandatory [18]. This is obtained by
setting

z =

 −Dmum
−Dpup

0

 , (11)

where Dm and Dp are positive definite diagonal matrices.
Combining (10) with the preliminary dynamic exten-

sion provides a dynamic input-output linearizing controller
whose state has dimension µm + µp. Its initialization
(um(0),up(0)) can be made in an arbitrary way, typically
so as to match the initial desired task velocity ṫd(0). The
NMM velocity inputs um, up will then be dictated by the
evolution of the internal states of the dynamic controller.

When dynamic feedback linearization is used, there is a
fundamental difference between the case of NMMs and that
of wheeled mobile robots (WMRs). When a WMR starts
from rest or comes to a stop, the decoupling matrix of
the extended system always becomes singular [19]. Here,

3It should be emphasized that (9) is different from considering the stan-
dard second-order differential kinematics of an NMM, where the command
input would be given by the full set of accelerations u̇ and the decoupling
matrix would still be J .

thanks to the presence of the manipulator (i.e., of its Jacobian
Jm), matrix A is not necessarily singular when up = 0; it
just collapses into the original task Jacobian J , which may
already have full row rank by itself.

V. CASE STUDY

We consider an NMM made by a front-wheel drive car-like
base carrying a planar 2R manipulator, as in Fig. 1). The
mobile base has length `, while the manipulator has links
of length `1 and `2 and is mounted on the main axis of the
base at a distance d from the rear-wheel axis. We have p =
(x y θ)T (νp = 3), the front-wheel orientation is φ (νφ = 1),
and qm = (θ1 θ2)T (νm = 2), where θ1 is measured w.r.t.
the main axis. The kinematic model is given by eqs. (1–2),
with

Gp =

 cos θ cosφ
sin θ cosφ

sinφ
`

 .

The NMM inputs are then the manipulator joint velocities
um = (θ̇1 θ̇2)T (µm = 2), the driving velocity up = v
(µp = 1), and the steering velocity uφ = ω (µφ = 1).

The task is specified in terms of the planar end-effector
position t = (xP yP )T (σt = 2), with the kinematic map
in (3) given by

f =
(
x
y

)
+R(θ)

(
d+ `1 cos θ1 + `2 cos (θ1 + θ2)
`1 sin θ1 + `2 sin (θ1 + θ2)

)
,

where

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

The 2×4 task Jacobian matrix J in eq. (4) has a single zero
last column, with the entries in the 2× 3 matrix J̄ given by

Jm = R(θ)

„ −(`1 sin θ1 + `2 sin (θ1 + θ2)) −`2 sin (θ1 + θ2))

`1 cos θ1 + `2 cos (θ1 + θ2) `2 cos (θ1 + θ2)

«
and

JpGp = R(θ)

0B@ cosφ−
sinφ

`
(`1 sin θ1 + `2 sin (θ1 + θ2))

sinφ

`
(d+ `1 cos θ1 + `2 cos (θ1 + θ2))

1CA .

A simple analysis shows that J loses rank if and only if

sin θ2 = 0 and sinφ cos θ1 +
d

`
cosφ sin θ1 = 0.

These two conditions have a simple geometrical interpre-
tation: the task Jacobian is singular when the arm is fully
stretched or folded (a singularity for the fixed-base manip-
ulator) along a line passing through instantaneous center of
rotation (ICR), see Fig. 1. In this situation, is it impossible
to realize a nonzero velocity ṫ of the end-effector along the
radial direction passing through the ICR4.

The singularity analysis is completely different when
considering the dynamic feedback linearization scheme of

4Such singular configurations are in the back-image of any value t̄ of
the positional task t, which therefore admits no regular points in the sense
of [20]. This is a general fact for the considered class of NMMs.
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. 

Fig. 1. A singular configuration for the task Jacobian J

Sect. IV. The 2× 4 input-output decoupling matrix A in (9)
is

A =

0@ J̄
v

`
R(θ)

0@ −(` sinφ+ `1 sin θ1 + `2 sin (θ1 + θ2))

cosφ (d+ `1 cos θ1 + `2 cos (θ1 + θ2))

1A1A .

It is easy to see that this matrix never loses rank provided
that v 6= 0. Therefore, when the base of the NMM is in
motion, we can always realize an arbitrary acceleration ẗ by
using the mixed set of inputs (θ̈1, θ̈2, v̇, ω).

A. Simulation Results

We have simulated the proposed kinematic controllers for
the case of a linear task trajectory starting at (−1,−1) and
ending at (−2, 4.2) [m]. The velocity profile is trapezoidal,
with maximum acceleration/deceleration phases lasting 11 s
each, and a coast phase of 4 s; the maximum velocity and
acceleration are respectively 0.4 m/s and 0.0364 m/s2. The
NMM starts from the configuration q(0) = 0, resulting in a
nonzero initial error w.r.t. the task. The remaining numerical
data are ` = 0.7, d = 0.4, `1 = 0.8, and `2 = 0.5 (all [m]).

In order to illustrate the need for alternative approaches,
we have first simulated the NMM under the action of the
control law (5), with F = 0.5 I . As expected, since ω ≡ 0
with this scheme, the end-effector approaches and tracks the
desired trajectory as long as this is compatible with the fact
that the base can only translate. Figure 2 shows that tracking
becomes impossible at t ≈ 12 s, as indicated also by the
zeroing of the manipulability index.

The motion of the NMM obtained using the control law (8)
is summarized in Fig. 3. As shown by Fig. 4, effective
task tracking is achieved thanks to the local optimization
of the manipulability function via the null-space term. For
simplicity, a constant stepsize α = 1 has been used. The
velocity control inputs are given in Fig. 5.

As mentioned in Sect. III, however, the use of (8) does not
guarantee that singularities are always avoided. For example,
decreasing the stepsize to α = 0.25 leads to the results of
Figs. 6–8. At t ≈ 14 s, the NMM dangerously approaches a
singular configuration, that is avoided thanks to the numerical
filtering of the pseudoinverse; as a negative effect, this yields
a deterioration of task tracking.

The dynamic feedback linearization controller (10) pro-
vides a more robust solution, as shown in Figs. 9–11. The
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Fig. 2. Task errors (left) and manipulability (right) using (5)

control parameters where chosen as F P = I , FD = 2 I and
Dm = I , Dp = 1 in (11). While executing the desired task,
the NMM does not encounter singularities of the decoupling
matrix A (right of Fig. 10), even if no action has been
designed to this purpose in the null space. A comparison
between the velocity inputs in Fig. 11 and those in Fig. 5
indicates that a similar control effort is needed. Note also
that the velocities um = (θ̇1 θ̇2)T and up = v go to zero by
the end of the task, thanks to the damping action performed
in the null space of A.

These results show that the static controller executes the
task with less internal motion of the structure, but is rather
sensitive to the choice of the stepsize for the null-space term
and may not be able to avoid singularities of the decoupling
matrix. The dynamic controller leads to somewhat larger
internal motion of the NMM, but guarantees a singularity-
free decoupling matrix when the base is in motion, and
requires in practice no design choices other than selecting the
control gains. Similar results were obtained for more general
tasks and NMMs, e.g., regulation of position and orientation
in the plane of the end-effector for the considered NMM,
or tracking a spatial trajectory for a car-like base with a 3R
anthropomorphic manipulator.

The above simulations are shown in the video clip
accompanying this paper. More videos are available at
www.dis.uniroma1.it/labrob/research/NMM.html.

VI. CONCLUSION

We have presented two novel solutions to the kinematic
control problem for nonholonomic mobile manipulators in
the presence of steering wheels. The fundamental issue was
how to design the velocity inputs of the steering wheels so
that they contribute in an explicit way to task execution,
together with the other available control inputs of the mobile
manipulator. Control design was carried out in the frame-
work of input-output linearization, using static or dynamic
feedback. The first solution uses the null space of the task
Jacobian, and the resulting velocity of the steering wheels
turns out to be simply the gradient of the task manipulability
w.r.t. their orientation. The second solution is based on the
observation that the task Jacobian is a function of the steering
wheel orientation. Therefore, the steering velocity appears
as an effective control input when the task is described at
the acceleration level. The two approaches were shown to
be successful in a case study where a planar manipulator
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mounted on a car-like base was required to track a positional
trajectory with its end-effector.

Future work will analyze in more detail the internal behav-
ior (zero dynamics) of NMM systems under the two proposed
kinematic control laws. In fact, while we experienced no
special problems in all our numerical tests, the boundedness
of the variables that do not appear in the input-output map of
the closed-loop system deserves attention. Finally, the spe-
cific issue considered in this paper with reference to NMMs
with steering wheels may be seen as an instance of kinematic
(or dynamic) control problems for highly-articulated robotic
systems in which only a subset of velocity (or torque) inputs
instantaneously affects the task. The approach proposed here
may be used to bring all the available system inputs into play,
so as to yield better performance in the long run.
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Fig. 3. Snapshots of the NMM motion using (8), with α = 1: starting with
an initial error (above left), the end-effector lands on the desired trajectory
(above right), then tracks it (below left) until the end (below right)
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Fig. 4. Task errors (left) and manipulability (right) using (8), with α = 1
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Fig. 5. NMM velocity inputs using (8), with α = 1: θ̇1 (solid), θ̇2 (dashed)
[above] and v (solid), ω (dashed) [below]

1797



−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

Fig. 6. Snapshots of the NMM motion using (8), with α = 0.25
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Fig. 7. Task errors (left) and manipulability (right) using (8), with α = 0.25
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Fig. 8. NMM velocity inputs using (8), with α = 0.25: θ̇1 (solid), θ̇2
(dashed) [above] and v (solid), ω (dashed) [below]
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Fig. 9. Snapshots of the NMM motion using (10)
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Fig. 10. Task errors (left) and
√

det AAT (right) using (10)
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Fig. 11. NMM velocity inputs using (10): θ̇1 (solid), θ̇2 (dashed) [above]
and v (solid), ω (dashed) [below]
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