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Abstract— This paper presents the design and performance
evaluation of a low-cost Attitude and Heading Reference System
(AHRS) for autonomous vehicles. A single sensor pack, an Iner-
tial Measurement Unit (IMU), provides all the data required to
feed the attitude filter. The design is sensor-driven and departs
from traditional solutions as no explicit representations of the
attitude, e.g., Euler angles, quaternions, or rotation matrices,
are considered in the filter design. Moreover, the proposed
solution includes the estimation of rate gyros biases, systematic
tuning procedures, and also allows for the inclusion of frequency
weights to model colored noise on the different sensor channels.
Due to its inherent structure, the filter is complementary, allows
for temporary loss of sensor measurements, and also copes well
with slowly time-varying rate gyros biases. The performance of
the proposed algorithm is experimentally evaluated with a low-
cost IMU and resorting to a high precision calibration table,
which provides ground truth signals for comparison with the
resulting filter estimates.

I. INTRODUCTION

Traditional attitude estimation methods consist, as dis-

cussed in the recent survey paper [1], of a two-step process:

i) estimate the attitude from body measurements and known

reference observations, and ii) filtering the noisy quantities.

The first step, where an attitude estimate is obtained from

body measurements to feed a filter (or an observer), ends

up in one of many known representations, e.g., Euler angles,

quaternions, Euler angle-axis representation, rotation matrix,

etc. [2]. For the filtering process there is also a very large

number of alternatives, depending on the models and rep-

resentations of the attitude. Kinematic models, which resort

basically to three-axis rate gyros, are exact. However, these

sensors have nonidealities such as biases, which are often

time-varying. Dynamic models for the angular velocity, on

the other hand, are usually complex, highly nonlinear, often

time-varying, and the mobile platform inertia matrix and

angular damping coefficients may not be well known, as

well as other dynamic parameters. With all these possible

combinations, there are many attitude estimation solutions

in the literature. Extended Kalman Filters (EKFs) and some

other filtering variants have been widely used, see [3], [4],

and [5], for instance. In spite of the good performance

achieved by EKF and EKF-like solutions, divergence due
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Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

{pbatista,cjs,pjcro,bcardeira}@isr.ist.utl.pt

to the linearization of the system dynamics [1] has led

the scientific community to pursue different solutions, in

particular nonlinear observers such as those presented in [6]

and [7]. For a more thorough survey, the reader is referred

to [1]. In all the aforementioned references, sensors data

are essentially used to obtain instantaneous measurements of

the attitude that are used afterwards to feed an observer or

filter, depending on whether or not a stochastic approach is

considered. Sensor specificness is therefore disregarded and,

even when it is addressed, the nonlinear transformations that

are required to obtain the attitude from vector measurements

distort noise characteristics. Moreover, with the exception of

EKF and EKF-like solutions, systematic tuning procedures

are often absent. Exceptions can be found in [8] and [9]

where vector measurements are used directly in the feedback

of observers built on the Special Orthogonal Group SO(3)
and the Special Euclidean Group SE(3), respectively. In the

first local exponential stability is achieved and the error is

shown to converge to zero for almost all initial conditions,

while in the second case almost global exponential stability

(AGES) is shown for the observer error dynamics. In [10]

a semiglobal practical asymptotic observer was also pro-

posed for attitude estimation, that preserves orthogonality

constraints. Another invariant approach was presented in

[11].

This paper presents a novel Attitude and Heading Refer-

ence System that

• is based directly on the measurements provided by an

Inertial Measurement Unit (IMU);

• resorts to the exact angular motion kinematics;

• builds on the well-established Kalman filtering theory;

• provides systematic filter tuning procedures based di-

rectly on the sensor noise characteristics, including

frequency weights to model colored noise;

• estimates rate gyros biases and copes well with slowly

time-varying biases;

• has a complementary structure, combining low band-

width vector observations with high bandwidth rate gyro

measurements; and

• allows for temporary loss of magnetic field measure-

ments, due to space anomalies.

Most important, the proposed technique does not suffer

from singularities, double covering, topological limitations

for global asymptotic stabilization, and/or unwinding phe-

nomena as solutions that use attitude representations (Euler

angles, quaternions, rotation matrices, etc.) in the filter design

do [12]. Instead of using the IMU measurements to build a
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representation of the attitude, the dynamics of the sensor

readings are used directly in the filter and the attitude is

obtained afterwards, as in traditional solutions, but using

filtered estimates of the sensor readings.

Essential to the filter design is a modification of the sensor-

based system dynamics that yields a structure that can be

regarded as linear time-varying (LTV), although the system

still is, in fact, nonlinear. However, the system dynamics

are exact and no linearization is performed whatsoever. The

Kalman filter design follows for a discrete-time version of the

system, and the final attitude estimation solution results from

combining the sensor-based filter with an optimal attitude

determination algorithm. This last problem is commonly

known in the literature as the Wahba’s problem [13] and,

for two vector observations, there are closed-form solutions

available in the literature, see [14], [15], [1], and references

therein. Preliminary theoretical work by the authors can be

found in [16]. This papers details the AHRS filter design

and provides experimental results of the resulting system.

The proposed setup has ground truth data available for

performance evaluation purposes.

The paper is organized as follows. The sensor-based

framework that is the core of the proposed AHRS is pre-

sented in Section II. The filter design and overall structure of

the AHRS is detailed in Section III, where temporary loss of

sensor measurements is also discussed. The performance of

the proposed solution is experimentally evaluated in Section

IV and Section V summarizes the main contributions and

conclusions of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or

vector) of zeros and I an identity matrix, both of appropri-

ate dimensions. A block diagonal matrix is represented as

diag(A1, . . . ,An). If x and y are two vectors of identical

dimensions, x× y represents the cross product. Finally, the

Dirac delta function is denoted by δ(t).

II. SENSOR-BASED FRAMEWORK

A. Sensor-based Concept

Although many alternative sensing devices may be se-

lected, consider a vehicle equipped with an Inertial Mea-

surement Unit, which contains three triads of orthogonally

mounted rate gyros, accelerometers, and magnetometers.

The magnetometers provide the magnetic field in body-

fixed coordinates. This quantity is locally constant in inertial

coordinates and it is therefore a feasible vector observation

for attitude estimation, as discussed in [8]. On the other hand,

for sufficiently low frequency bandwidths, the gravitational

field also dominates the accelerometer measurements, as

discussed in [8]. This provides a second vector observation,

which is, in general, not parallel to the first. Therefore, it is

possible to determine the attitude of the vehicle with an IMU.

Fig. 1 depicts a traditional attitude estimation solution. As

it is possible to observe, vector measurements such as the

gravitational and magnetic fields are first used to compute

a representation of the attitude of the vehicle. Afterwards,

the attitude filter evolves according to the representation of

the attitude and resorting to kinematic or dynamic attitude

models. With this classic approach the transformations that
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(rate gyros biases)

Fig. 1. Classic Attitude Estimation Solution

are necessarily performed to obtain an attitude representation

distort the noise characteristics of the signals. Moreover,

attitude representations such as Euler angles, quaternions,

rotation matrices, etc., have singularities, topological limita-

tions for achieving global asymptotic stability and/or double

covering. The core concept of the paper is to take into

account the specificness of each sensor by designing the filter

directly in the space of the sensors, as exemplified in Fig.

2. An attitude representation, for example a rotation matrix,

which does not have singularities and does not exhibit double

covering behavior as quaternions do [2], is then obtained

from the filtered estimates. In addition to the inclusion of

the specificness of the sensors in the filter design, topolog-

ical restrictions on SO(3) for achieving global asymptotic

stability are no longer in place since the filtering process

occurs prior to the estimation of the attitude.

Determine
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(Euler, rotation matrix, 

quaternion, etc.)

Filter  Sensor

Measurements

System dynamics:

Motion kinematics and /or 

motion dynamics

Vector

Measurements

Aiding Sensors

(rate gyros)

Filtered Attitude

Auxiliary Parameters

(rate gyros biases)

Filtered

Measurements

Fig. 2. Sensor-based Attitude Estimation Approach

B. System dynamics

Let {I} denote a local inertial frame, {B} the body-

fixed frame, and R(t) ∈ SO(3) the rotation matrix from

{B} to {I}. The attitude kinematics are given by Ṙ(t) =
R(t)S [ω(t)] , where ω(t) ∈ R

3 is the angular velocity of

{B}, expressed in {B}, and S (x) is the skew-symmetric

matrix such that S (x) y = x × y.

For the sake of generality, suppose that non-collinear

measurements y1(t) ∈ R
3 and y2(t) ∈ R

3 are available,

in body-fixed coordinates, of known constant vectors in

inertial coordinates, Iy1 = R(t)y1(t) and Iy2 = R(t)y2(t),
respectively. Then, the dynamics of y1(t) and y2(t) are given

by
{

ẏ1(t) = −S [ω(t)]y1(t)
ẏ2(t) = −S [ω(t)]y2(t)

.

Further consider rate gyro measurements ωm(t) ∈ R
3

corrupted with constant bias bω(t) ∈ R
3, i.e., ωm(t) =

ω(t) + bω(t). Then, the system dynamics may be written
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as






















ẋ1(t) = −S [ωm(t)]x1(t) + S [bω(t)]x1(t)
ẋ2(t) = −S [ωm(t)]x2(t) + S [bω(t)]x2(t)

ḃω(t) = 0

y1(t) = x1(t)
y2(t) = x2(t)

, (1)

where the states x1(t) and x2(t) correspond to the two vector

measurements. In the AHRS presented in the paper y1(t)
corresponds to the magnetic field measurements and y2(t)
to the gravity field measurements.

III. ATTITUDE AND HEADING REFERENCE SYSTEM

The complete design of the proposed Attitude and Heading

Reference System is presented in this section. The sensor-

based filter is derived in Section III-A, whereas the overall

structure of the AHRS is discussed in Section III-B. Finally,

temporary loss of magnetic field measurements is addressed

in Section III-C.

A. Sensor-Based Filter Design

The system dynamics (1) are nonlinear. Notice, however,

that using the cross product property x× y = −y ×x, it is

possible to rewrite (1) as






















ẋ1(t) = −S [ωm(t)]x1(t) − S [x1(t)]bω(t)
ẋ2(t) = −S [ωm(t)]x2(t) − S [x2(t)]bω(t)

ḃω(t) = 0

y1(t) = x1(t)
y2(t) = x2(t)

or, in compact form, as
{

ẋ(t) = A(t)x(t)
y(t) = Cx(t)

, (2)

where

A(t) =





−S [ωm(t)] 0 −S [y1(t)]
0 −S [ωm(t)] −S [y2(t)]
0 0 0





and

C =

[

I 0 0

0 I 0

]

.

Now, although the system dynamics (2) are nonlinear, they

may, nevertheless, be regarded as LTV. Moreover, it was

shown in [16] that the system is uniformly completely

observable provided that the vector observations are not

parallel. This is an important result that leads naturally to

the design of a Kalman filter with globally asymptotically

stable error dynamics, see [16].

In practice, and although there are commercial off-the-

shelf IMUs that provide continuous-time signals, these are

usually sampled and the AHRS core algorithm is imple-

mented in a digital setup. Therefore, it is convenient to derive

a discrete-time solution. To that purpose, let Ts denote the

sampling period of the IMU measurements. Then, ignoring

sensor noise for now, let the discrete-time measurements be

given by ωm (k) := ωm (tk) , tk = kTs + t0, k ∈ N0, and

yi (k) := yi (tk) , tk = kTs + t0, k ∈ N0, i ∈ {1, 2} ,

where t0 is the initial time. The Euler discretization of the

system dynamics (2) gives
{

x(k + 1) = x(k) + TsA (tk) x(k)
y(k + 1) = Cx(k + 1)

,

Including system disturbances and sensor noise, the discrete-

time dynamics read as
{

x (k + 1) = Ad (k)x (k) + w (k)
y (k + 1) = Cx (k + 1) + n (k + 1)

, (3)

where

Ad (k) = I − Ts

[

S [ωm (k)] 0 S [y1 (k)]
0 S [ωm (k)] S [y2 (k)]
0 0 0

]

,

w (k) =
[

wT
1

(k) wT
2

(k) wT
3

(k)
]T

∈ R
9 is

zero-mean, discrete-time, white Gaussian noise,

with E
[

w (k)wT (j)
]

= Ξ (k) δ (k − j), n (k) =
[

nT
1

(k) nT
2

(k)
]T

∈ R
6 is zero-mean, discrete-time, white

Gaussian noise, with E
[

n (k)nT (j)
]

= Θ (k) δ (k − j),
and E

[

w (k)nT (j)
]

= 0. Notice that, for filtering design

purposes, both w and n could have been modeled as the

outputs of stable discrete-time linear time invariant filters,

which could be easily employed to model, e.g., colored

noise, see [17] for an example of such application. In

this paper, and for the sake of clarity of presentation, the

simplest white Gaussian noise version is presented. The

Kalman filter equations for the system dynamics (3) are

standard [18], [19] and therefore omitted.

It is important to stress that the resulting structure is

complementary: high bandwidth rate gyro measurements are

combined with low bandwidth vector observations to deter-

mine a low frequency perturbation in the gyro measurements

and provide filtered estimates of the vector observations.

Moreover, as the bias is assumed to be driven by white

Gaussian noise, it is possible to cope well with slowly time-

varying bias.

Remark 1: One should notice that additive Gaussian noise

may not be the best modeling option. Indeed, multiplica-

tive noise would do a better job, as the presence of

noise in the gyro measurements is reflected as terms like

TsS [wi (k)]xi (k), i = 1, 2, instead of simple additive

system disturbances. Also, different noise distributions could

better model the sensors noise. As an alternative, it is

possible to consider w (k) ∈ L2 and n (k) ∈ L2, where L2

denotes the space of square integrable signals, and design an

H∞ filter instead of a Kalman filter. The steps are similar

and therefore will be omitted.

B. AHRS Structure

The final Attitude and Heading Reference System results

from combining the sensor-based filter with an algorithm that

determines the proper rotation matrix R̂ (tk) ∈ SO(3) which

best explains the vector estimates provided by the filter. The

problem of finding the proper rotation matrix R (tk) that

minimizes the loss function

J (R (tk)) =
1

2

N
∑

i=1

ai

∥

∥yi (tk) − RT (tk) Iyi

∥

∥

2

, ai > 0,
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is known in the literature as the Wahba’s problem [13]. Al-

though the first solution dates from 1966, extensive research

has been carried out throughout the years and there exist

nowadays a rather large variety of solutions, see [20] for a

thorough survey.

In the previous section a Kalman filter was derived that

yields filtered estimates ŷ1 (tk) and ŷ2 (tk) of the vector

observations y1 (tk) and y2 (tk) provided by the triad of

accelerometers and magnetometers. Instead of using the

sensor measurements, the filtered estimates are normalized,

ŷu
1

(tk) =
ŷ1 (tk)

‖ŷ1 (tk)‖
, ŷu

2
(tk) =

ŷ2 (tk)

‖ŷ2 (tk)‖
,

as well as the corresponding inertial vectors,

Iyu
1

=
Iy1

‖Iy1‖
, Iyu

2
=

Iy2

‖Iy2‖
,

and the attitude matrix is reconstructed using the closed-loop

(and computationally efficient) optimal solution presented in

[15], that minimizes

J
(

R̂ (tk)
)

=
1

2

2
∑

i=1

ai

∥

∥

∥
ŷu

i (tk) − R̂T (tk) Iyu
i

∥

∥

∥

2

,

and that is omitted here due to the lack of space and as it

can be found in [15]. The coefficients ai can be chosen to

reflect the confidence on each sensor.

Remark 2: There is nothing in the filter structure imposing

any particular constraint on ŷ1 (tk) or ŷ2 (tk). Therefore, it

may happen, due to bad initialization or by accident, that

ŷ1 (tk) and ŷ2 (tk) are parallel or null for some time tk.

In this case, the optimal solution presented in [15] is not

well defined. If any of these situations happens, the sensor

measurements could be used directly to obtain an estimate of

the attitude. However, notice that the filter may be initialized

with the first set of vector observations. In addition to that,

it will be shown shortly that the filter convergence, which

is global, is very fast, and warming-up delays below 1 s are

achieved. Therefore, none of these situations are likely to

happen in practice.

C. Temporary Loss of Sensor Measurements

It is well known that, for two nonparallel vector ob-

servations, the attitude is uniquely determined, and for a

single vector observation, it is impossible to determine the

complete attitude. However, there is still some interest in

the study of this case. Dead-reckoning navigation systems

such as Inertial Navigation Systems (INS) provide open-

loop propagation of the motion state. The estimation of the

position and attitude of the vehicle is necessarily obtained in

this type of systems by integrating higher-order derivatives

such as the linear acceleration and the angular velocity. As

such, and regardless of the accuracy and precision of the

IMU, the errors in the position and attitude estimates grow

unbounded due to the noise and bias of the sensors [21]. A

single vector observation does not provide the entire attitude

but it may help compensating for the bias and restricting the

attitude uncertainty to a set of lower dimension. For example,

gravitational field measurements yield the bank and elevation

angles.

While for classic AHRS the loss of one vector observation

is not trivially accounted for, as the filter algorithm usually

requires the entire attitude representation, that is not the case

of the present solution. Indeed, if there is a temporary loss of,

e.g., magnetic field measurements due to space anomalies,

the state corresponding to the magnetic field can be simply

propagated in open-loop using the rate-gyro measurements

corrected with the bias estimate. The remaining system dy-

namics stay untouched, which still allows for the estimation

of rate gyros biases under some mild observability condi-

tions, see [16] for further details. Therefore, the proposed

AHRS also provides a simple way to deal with temporary

loss of magnetic field measurements.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to evaluate the performance in real world appli-

cations, an experimental setup was developed resorting to a

high precision calibration table, Model 2103HT from Ideal

Aerosmith [22], which allows for accurate and reliable mo-

tion control. The table outputs, in a fixed-frequency profile

mode, the angular position of the table with a resolution of

0.00025 °, considered as a ground truth signal. The IMU that

was employed is the nanoIMU NA02-0150F50 [23], from

MEMSENSE, which outputs data at a rate of 150 Hz. This 9

degree-of-freedom (DOF) Micro-Electro-Mechanical System

(MEMS) device is a miniature, light weight, 3-D digital out-

put sensor (it outputs 3-D acceleration, 3-D angular rate, and

3-D magnetic field data) featuring RS422 or I2C protocols,

with built-in bias, sensitivity, and temperature compensation.

The standard deviations of the noise of the outputs of the

IMU are 0.0015G and 0.008m/s
2

for the magnetometers

and accelerometers, respectively, and 0.95 °/s for the rate gy-

ros. These low-grade specifications correspond to the worst

case standard deviation values provided by the manufacturer.

Fig. 3 displays the calibration table with the experimental

setup mounted on the table top. The nIMU is interfaced

through the RS422 bus to a PC104 card that logs all the

generated data in a solid state disk.

Fig. 3. Experimental setup

Unfortunately, the calibration table distorts the magnetic

field in the neighborhood of the IMU, even though it was

attempted to place the IMU as far as possible from the rest

of the experimental setup, by means of a small nonmagnetic

bar, which elevates the sensor from the table top. Therefore,
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magnetic field measurements were simulated in the loop.

Sensor noise was naturally added so that the results are as

realistic as possible.

B. Performance Evaluation

The real-time performance of the AHRS is evaluated in

this section. The Motion Rate Table introduced in Section

IV-A has three rotational joints which allow for movement

about 3 orthogonally mounted axis, so called inner, middle,

and outer axis, and that were defined as the x, y, and z axis

of the body-fixed reference frame, so that the rotation from

body-fixed coordinates to inertial coordinates is given by

R(t) = Rz (θout(t))Ry (θmid(t))Rx (θinn(t)) ,

where Rx (.), Ry (.), and Rz (.) are the rotation matrices

about the x, y, and z axis, respectively, and θinn, θmid, and

θout are the inner, middle, and outer axis angles, respectively.

The evolution of the inner, middle, and outer angles is

depicted in Fig. 4. Notice that the angular motion full

range is used, and if Euler angles were employed problems

would have appeared due to singularities. Also, note that

the angular velocity ω(t), which is shown in Fig. 5, reaches

interesting values, typical of many autonomous vehicles such

as Autonomous Underwater Vehicles, Autonomous Ground

Vehicles, or Unmanned Air Vehicles.
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Fig. 5. Evolution of the angular velocity ω(t)

The sampling rate of the system is 150Hz. The Kalman
filter parameters were set according to the sensor noise levels
and sampling rate,

Ξ=0.5diag

(

1

150
0.0015I,

1

150
0.008I, 2 × 10−8

I

)

and Θ = diag (0.0015I, 0.008I). No particular emphasis was

given on the tuning process as the resulting performance

with these simple parameters is very good. In practice, the

spectral contents of the sensors noise may be experimentally

approximated and frequency weights adjusted to improve

the performance of the filter, see the examples provided in

[17]. Moreover, correlation between the system disturbances

w and the sensor noise n may also be considered. Since

x1 and x2 are measured, the corresponding estimates were

initialized with the first set of measurements. The initial bias

estimate was set to zero.
The convergence rate of the filter is very fast and the

steady-state is achieved in less than 1 s. The initial evolution

of the error variables is not show due to the lack of space.

The steady-state evolution of the filter error is depicted in

Fig. 6. The filtering performance is evident by comparison

with the noise standard deviation of the corresponding sen-

sors.

200 400 600
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

t (s)

E
rr
o
r 
M
a
g
n
e
ti
c 
F
ie
ld
 (
G
)

 

 

x

y

z

200 400 600
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t (s)

E
rr
o
r 
A
cc
e
le
ra
ti
o
n
 o
f 
G
ra
v
it
y 
(m
/s
2
)

 

 

x

y

z

Fig. 6. Detailed evolution of the filter error

Since it is not possible to plot the evolution of the bias

error, as the true bias is unknown, Fig. 7 displays the steady-

state evolution of the bias estimate. As it can be seen, the

rate gyros biases estimates changes slowly over time, which

is quite typical of low-cost units.
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Fig. 7. Detailed evolution of the rate gyros biases estimates

In order to evaluate the overall attitude performance, yaw,

pitch, and roll Euler angles could have been computed from

the estimated rotation matrix. However, as these would have

singularities due to the full-range trajectory described by the

platform, and for the purpose of performance evaluation only,

an additional error variable is defined as

R̃(t) = RT (t)R̂(t),

2628



which corresponds to the rotation matrix error. Using the

Euler angle-axis representation for this new error variable,

the evolution of the angle error is shown in Fig. 8. The

mean error is 0.125 °, which is a very good value considering

the low-grade specifications of the IMU at hand. It is also

comparable with the results obtained in simulation, which

are not shown on the paper due to space limitations. In

comparison with built-in commercial of-the-shelf solutions,

the AHRS 3DM-GX1, from MicroStrain, provides an attitude

with a standard deviation error of 2 °. At the same time, the

noise levels of the sensors of the IMU considered in this

paper are at least twice of those of Microstrain, according

to the manufacturers specifications. Further improvements

could be achieved by analyzing the spectral contents of

the sensor measurements at rest and including the sensor

frequency response specifications in the filter design.
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representation

V. CONCLUSIONS

This paper presented the design and performance evalua-

tion of a sensor-based Attitude and Heading Reference Sys-

tem for autonomous vehicles. Traditional solutions typically

ignore the specificness of the sensors and have drawbacks

such as singularities, double-covering, ad-hoc tuning pro-

cedures, and/or topological limitations for achieving global

asymptotic stabilization. The proposed solution, which is

based directly on the measurements provided by an Inertial

Measurement Unit, includes the estimation of rate gyro

biases, systematic tuning procedures, and also allows for the

inclusion of frequency weights to model colored noise on

the different sensor channels. Due to its inherent structure,

the filter is complementary, allows for temporary loss of

sensor measurements, and also copes well with slowly time-

varying rate gyro biases. Finally, it is also independent of

the particular mobile platform dynamics as it relies solely

on kinematic models, which are exact. The performance

of the AHRS was evaluated with an experimental setup

that includes a high precision Motion Rate Table. This

table provided ground truth signals in order to assess the

performance of the resulting AHRS, which was shown to be

very good in spite of the specifications of the low-cost IMU

that was used in the tests.
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