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Abstract— Continuum robots made from telescoping pre-
curved elastic tubes enable base-mounted actuators to specify
the curved shapes of robots as thin as standard surgical
needles. While free space beam mechanics-based models of the
shape of these ‘active cannulas’ exist, current models cannot
account for external forces and torques applied to the cannula
by the environment. In this paper we apply geometrically
exact beam theory to solve the statics problem for concentric-
tube continuum robots. This yields the equivalent of forward
kinematics for an active cannula with general tube precurvature
functions and arbitrarily many tubes, under loading from
a general wrench distribution. The model achieves average
experimental tip errors of less than 3 mm over the workspace
of a prototype active cannula subject to various tip forces.

I. INTRODUCTION

An active cannula is a robot made from concentric elastic
tubes that are each precurved, as shown in Figure 1. As
the tubes are axially rotated and translated at their bases,
the active cannula changes shape via elastic tube interaction.
Generating bending from tube interaction in this way enables
a large variety of possible shapes in a continuum robot with
a diameter comparable to a standard surgical needle. These
characteristics have led to many proposed minimally invasive
surgical applications for active cannulas, including use in
fetal procedures, the lung, the heart, and in transnasal and
transgastic surgeries, among others (see [1] for an overview).
While some of these applications, such as manipulating a
fiber optic laser in the lung [2], may be accomplished with
existing free-space models, in many foreseeable applications
it will be useful for the cannula to intentionally manipulate
tissue by retracting it, cutting it, dissecting it, traveling
through it like a needle, etc. In such cases the cannula will
experience external loading which may significantly change
its shape. To control the position and applied force of the
cannula under these conditions, a model of cannula shape
under load is needed, which is our objective in this paper.

Recently, models accounting for external loading have
been developed for larger-scale continuum robots, such as
the pneumatic robot modeled with Cosserat rod theory by
Trivedi et al. [3]. Gravagne, et al. used beam theory to derive
the large deflection dynamics of a tendon driven continuum
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robot [4]. While our work draws upon similar geometrically
exact beam theory as [3] and [4], an active cannula presents
a fundamentally different problem because there are many
elastica to consider rather than only one. While the con-
centric tubes are constrained to a common backbone curve,
individual tubes can undergo torsion independent of each
other. This precludes use of the above models, which cannot
account for multiple tubes interacting in the backbone.

Substantial prior work has been done in active cannula
modeling, but all models to date apply only in free space,
and cannot account for external loads. Free space cannula
models have been developed in parallel by several groups
over the past few years. Terayama et al. [5] modeled the
kinematics of curved tubes, but not the mechanics. Webster
et al. [6] and Sears and Dupont [7], [8] included beam
bending using Bernoulli-Euler beam mechanics. Torsional
effects were added to the modeling framework in straight
transmissions [6], [9], and then in curved sections of a two-
tube cannula with circular precurvature [10], [11]. The latest
model advancements generalize to arbitrarily many tubes and
variable precurvature using energy minimization [12], [13]
and other methods of classical rod theory [11]. While these
are powerful and general models, as mentioned previously,
they currently only consider cannulas in free space.

The purpose of our paper is to extend these models to
describe the shape of an active cannula when external forces
and torques are applied to it. We then provide experimental
validation of this framework. These results provide the
theoretical foundation necessary for model-based control and
force sensing using the cannula itself as a force sensor,
as was recently accomplished for flexible, push-rod driven,
continuum robots by Xu and Simaan [14].

Fig. 1: An active cannula consisting of three concentric,
telescoping, precurved Nitinol tubes. Cannula shape can be
controlled by rotating and translating the tubes at their bases.
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II. MECHANICS-BASED MODEL

A. Assumptions and Kinematics

All derivations in this paper take place under the standard
assumptions of Kirchoff rod theory, a special case of Cosserat
rod theory (see [15] for an in-depth treatment of both). Kir-
choff theory assumes inextensibility and neglects transverse
shear – which are generally regarded as good assumptions for
long thin rods such as the tubes used in most prototype active
cannulas. We use the linear Bernoulli-Euler constitutive law
((6) in Section II-B). We also neglect friction in this paper, as
do all active cannula models to date. The low tip errors found
in the experimental section indicate that this is a reasonable
assumption for our active cannula prototype.

To describe the kinematics of a curved robot, we begin by
considering a single unloaded curved tube. Let the shape of
the tube be defined by an arc-length parameterized Cartesian
curve r∗i (s)

1. We assign frames continuously along r∗i (s),
and by convention choose the z axes of these frames to
always be tangent to the curve. These frames may be attached
with any framing convention where their z axes are tangent
to the curve, e.g. Bishop’s frames or Frenet-Serret frames.
Framing the initial tube curve creates a rotation matrix R∗i (s)
at every arc length location s on the undeformed curve, thus
establishing an arc length parametrized transformation g∗i (s)
along the tube,

g∗i (s) =
[
R∗i (s) r∗i (s)

0 1

]T
. (1)

The local curvature vector is established by the well-known
relationship

u∗i (s) =
(
R∗Ti (s)Ṙ∗i (s)

)∨
, (2)

where the dot here denotes a derivative with respect to arc
length s. The ∨ operator denotes conversion of an element of
so(3) (the Lie algebra of SO(3)) to its corresponding element
in R3. Following convention, we “overload” the ∨ notation
so that it also indicates the mapping from se(3) (the Lie
algebra of SE(3)) to R6. The ̂ operator denotes the inverse
operation in both cases (see [16] for a thorough discussion
of this notation).

Because the tubes in this collection are arranged concen-
trically, the tangent vectors of each deformed tube in the
collection must be equal at s, thus each Ri(s) differs from
the others by a rotation about the local tangent z axis. We
introduce an angle θi(s) to parameterize this difference as

Ri(s) = R1(s)Rθi (3)

where Rθi
= eê3θi(s) denotes a rotation about the z axis

by θi(s), and θ1 ≡ 0 by definition. We use this to obtain
a relationship between the tube curvature vectors which

1Note that throughout the paper, we use the ∗ to denote variables
associated with undeformed individual tube shapes. Thus, r∗i (s) indicates
the pre-set shape a single tube would have in the absence of any other tubes
or external loads.
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Fig. 2: Section of rod from s to the free end ` subject
to distributed forces and moments. The internal force and
moment are also shown.

enforces the tangency constraint. Applying the definition of
ui, we get

ui =
(
RTi Ṙi

)∨
= RTθi

u1 + θ̇ie3. (4)

Given ui, the deformed curve can be constructed by inte-
grating gi(s) using

ġi(s) = gi(s)ξ̂i(s). (5)

where ξi(s) =
[
0 0 1 uTi (s)

]T
.

B. Mechanics of a Collection of Tubes under Load

Neglecting elongation and transverse shear, any deforma-
tion of a tube from its initial state g∗i (s) to a new state gi(s)
can be described by a corresponding change from u∗i (s)
to ui(s), which we denote ∆ui(s) = ui(s) − u∗i (s). The
Bernoulli-Euler constitutive law can then be used to describe
the relationship of the strain variables to the internal moment
at s:

M i(s) = Ki(s)∆ui(s), (6)

where Ki(s) = diag{Ei(s)Ii(s) Ei(s)Ii(s) Gi(s)Ji(s)},
and M i(s) is the moment expressed in the local frame.

We consider a single tube extending from arc length
s = 0 to s = ` and subject to an arbitrary combination of
distributed forces f(s) and moments l(s) along its length.
We then cut a section of this tube at an arbitrary arc length
location s, as shown in Fig. 2. By convention, we denote
the internal force which the material of [s, `] exerts on the
material of [0, s) as n(s), expressed in the global frame.
Similarly, the internal moment which the material of [s, `]
exerts on the material of [0, s) is m(s), expressed in the
global frame. Summing the forces on the portion [s, `] we
have, ∫ `

s

f(σ)dσ − n(s) = 0. (7)

Similarly, summing the moments on the portion [s, `] about
the world frame origin, we obtain∫ `

s

(r(σ)× f(σ) + l(σ)) dσ −m(s)− r(s)× n(s) = 0.

(8)
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To generalize (7) and (8) to a cannula with multiple
tubes, we will have one force distribution f i(s), and one
moment distribution li(s), per tube. The assumptions of
shearlessness and inextensibility allow us to consider the
sum of all force distributions applied to specific tubes as a
single force distribution applied to the collective backbone,∑n
i=1 f i(s) = f(s). However, this is not the case with

moments, since the tubes can axially rotate independently of
one another. For this reason we must retain the i subscripts
on the moment distributions li(s) to distinguish the tube
to which these moment distributions are physically applied.
Thus, summing forces for a collection of tubes we have∫ `

s

f(σ)dσ −
n∑
i=1

ni = 0, (9)

and summing moments we have,∫ `

s

(
r(σ)× f(σ) +

n∑
i=1

li(σ)

)
dσ

−
n∑
i=1

(mi(s)− r(s)× ni(s)) = 0.

(10)

Taking the derivative of (9) with respect to s, we obtain

n∑
i=1

ṅi + f = 0, (11)

where we have dropped the explicit dependence on (s) to
simplify notation, as we will continue to do for the remainder
of the paper, except where needed for clarity. Similarly,
taking the derivative of (10) with respect to s and substituting
in (11) yields

n∑
i=1

(ṁi + ṙ × ni + li) = 0. (12)

Equations 11 and 12 are multi-tube analogues of the single
Cosserat equilibrium equation as derived in [15]. We now
proceed to expand (12) and solve for u̇i in terms of the
precurvatures and applied loads. We use the constitutive law
(6) for each tube, the frame transformations mi = RiM i,
ni = RiN i, and the kinematic relationship Ṙi = Riûi to
write

n∑
i=1

ṁi(s) =
n∑
i=1

Ri

(
Ki (u̇i − u̇∗i )

+ (ûiKi + K̇i) (ui − u∗i )
)
.

(13)

Since the tubes’ common tangent vector at s is the z axis of
the attached frame, we use ṙ = R1e3 and (9) to write the
last two terms of (12) in terms of the applied loads as

n∑
i=1

(ṙ × ni + li) = R1e3 ×
∫ `

s

f(σ)dσ +
n∑
i=1

li. (14)

Then, after pre-multiplying by RT1 (s) and recalling that
Rθi

= RT1 (s)Ri(s) from (3), (12) becomes

n∑
i=1

Rθi

(
Ki (u̇i − u̇∗i ) + (ûiKi + K̇i) (ui − u∗i )

)
+ e3 ×RT1

∫ `

s

f(σ)dσ +RT1

n∑
i=1

li = 0.

(15)

In order to integrate, we wish to obtain an expression for
u̇1 in terms of only the other state variables u1, ...un. So
we substitute in the derivative of (4),

u̇i(s) = θ̇i
dRTθi

dθi
u1 +RTθi

u̇1 + θ̈ie3, (16)

to eliminate u̇2, ...u̇n.This substitution enables us to solve
(15) for the first two components, u̇1,x and u̇1,y in terms of
u1, ...un:[

u̇1,x

u̇1,y

]
= −K−1

n∑
i=1

Rθi

(
Ki(θ̇i

dRTθi

dθi
u1 − u̇∗i )

+ (ûiKi + K̇i)(ui − u∗i )
)∣∣∣
x,y

−K−1
(
e3×RT1

∫ `

s

f(σ)dσ +RT1

n∑
i=1

li

)∣∣∣
x,y

(17)
where K =

∑n
i=1Ki and |x,y denotes selection of only the

first two components of a vector. It is not possible to write
u̇1,z in terms of u1, ...un using only (15) and (16).

It is possible, however, to derive a relationship for the
torsional components via minimizing the total elastic energy
stored in the collection of tubes. Using the constitutive equa-
tion (6), the elastic energy stored in the n tube deformations
is

E =
1
2

n∑
i=1

∫ `

0

(ui − u∗i )TKi(ui − u∗i )ds. (18)

Substituting in (4) we have

E =
1
2

∫ `

0

uT1 K1u1 − 2uT1 K1u
∗
1 + u∗T1 K1u

∗
1

+
n∑
i=2

(
uT1 Kiu1 + 2uT1 Kiθ̇ie3 − 2uT1 Rθi

Kiu
∗
i

+ u∗Ti Kiu
∗
i − 2u∗Ti Kiθ̇ie3 + θ̇2i e

T
3 Kie3

)
ds.

(19)
To find the functions θi which minimize the stored elastic
energy, we apply the Euler–Lagrange equation shown below
to the functional n− 1 times, once with respect to each θi:

∂f

∂θi
− d

ds

(
∂f

∂θ̇i

)
= Q′i. (20)

Note that the right hand side is not zero as is the case in
prior free space models [13]. Instead we have Q′i, which
represents any generalized forces associated with θi. In this
case, they are the arc length parametrized torque per unit
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length applied along the e3 axis of tube i. Applying the
Euler–Lagrange equation to the functional, we obtain

− uT1
∂Rθi

∂θi
Kiu

∗
i − (u̇1 − u̇∗i )

T
Kie3 − (u1 − u∗i )

T
K̇ie3

− θ̈ieT3 Kie3 − θ̇ieT3 K̇ie3 = e3Ri(s)li(s).
(21)

Using (4) and its derivative to replace u1 and u̇1, we solve
for u̇i,z and obtain,

u̇i,z =u̇∗i,z +
EiIi
GiJi

(ui,xu∗i,y − ui,yu∗i,x)

+
˙(GiJi)

GiJi

(
u∗i,z − ui,z

)
− 1
GiJi

eT3 R
T
i li.

(22)

The equation is independent of the loads that the other
tubes apply to tube i except for any directly applied axial mo-
ments at s, which are necessarily zero under the assumption
of no static friction between tubes. A version of (22) without
the last two terms was derived in [11] using a different
approach, and without considering external loading. We can
now use (22) for i = 1 to get u̇1,z .

C. Model Implementation

The set of variables to be integrated to obtain the fi-
nal backbone shape is {g1,u1,x,u1,y,u1,z,u2,z, ...,un,z}.
Their derivatives are defined by (17), (22), and (5), while
(4) can be used to calculate ui from u1 at every step. For
convenience, (17) and (4) are written in terms of θi and θ̇i.
The latter can be obtained from the state variables at every
step using θ̇i = ui,z − u1,z , which follows from (4), and θi
can be obtained by integrating θ̇i.

The unknown boundary conditions at the
proximal end are the initial curvature values
{u1,x(0),u1,y(0),u1,z(0),u2,z(0), ...,un,z(0)}. At the
distal end, one boundary condition is that the sum of the
internal moments vanishes (assuming no point moments
applied at the tip),

∑n
i=1mi(`) = 0. Also, the axial

component of each tube’s internal moment must vanish
at its tip, eT3M i(`i) = 0. Continuity of the total internal
moment

∑n
i=1mi(s) = 0 must also be maintained across

locations where tubes end or become curved. In our
experiments, we employ a standard shooting method to
solve for the values of the unknown initial curvatures which
satisfy the boundary conditions at the distal end.
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Fig. 3: A Diagram of the experimental two tube cannula.
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Fig. 4: A photo of the experimental setup. Tube bases were
translated and rotated precisely by manual actuators, and
positions along the backbone were triangulated using the
stereo camera system. The applied force vector was measured
in the same way.

TABLE I: Measured and Assumed Physical Quan-
tities for Experimental Tubes

Tube 1 Tube 2
(Inner) (Outer)

Inner Diameter (mm) 1.25 2.00
Outer Diameter (mm) 1.75 2.37
Straight Length (mm) 122.7 30.7
Curved Length (mm) 206.9 102.5
Young’s Modulus (E) (GPa) 60 60
Shear Modulus (G) (GPa) 23.1 23.1

III. EXPERIMENTS

In order to validate the model developed in Section II, a
set of experiments was performed for a collection of two
precurved Nitinol tubes in various configurations subject to
various tip loads.

A. Tube Properties and Measurement Procedure

The physical properties of the tubes used are given in
Table I, and they are shown schematically in Fig. 3. The
curvature values were computed as described below and are
shown in Fig. 5. The outer tube was held stationary in its
fully extended position, while the base of the inner tube was
translated to 5 different positions, given in Table II. At each
of these translational positions, the inner tube was rotated to
8 evenly spaced angular positions, given in Table III

Thus, the tubes were actuated to 40 different workspace
locations which evenly span the set of angular and linear
differences of the tubes’ base positions. Using this set of
configurations, a set of tip points that spans the entire

1050



workspace of the cannula can be generated by a rigid rotation
of both tubes about the z axis. Thus, this set of configurations
represents a sampling of all unique (from the model’s point
of view) positions in the configuration space of the cannula.

As shown in Fig. 4, at each of these configurations, a
set of 3D points along the backbone was obtained from
images taken using a calibrated pair of stereo cameras (Sony
XCD-X710 Firewire cameras with a resolution of 1024 ×
768 pixels). The fiducial markers shown in the inset image
in Fig. 4 enabled determination of point correspondences
for stereo triangulation. To facilitate this, each fiducial was
manually identified in image coordinates by clicking on the
center of the black bands in each image using MATLAB’s
ginput. The transformation between the stereo camera
coordinate frame and the cannula base frame was estimated
using point cloud registration [17] using a grid of points,
the position of which could be measured with calipers in the
cannula frame and triangulated in the stereo camera frame.

For each of the 40 actuator configurations, a point force
was then applied by a wire tied through a hole in the tip
of the inner tube. The force vector applied by this wire was
also determined by manually clicking marked points along its
length. The wire was run over a pulley as shown in Fig. 4 and
attached to a mass ranging from 100 g to 500 g as detailed
in Table II. Backbone data was then also taken in the loaded
state. Thus our total experimental dataset consisted of 40
unloaded configurations and the same 40 configurations with
tip forces applied.

The two tubes have general precurvatures u∗1(s) and
u∗2(s) which were calculated analytically from a parametric
curve that was fit to points along the tube. These points
were triangulated for each tube individually using the same
procedure described previously for collecting the shape of
the entire cannula. We note that these tubes are not circularly
precurved, as has been the case with all prior prototypes in
the literature. Fig. 5 illustrates that the measured curvatures
are general and change significantly along the arc length.

B. Model Performance and Parameter Fitting

Using the nominal parameter values (those that can be
measured or appear on data sheets – see [9] for further
discussion of active cannula nominal parameters, variances,

TABLE II: Translational Actuator Configurations
D1 (mm) 131.7 154.7 177.7 200.7 223.7
D2 (mm) 30.7 30.7 30.7 30.7 30.7
Tip Load (N) 0.981 0.981 0.981 1.962 4.9051

1 For α1 = 0◦, α2 = 0◦, D1 = 223.7 mm, the load was 1.962N.

TABLE III: Rotational Actuator Positions Applied at Each
Translational Configuration Shown in Table II
α1 (deg) 0 451 90 135 180 225 270 315
α2 (deg) 0 0 0 0 0 0 0 0
1 α1 = 60◦ was substituted for α1 = 45◦ when D1 = 131.7 mm to

keep the tip of the cannula in the field of view of both cameras.
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Fig. 5: Measured curvatures of the preset tube shapes ex-
pressed in Rotation Minimizing (Bishop’s) frames. Only
the x and y components are shown because this frame
convention requires u∗1,z = u∗2,z = 0.

and error propagations) of E1, E2, G1 and G2 and measured
inner and outer diameters listed in Table I, the mean error
in tip position over all 80 experiments was 5.79 mm. Since
actual values for the moduli of Nitinol tubes are uncertain
(they are listed as 41–75 GPa on data sheets from the
manufacturer, NDC, Inc.), the values of each tube’s bending
and torsional stiffness were subsequently calibrated by min-
imizing the sum of the positional errors at the base (s = 0),
the tip of tube 2, and the tip of tube 1. To account for small
errors in registration between the model and experimental
cannula position, the robot base frame (described by XYZ
Euler angles and translation) was included in the calibration
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Fig. 6: Comparison of model prediction and experimentally
determined backbone points for the unloaded and loaded
cases where D1 = −154.7, D2 = −30.7, α1 = 135◦, and
α2 = 0◦. The arrow shows the direction of the 0.981 N
applied force. The tip error in both cases (about 3 mm) is
representative of the mean tip error for all 80 cases.
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TABLE IV: Nominal and Calibrated Tube Stiffnesses
Nominal Value Calibrated Value

E1I1 (Nm2) 0.0204 0.0197
J1G1 (Nm2) 0.0157 0.0123
E2I2 (Nm2) 0.0458 0.0368
J2G2 (Nm2) 0.0352 0.0331

TABLE V: Tip Error Statistics For Nominal Parameters
Tip Error 40 Unloaded 40 Loaded All

Statistic (mm) Cases Cases Cases
mean 3.76 7.82 5.79
min 0.60 2.42 0.60
max 10.59 25.53 25.53

std. dev. 2.85 4.13 4.08

procedure and initialized with the results from the point cloud
registration. The optimization was done using MATLAB’s
fminsearch function, which performs Nelder-Meade sim-
plex unconstrained optimization.

These calibrated parameters are shown in comparison to
their nominal counterparts in Table IV. The robot base
showed only small changes during optimization, moving
through XY Z Euler angles of −0.06◦, 0.67◦, and −0.58◦,
with the position of the base frame origin translating 2.0 mm.
Using these fitted parameter values, the mean error over all
experiments was reduced to 2.91 mm.

Fig. 6 shows the unloaded and loaded states of the cannula
where the actuator values are D1 = −154.7, D2 = −30.7,
α1 = 135◦, and α2 = 0◦. The experimental data are shown
overlaid on the model prediction with calibrated parameters.
This configuration is typical of all 80 experimental configu-
rations in that the tip error in both cases is about 3 mm, while
the mean for all experiments was 2.91 mm. The rest of the
shape is also typical of the 80 experimental configurations
in that the experimental data lies very close to the model
prediction along the entire backbone.

Error statistics for both nominal and fitted parameters
are given in Tables V and VI. The maximum error of
15.20 mm is an outlier (the second highest error is less
than 9 mm). The outlier appears to have been caused by
an unintentionally applied moment at the tip, due to the
way the wire was wrapped around the side of the tube in
that particular configuration. Other loaded experiment tip
errors in the 5-8 mm range occur in configurations where
the applied load was slightly wrapped around the side of the
cannula tip to reach the pulley, and thus may have applied
small unintended moments in addition to the desired forces.

IV. CONCLUSIONS

In this paper we presented use of geometrically exact
Kirchoff rod theory to describe the shape of a collection of
concentric precurved tubes under general force and moment
distributions. We also presented experimental studies apply-
ing the model to a prototype active cannula, with average
error of 2.91 mm in 80 configurations with varying tip loads.

TABLE VI: Tip Error Statistics For Fitted Parameters
Tip Error 40 Unloaded 40 Loaded All

Statistic (mm) Cases Cases Cases
mean 2.89 2.92 2.91
min 0.62 0.91 0.62
max 8.49 15.20 15.20

std. dev. 2.19 2.52 2.34

This model extends the use of active cannulas to applica-
tions where they must interact with tissue. It provides the
foundation for model-based position and force control of
active cannulas under external loads. We also anticipate using
this modeling framework in future work to enable use of the
cannula itself as a force sensor.
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