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Abstract— This work presents a new approach to shared
control to assist wheelchair driving. Rather than swapping
control from human to robot either by request or on a need
basis, the system estimates how much help is needed in a
reactive fashion and continuously produces an emergent motory
command in combination with human input. To provide time
stability and integration, instant commands are modulated by a
factor depending on human efficiency in a shifting time window.
Thus, the better the person drives, the more control he/she is
awarded with. The approach has been tested at Fondazione
Santa Lucia (FSL) in Rome with volunteers presenting different
disabilities. All volunteers managed to finish a mildly compli-
cated trajectory with door crossing and major turns and the
proposed system increased efficiency in all cases.

I. INTRODUCTION

In nowadays aging society, persons with disabilities may

require some assistance to remain autonomous. Mobility,

in particular, has been a main concern leading to robotic

wheelchair solutions. These wheelchairs are expected to

assist persons in maneouvres they can not do on their own,

but not supposed to take full control on mobility, as this is re-

ported to lead to loss of residual capabilities and frustration.

Indeed, researchers favor shared control approaches, so that

the wheelchair just provides the required amount of help.

There are many studies on the level of autonomy a robot

might have when interacting with a human and viceversa

[1] [2] [3]. Depending on how much autonomy the machine

has, collaborative approaches can be roughly categorized

into i) safeguarded operation; and ii) shared control. In the

first case mobiles are totally under human control, except in

danger [4] [5] [6]. In the second case, control is switched

from user to machine depending on the situation at hand.

Some approaches [1][3][7] [8] [9] [10] rely on a basic

set of primitives like AvoidObstacle, FollowWall and

PassDoorway to take over in difficult maneuvers, either

by manual selection or automatic triggering. In other cases,

a subsumption like scheme [11] is used: events trigger one

or several behaviours which are merged into an emergent

one. In extreme, persons might only point a target and the

machine works like an autonomous robot, usually via a

hybrid navigation scheme [12][13] [14] [15] [16] [17].

In previous works [18][19][20] the authors proposed a

new approach to collaborative control. It consisted of locally

evaluating the performance of the human and robot alone at
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each time instant. Their resulting efficiencies were used as

weights to combine their commands in a reactive, emergent

way. This approach is briefly presented in section II. How-

ever, this approach led to some local oscillations in areas

where persons changed their minds often (typically complex

areas) or the robot algorithm did not perform so well (doors

and narrow spaces). This problem was intrinsic to the purely

reactive nature of our approach, but can be solved by means

of some temporal inertia. A new system, based on efficiency

modulation via an envelope, is described in section III and

results with volunteering in-patients in Fondazione Santa

Lucia (Rome) are presented in section IV. Finally, section

V presents conclusions and future work.

II. COLLABORATIVE NAVIGATION SYSTEM

One of the main advantages of reactive navigation schemes

are that they may deal with several sensors and goals in

a simple way. Thus, we use them to combine human and

wheelchair commands and goals. Since humans tend to have

a deliberative agenda that is propagated down to joystick

commands, they provide some global efficiency and usually

avoid local traps. Robot control may also include a deliber-

ative layer to work in a hybrid way for persons presenting

cognitive disabilities. In that case, high level control would

simply decompose the trajectory into a set of consecutive

local targets [18], but the system would use a purely reactive

approach to reach each in a sequence.

The reactive system is based on a pure Potential Fields

Approach (PFA) [21]. PFA basically rely on modelling

obstacles as repulsors and goals as attractors to create a

vector field that returns a motion vector at each point. PFA

provides a simple and efficient tool for autonomous motion

that, in its simplest version, has been reported to present

some problems due to their reactive nature: i) oscillations

when obstacles are too close; ii) incapacity to move safely

through narrow corridors; and iii) local traps. Basically, the

user provides a direction (e.g. via a joystick), which is added

as another vector to the potential field at each time instant

(Fig. 1). The key to our collaborative scheme is to determine

how to weight human and robot vectors to preserve efficiency

and safety and, yet, allow the user to be in control all the

time. Specifically, weights are proportional to the efficiencies

of human and robot at each instant. Usually, robots will be

more precise, whereas humans will be more versatile.

Efficiency (η) needs to be locally calculated due to the

purely reactive nature of the approach. We have found three

local factors to have an immediate effect on navigation (Fig.

1): Smoothness (ηsf ), Directiveness (ηtl) and Safety (ηsc),

each ranging from 0 to 1. Smoothness reflects how sharp
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Fig. 1. a) Vectors involved in motion command calculation; and b) local
efficiency factors for an agent i.

direction changes are undesirable for driving. Safety reflects

that it is better to keep away from obstacles. Directiveness

tries to reflect that moving ahead to the goal in a straight

way leads to shorter paths.

Smoothness (ηsf ) is locally evaluated as the angle between

the current direction of the robot and the provided motion

vector. This factor is included because mobiles may be non-

holonomic, meaning that they can not change directions

abruptly due to their kinematics. Consequently, it is better

to change heading as less as possible to avoid slippage

and oscillations. Directiveness (ηtl) is locally measured in

terms of the angle formed by the robot heading and the

direction towards the next partial goal provided by the global

planner. Obviously, the shortest way to reach that goal is

to go straightly towards it, consequently making the angle

zero. Obviously, any obstacle in the way would prevent that

movement, but this is contemplated by another factor. Safety

(ηsc), is evaluated in terms of the distances to the closest

obstacles at each instant with respect to the heading direction.

The closer the wheelchair gets to obstacles, the less safe the

trajectory is.

ηsf = e−Csf ·|αdif | (1)

ηtl = e−Ctl·|αdest−αdif | (2)

ηsc = 1 − e−Csc·|αmin−αdif | (3)

ηsf is smoothness, where Csf is a constant and αdif is

the angle difference between the current direction and the

command vector. ηtl is directiveness, where Ctl is a constant

and αdest the angle between the robot heading and the

direction towards the next partial goal. ηsc is safety, where

Csc is a constant and αmin is the angle difference between

the current direction and the direction of the closest obstacle.

Csf , Ctl and Csc are used in these equations to balance the

impact of local efficiencies on global performance, so that

one or other decreases faster to reflect that the environment

is more sensitive to that particular factor. In our case, we

set them all to 1 so that all factors are equally important.

Finally, efficiency is obtained through the average of the three

aforementioned factors.

This approach has proven to work well with volunteer-

ing in-patients presenting different degrees of disability in

Fondazione Santa Lucia [20][19]. All volunteers increase

their performance when they use this collaborative scheme.

In some cases, persons with significant cognitive problems

required, as commented, a deliberative layer to suggest a

trajectory for them. However, some problems arisen when

disabilities were too remarkable. In these cases, assistance

provided might not be enough to solve complex situations,

as the person’s contribution might even be having a negative

effect on the emerging command. Furthermore, when persons

have a punctual error in their driving, they are immediately

compensated by the machine in a somewhat brusque way.

We have observed that this may lead to a struggle between

person and robot for people with minor disabilities, when

they acknowledge the robot’s contribution. Some temporal

inertia helps to solve this problem.

III. EFFICIENCY BASED CONTROL

MODULATION

Given the PFA rotational (vrR) and translational (vtR)

velocities and the human ones (vrH and vtH ), shared motion

velocities, vrS and vtS) are defined as:

vrS = (1 − K) · ηR · vrR + K · ηH · vrH (4)

vtS = (1 − K) · ηR · vtR + K · ηH · vtH (5)

where ηR is the efficiency of robot motion commands and

ηH is the efficiency of human motion commands. Both robot

command and human input are added as weighted vectors

(Fig. 1), so that persons receive more control as a reward

for a better efficiency. Shared motion command efficiency is

defined as ηS . Efficiencies range from 0 to 1, being 1 the

maximum efficiency. It must be noted that ηS is not equal to

ηR nor equal to ηH . In most cases, it will tend to the average

ηR and ηH . In this case, we have added a new variable K

to modulate the contribution of human and machine in an

envelope way. K is calculated as:

K =

∑t

i=tdis
η(i)

t − tdis

(6)

tdis being the last time instant before t in the trajectory

where K showed a clear inflection point.

The effect of this time window is fairly intuitive: basically,

steady changing efficiency is related to motion in difficult

areas, where we want assistance to increase or decrease

quickly. Punctual efficiency changes, though, correspond to

local errors, that should not be reflected in the amount of

assistance provided. The length of the window is basically

controlled by how much K is holding in average with an

acceptable variation.

Using this formula, we could have a continuous variation

of K , but doctors requested us to have just three values:

0.75, 0.5 and 0.25, corresponding to human higher control,

equal contribution and machine predominance. The values

are chosen according to the following criteria:

• If (η̄H > 0.85)|(η̄H > 1.5 · η̄R), meaning that either

the person is doing very well or, at least, clearly

outperforming the machine, K = 0.75.
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• If (η̄H < 0.85)&(0.5 · η̄R < η̄H < 1.5 · η̄R), K = 0.5.

• Else, K = 0.25.

IV. EXPERIMENTS AND RESULTS

The proposed system was built on CARMEN (Collabora-

tive Autonomous Robot for Mobility ENhancement), a mod-

ified a Runner Meyra wheelchair, donated by Sauer Medica

S.L., adding odometry and a frontal Hokuyo laser URG04-

RX for localization and obstacle detection. We included a

PC that received joystick commands and, after combining

them with the reactive ones, sent the emergent orders to the

motors.

A. EXPERIMENTAL SETUP

This system was tested with volunteering in-

patients in FSL, more specifically in Casa Agevole

(http://www.progettarepertutti.org), a standard compliant

test house in the complex. All tests were performed under

direct supervision of FSL medical staff, approved by

FSL Ethical Committee and performed with volunteers’

consent. FSL staff provided disability indexes for these

in-patients. Specifically, performance was measured with

the metrics in [20]: Smoothness, Directiveness and Safety

for efficiency, Intervention level-percentage of time that the

user operates the joystick-, Disagreement-angle between

joystick command and wheelchair heading- and Joystick

Variation-number of joystick changes larger than 5%- for

stress, effort and frustration, Inconsistency for cognitive

skills, and path Length, Curvature and Completion Time

for performance. Among other metrics, in-patients were

profiled via the Barthel and MMSE (see [20]) indexes for

physical and cognitive abilities, respectively.

The proposed trajectory was a complex one: volunteers

had to enter the house via the front door, followed by a

narrow corridor. At their chosen point, they had to U-turn

left, after leaving a cupboard on the right and always paying

attention to the right wall. Then, facing the opposite side

in the side room, they had to move out of the house via a

second door. The room for maneouver was quite restricted,

but typical homes are usually like this, so it was interesting to

check what happened in reality-like conditions. Fig. 2 show

some captures of a random volunteer at key locations of the

proposed path. It can be noted that there are no signals on

walls or floor and general guidelines could only be provided

at the beginning of the test, like ”enter the house by this

door and get out by the other one”. It is also important to

note that moving backwards is not allowed, so turning too

late in the trajectory may end up in a stuck-up situation. In

this experiment, the system does have a deliberative layer

[22]that usually provides three local targets, approximately

marked in Fig. 2 at the end of the three arrows. However,

since it recalculates paths on a need basis, their locations

may change and even additional local targets might appear

if necessary.

B. CASE STUDY: INPATIENT 2

First, we present an example with volunteer 2, a 68 years

old lady affected by Spinal cord injury. She has been chosen

Fig. 2. Tentative path for experiment in Casa Agevole.

because she was already a volunteer in the previous tests, 5

months before, when modulation was still not used, In her

first tests in February 2009 she could not walk, but in June

2009 she could walk with the help of a walker. In the new

tests she had an MMSE index equal to 29.4, over 30, where

26 is accepted as average dementia threshold. Hence, she

has no cognitive disabilities. Her Barthel index grew from

49 to 86 (over 100) in 5 months, meaning that she recovered

many physical skills. Indeed, this time, she performed clearly

better than in February, where she had trouble with turns and

managed to finish only one of three runs. K was not variable

at the time, so February tests could be understood as a fixed

K=0.5 case.

The path in February was approximately reverse to the

one in Fig. 2, but it stopped before crossing the narrow

door. Fig. 3 presents some results from February tests: a

standalone benchmark run and a collaborative run. In the

first case, the person received no assistance (except for a

safeguard mechanism that stops the wheelchair in case of

imminent collision). In the second case, the increase of

efficiency at each point of the trajectory is overprinted in

bright green over human performance. It can be observed

that, despite the significant increase in efficiency, in this case

the person was not capable of U-turning, mostly because

she had severe complications with turns. It can be observed

that efficiency is represented in RGB in the graphs, where

R, G and B correspond to Smoothness, Directiveness and

Safety respectively. Thus, pink areas correspond to lack of

green (Directiveness), whereas blue ones lack Smoothness

as well. This allows visual intuitive interpretation of results.

For example, in the case in Fig. 3 it can be observed

that delay in turning right leads to sharp oscillations to

correct the trajectory but, nevertheless, the lady fails to

prevent the wheelchair from getting stuck too close to a

cupboard. In the second case, collaborative control avoids

some oscillations (see non-blue plot color), but assistance is

not enough to correct the trajectory and avoid stucking up

as well. Table I briefs efficiencies in these tests in February.
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Fig. 3. Tests February’09 (K=0.5): a) standalone; b) collaborative mode.

It is important to note that in collaborative mode, human

actions also have an impact in robot efficiencies, as the

robot is not free to operate on its own. This impact could be

positive (e.g. to avoid oscillations at doors) or negative, as

smoothness will be affected by continuous compensation of

the person’s trajectory. Thus, it can be observed that robot

smoothness is not that good despite the benefits of a PFA.

Smoothness could be improved by using a more efficient

reactive algorithm, but this would mean decreasing human

control, and this was undesirable. Yet, as this person has

difficulties to turn, her worst feature is Directiveness.

Test number Feb’09 Feb’09 Jun’09

Control type Standalone Shared (K=0.5) Shared (Kvar)

Global efficiency (%) Robot 61.08 58.77 70.07

Human 63.78 62.49 64.63

Both 63.95 68.07 72.59

Smoothness (%) Robot 49.06 42.31 51.15

Human 54.88 73.57 63.18

Both 55.09 66.2 67.93

Directiveness (%) Robot 43.39 48.51 67.77

Human 42.66 21.48 33.48

Both 42.65 41.96 52.99

Safety (%) Robot 90.88 85.69 91.29

Human 94.07 92.66 97.18

Both 94.2 95.99 96.88

Intervention Level % 99.56 90.94 93.68

Disagreement % 28.15 39.08 22.97

dev 21.69 22.27 17.9

Joystick Variation % 0.08 0.07 1.61

dev 1.29 1.18 6.36

Inconsistency % 4.19 7.11 8.37

dev 4.19 7.11 9.45

Total Length m 4.33 5.43 9.45

Total Curvature degrees 101.1 128.8 175.06

Curvature mean 0.01 0.01 -0.13

dev 1.07 0.12 0.3

Completion time sec 22.11 31.25 55.62

TABLE I

IN-PATIENT 2 DATA

After experiments in February, we checked that almost

every fail in finishing the trajectory for volunteers could

have been avoided if more assistance have been temporarily

provided on a need basis, so we checked the proposed

algorithm in our new tests. In-patient 2 physical skills were

significantly improved in June, still, we checked that assis-

tance improved her performance. Furthermore, she reported

to be pretty comfortable with the wheelchair this time. Fig.

4 shows inpatient 2 efficiencies in this new try, the robot

and collaborative control respectively. We use the same color

code, only the top of each efficiency value is colored green,

orange or red for K equal to 0.75, 0.5 or 0.25, respectively.

For example, it can be observed that there is a narrow area

Fig. 4. Efficiencies for human, robot and shared control with adaptive
envelope.

Fig. 5. a) Trajectories for K variable and K equal to 0.5; b) Substraction
between and human-shared and human-robot efficiency for adaptive K.

where PFA oscillations make Khuman go green and Krobot

go red (hence, a green K=0.75), as the person outperforms

the robot for a while. At the second turn, it can be observed

that the person turned late (loss of Directiveness) and the

robot provoked a sharp turn (light blue area) to compensate.

Yet, this time the person did not receive a higher K because

her Directiveness had been consistently low in the most

recent path section. Fig. 5.a shows the different trajectories

achieved in June tests by inpatient 2 for K fixed to 0.5 and

adaptive K. It can be observed that the correction in the green

K area allows a shorter, more efficient trajectory in this try.

In Fig. 5.b we can observe how human control is clearly

closer to collaborative one than to the robot’s, specially in

areas with high K values.

Naturally, in-patient 2’s ability to U-turn in June is not

simply due to our new approach, but rather to her rehabil-

itation therapy in the hospital. Still, it can be checked that

the system works as expected and this person reported to

feel more comfortable with it this time. Nevertheless, it is

interesting to present results for a person who clearly requires

more assistance.

C. CASE STUDY: INPATIENT 5

Fig. 6 shows efficiencies in standalone mode, K fixed to

0.5 and adaptable K for inpatient 5, affected by Guillian-
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Test number Jun’09 Jun’09 Jun’09

Control type Autonomous Shared PFA Adaptive K

Global efficiency (%) Robot 57.07 78.49 76.82

Human 52.58 68.95 76.73

Both 55.25 77.65 80.5

Smoothness (%) Robot 47.11 66.44 62.84

Human 52.35 69.27 79.38

Both 51.75 73.26 77.56

Directiveness (%) Robot 55.1 76.65 73.88

Human 34.36 41.85 54.91

Both 43.08 63.75 67.91

Safety (%) Robot 69.01 92.52 93.7

Human 70.91 95.63 96.06

Both 70.91 95.95 96.17

Intervention Level % 58.82 88.49 90.78

Disagreement % 10.41 13.63 11.68

dev 12.29 9.45 9.26

Joystick Variation % 1.25 2.25 1.74

dev 5.74 7.98 7.19

Inconsistency % 5.83 7.33 7.17

Total Length m 3.47 4.78 5.32

Total Curvature degrees 272.28 98.72 97.09

Curvature mean -0.87 0.22 0.15

dev 10.87 0.3 0.2

Completion time sec 18.74 17.48 23.96

TABLE II

IN-PATIENT 5 PROBES DATA

Barrue provoking tetraplegia and also by a strong apraxis (10

over 10). It can be observed that she is not able to complete

the path on her own because she finds it very difficult to turn

the wheelchair correctly. Shared control with K equal to 0.5

helps her to turn earlier, but since two turns are required in a

fairly narrow space, once again she is unable to maneouvre

when she gets too close to the armchair. An adaptive K

presents two advantages: first, oscillations in the first door

are not affecting this inpatient anymore and, since she can

drive fairly well in a straight way, she gains control over

the wheelchair in most of the trajectory. Second, a better

approach to the turn area, plus an increase in assistance,

allow her to turn correctly both times now. It is not even

necessary to decrease K to 0.25, as the robot approaches the

turn from a better position thanks to the inpatient support.

Unfortunately, after two turns the person losses directiveness

and trajectory needs to be quite corrected at the end, but yet

she still manages to gain a K equal to 0.75 for a while. It

must be recalled at this point that the robot is not necessarily

performing bad when K is high, but rather that the person

is doing well, so she does not need so much assistance. In

fact, even though inpatient 2 performed pretty well this time,

her K was mostly 0.5, meaning that she requires some help

most of the time and only gains higher control when the

robot performs badly. In most cases, though, persons kept

a high K in many trajectory areas, meaning that a fixed K

would have provided an unnecessary excess of assistance.

Evaluation of results with all volunteers pointed out that,

in fact, they retained control over the wheelchair in any

maneouvre they perform well, whereas K went to 0.5 in

difficult areas. It rarely went to 0.25 because continuous

assistance prevents users from falling into hard control areas,

except for persons with mild to severe disabilities. Also, as

PFA is used to control the robot and test areas were full of

furnitures and fairly narrow, we also checked that the robot

contributes less when PFA is not doing well, making it easier

for persons to compensate its effects.

Fig. 6. Efficiencies for standalone, shared control with fixed K and shared
control with adaptive envelope.

Fig. 7 presents Intervention Level, Joystick Variation and

Disagreement along the path for fixed and adaptive K re-

spectively in these tests. It can be observed that Intervention

Level is denser in the second time, meaning that the user

is actively cooperating all the time. Furthermore, locations

where the person dropped the joystick, marked with red dots

in the figure, correspond to decision points in the second

case, whereas are more erratic for a fixed K. In both cases,

there are less of these points than in standalone mode. This

is also coherent with Joystick Variation, which is less noisy

and smaller when K is adaptive. This is specially interesting

when the inpatient failed to finish the first path, where it

can be observed that joystick motion becomes rather erratic

in a try to get out of the stuck situation. Finally, although

Disagreement is similar in average in both cases, it can be

observed that it is lower than the average (discontinous red

line) most of the time in the second case, except at the end of

the trajectory, where a close turn leads to higher assistance by

the robot. When K is fixed, though, Disagreement is usually

above the average, meaning that the person does not relate

that well with the outcoming action.

To sum up, it can be observed (Tables I and II) that

shared control improves efficiencies between 5 and 20% with

respect to standalone guidance. Intervention Level is similar

or larger in shared mode (93% and 90%) than in standalone

mode (99% and 58%). This mean that the user interacts more

often with the system and his/her final motion is better in

terms of continuity. If we observe only shared modes, there

are differences too. In static K mode, disagreement ranges

from 2% to 17%, larger than in K variable mode. Efficiency

is also smaller (between 2% and 5 %) in fixed K mode than

in variable K mode. This seems to point out that the user is

more comfortable with adaptable K.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented a new approach to collabo-

rative control via efficiency based assistance modulation.

Collaboration is based on estimating how well user and

robot are doing at a given time instant to combine their

motion commands in a weighted way, according to a purely

reactive control scheme. In order to achieve some inertia
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Fig. 7. Intervention Level, Joystick Variation and Disagreement for
inpatient 5: a) K fixed (0.5); b) adaptive K

against punctual errors and noise, an envelope is added

to increase the contribution of either human or machine

on a need basis. This envelope changes according to the

temporal average efficiency between the current instant and

the last significant discontinuity. The system has been tested

in Casa Agevole with volunteering in-patients, presenting

physical and sometimes cognitive disabilities. In all cases,

collaborative control increased efficiency and all volunteers

managed to finish a mildly complex trajectory despite their

lack of experience with similar systems. Results prove that

the amount of assistance received by users is adapted to

their condition and also to the complexity of the maneouvre

they are performing, yet they always have a contribution

in emerging motion. According to the medical team in the

experiments, this is a positive feature to avoid loss of residual

abilities and frustration. Future work will focus on adding

high level layers to link the proposed system to Activities of

Daily Living (ADL).
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