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Abstract— A self-consistent autonomous foot stepping control
is proposed. It works on a self-excited oscillator of COM (center
of mass) developed by the author, in which the stabilizability
is maximized through a nonlinear feedback to the ZMP (zero-
moment point) manipulation. Different from the conventional
artificial CPGs (central pattern generators), its dynamics
seamlessly morphs from/to that of a standing controller and
enables an easy tuning of controller parameters for the desired
oscillation amplitude and period. Based on a novel motion index
defined by a complex number, the phase and spatial information
about the COM-ZMP movement is abstracted. By a successive
estimation of the foot-liftable phase, the up-down of feet is
controlled so that it automatically synchronizes to the COM-
ZMP oscillation with the unilaterality constraint on the reaction
forces explicitly taken into account.

I. INTRODUCTION

Biped walk is a strongly nonlinear dynamical motion, in
which creatures or robots locomote in the world via unstable
states through discontinuous deformation of the supporting
region by exchanging the stance foot. While the internal
space, namely, the joint configuration space is bounded with
respect to the joint coordinates, the external space, namely,
the world is nearly unbounded. Thus, the stationary walk
necessarily becomes a periodic and oscillatory motion which
alternates the pivot foot by repeating kicking and swinging
of each foot in order to cover wide travel range.

With a biological support that the central pattern gener-
ators (CPGs) [1] exist in the spinal cord, various nonlinear
oscillators such as coupled van der Pol oscillator [2], Mat-
suoka oscillator [3] and Kuramoto oscillator [4] have been
investigated to build autonomous biped robot controllers [5],
[6], [7], [8], [9], [10], [11], [12], [13]. In those studies,
the controller first makes an internal body oscillation and
results repetitive collisions between the extremities and the
environment. Finally, the internal oscillators are expected
to be entrained to an external oscillation caused by the
collisions. The condition on which that stable entrainment
is guaranteed has not been, and will hardly be, clarified.
Robot behaviors particularly in transition phase are almost
unpredictable in the above scheme due to the absense of
a purposeful manipulation of the reaction force. The rela-
tionship between the reaction force and the foot motion is
not explicitly considered. In this sense, this approach rather
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depends on luck. Other drawbacks of the above controllers
are as follows.

1) They are largely different from the standing regulator
in terms of the mathematical structure, so that it is
hard, or even impossible, to unify them.

2) The controller comprises several mutually-connected
unit oscillators in a bottom-up manner. A tuning policy
of a number of controller parameters is hardly found.

3) They are basically nothing more than function gener-
ators. Though they have a certain level of adaptability
to external perturbations, the stabilization abilities of
them are not very high. Extra sensory feedbacks should
be superposed on their output signals in order to
stabilize the body with respect to the inertial frame.
It makes the controller more complicated.

The author[14] have proposed a self-excited oscillation
control into which a standing regulator seamlessly morphs by
nonlinearly modulating a feedback coefficient. It is based on
the manipulation of the zero-moment point (ZMP[15]=center
of pressure, COP) to stabilize COM (the center of mass)
in which the unilaterality constraint on the reaction forces
is explicitly taken into account. A top-down design of the
controller enabled easy tunings of the oscillation amplitude
and period. The stabilizability condition and its performance
limitation have been clarified. A possibility of a biped
stepping control which stably synchronizes to the stationary
oscillation of COM-ZMP was also proposed by referring
the phase information of the limit cycle. The control in
transition phase, however, has not been discussed, so that the
foot-lifting motion and ZMP movement does not necessarily
become consistent due to the lack of spatial information
about the ZMP position.

This paper presents a self-consistent biped stepping con-
trol. Based on a novel motion index defined by a complex
number, the phase and spatial information about the COM-
ZMP movement is abstracted. By a successive estimation of
the foot-liftable phase, the up-down control of feet which
automatically synchronizes to the COM-ZMP oscillation is
achieved with the unilaterality constraint on the reaction
forces explicitly taken into account.

II. UNIFIED REGULATION-OSCILLATION CONTROLLER

BASED ON DYNAMICS MORPHING[14]

Let us consider the biped dynamics in the lateral plane
as shown in Fig. 1. Suppose the torque about COM is
sufficiently smaller to be neglected than that due to the linear
inertial movement of COM about ZMP, and the height of
COM z is constant, for simplicity. Also, suppose that the
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Fig. 1. An approximate mass-concentrated biped model in lateral plane

referential position of COM is at the original point. We get
the linear equation of motion as

ẍ = ω2(x − xZ), (1)

where x denotes the COM position in sideway, xZ is the
ZMP position in sideway, ω ≡

√
g/z and g = 9.8[m/s2] is

the acceleration due to the gravity. The ZMP is regarded as
the input[16] and is constrained in the supporting region as
follows:

xZmin ≤ xZ ≤ xZmax , (2)

where xZmin and xZmax are the right and left boundaries of
the supporting region in x-axis, respectively, which satisfy
xZmin < 0 < xZmax . Even on this simplest model, the
control problem would be challenging due to the inequality
constraint (2). In our controller, the desired ZMP as the
input is designed by a feedback of COM state and the
truncation on the edge of the supporting region. Fig. 3 shows
phase portraits of the linear feedback with some different
pole assignments. Our previous study have revealed that the
standing stabilizability shows the best performance under the
constraint (2) when one of the two poles of the feedback
system coincides with −ω in case of the linear feedback, and
named it the stabilizability-maximized COM-ZMP regulator
[17]. Refer the previous report for the details.

In order to emerge a self-excited oscillation, the feedback
law is modified to a nonlinear version as follows:

x̃Z = (q + 1)
(

x + f(ζ)
ẋ

ω

)
(3)

xZ =

⎧⎪⎨
⎪⎩

xZmax (S1 : x̃Z > xZmax )
x̃Z (S2 : xZmin ≤ x̃Z ≤ xZmax )
xZmin (S3 : x̃Z < xZmin )

(4)
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Fig. 2. Damping term of feedback to ZMP is nonlinearly modulated. For
arbitrary positive q, ρ and r, f(ζ) is a monotony increasing function and
asymptotically converges to 1 with respect to ζ. At the point where the sign
of damping effect is inversed, a stable limit cycle appears.

where

f(ζ) ≡ 1 − ρ exp
{

1 − (q + 1)2ζ2

r2

}
, (5)

ζ ≡
√

x2 +
ẋ2

ω2q
, (6)

and q > 0, r > 0 and ρ ≥ 0 are controller parameters.
Suppose the actual ZMP is manipulated to follow the above
desired ZMP, the dynamics of COM is represented by a
piecewise autonomous system as follows:

ẍ =

⎧⎪⎨
⎪⎩

ω2x − ω2xZmax (S1)
−ω(q + 1)f(ζ)ẋ − ω2qx (S2)
ω2x − ω2xZmin (S3)

. (7)

This controller has the following properties.
1) When ρ = 0, it is identical to the stabilizability-

maximized COM-ZMP regulator. Namely, a set of the
initial conditions from which the COM will stably
converge (the stable standing region) in state space is
maximized.

2) As ρ gradually increases, the damping term is nonlin-
early modulated. When ρ > e−1, the system in state
(S2) has the following stable ellipsoidal limit cycle

x2 +
ẋ2

ω2q
=

(1 + log ρ)r2

(q + 1)2
, (8)

which is a harmonic oscillation with the amplitude√
1 + log ρ r

q + 1
and the period

2π

ω
√

q
. Particularly, when

ρ = 1, the amplitude of the oscillation is
r

q + 1
. Hence,

q and r are decided from the desired period T and
amplitude r′ as

q =
(

2π

ωT

)2

(9)

r = (q + 1)r′. (10)
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Fig. 3. The assignment of two poles modifies the characteristic of COM-ZMP regulator. In the figure, they are set for (−0.2ω,−0.6ω) (left),
(−0.2ω,−2.0ω) (center), and (−0.5ω,−ω) (right), respectively, where ω =

p
g/0.27, xZmin = −0.07 and xZmax = 0.07 are fixed. The dotted area

is the stable standing region. When one of them coincides with −ω, the stable standing region is maximized between two lines l1 and l2.
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Fig. 4. Dynamics morphing from regulator to oscillator: solution curves of the piecewise autonomous system (7) for (left) ρ = 0, (center) ρ = e−1 and
(right) ρ = 1, where ω =

p
g/0.27, ref x = 0, xZmin = −0.07, xZmax = 0.07, q = 0.5 and r = 0.05 are fixed. A stable limit cycle appears when ρ

exceeds e−1. For any value of ρ, the stable standing region stays maximized between two lines l1 and l2.

3) For arbitrary positive q, ρ and r, f(ζ) is a monotony
increasing function with the following property

lim
ζ→∞

f(ζ) = 1 (11)

as Fig. 2 illustrates. Consequently, the controller dis-
plays a similar characteristic to the stabilizability-
maximized COM-ZMP regulator at a distance from the
limit cycle.

Fig. 4 shows phase portraits with solution curves of the
system (7) for xZmin = −0.07[m], xZmax = 0.07[m],
z = 0.27[m], q = 0.5 and r = 0.05[m]. The left, center
and right figures are for ρ = 0, ρ = e−1 and ρ = 1,
respectively. The stable standing regions are dotted in the
figures. In any cases of the above, the stable standing region
coincides with a region between two lines l1 and l2, which is
the maximum region in theory. One can see that the system
dynamics continually morphs into a self-excited oscillator
with the maximized stabilization ability remained.

III. CONSISTENT STEPPING WITH COM-ZMP
OSCILLATION

The relationship between COM and ZMP in the frequency
domain was also studied in our previous report [14]. The
transfer function G(s) from xZ to x is

G(s) =
ω2

−s2 + ω2
. (12)

Hence, we get the frequency response

G(iΩ) =
ω2

Ω2 + ω2
(13)

where i is the imaginary unit. It tells that the phase lag of

COM from ZMP is zero and the gain is |G(iω
√

q)| =
1

q + 1
when COM oscillates stably. In particular, the amplitude
of the ZMP oscillation for ρ = 1 is r as long as r <
min {|xZmin |, |xZmax |} is satisfied. In this section, a self-
consistent foot-step controller is designed, based on the phase
and spatial information of the COM-ZMP oscillation.

The problem of phase jump (from 2π to 0, for instance)
is resolved by introducing a complex number. An idea to
define the system phase based on the behavior of ZMP was
proposed by Morimoto et al.[13], which is represented by a
complex number as follows:

MpZ ≡ xZ − ẋZ

ω
√

q
i (14)

where the imaginary part is scaled so that the limit cycle
of MpZ forms a circle in complex plane. However, ZMP
depends on the equilibrium of torques, and thus, it’s rate
ẋZ is sensitive and varies discontinuously when jumps or
saturations of ZMP occur. In order to avoid this problem, let
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Fig. 5. Locus of pZ in transition phase. The
intersection of it and the left sole is segmented by
pLin and pLout , the real parts of which are xLin .
The right foot is liftable when pZ is on the segment.
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Fig. 6. The start and end points of the intersecting segment of pZ locus and the sole are successively
estimated as p̄Lin and p̄Lout . In the course of convergence to the limit cycle, they automatically
approach to those of the steady oscillation.
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Fig. 7. Even in strange situations where the locus of pZ first intersects in the first quadrant of
complex plane, the foot-step is consistently controlled since zR is symmetric with respect to φL.

us define the system phase pZ as follows:

pZ ≡ xZ − (q + 1)ẋ
ω
√

q
i. (15)

Suppose the inner side of the left sole in x-axis is located
at xLin . Let us consider the locus of pZ as Fig. 5. The
intersection of the locus and the left sole is segmented by
two points pLin and pLout , the real parts of which are both
xLin . The right foot is liftable when pZ is on this segment.
An idea to control the up-down of the right foot is to detach
off the ground at pZ = pLin and touch down at pZ = pLout .
The problem is, however, that it is impossible to know those
two points in advance. Then, we successively estimate these
values as p̄Lin and p̄Lout , which are computed only when
|pZ | > xLin is satisfied as follows:

p̄Lin = xLin −
√
|pZ |2 − x2

Lin i (16)

p̄Lout = xLin +
√
|pZ |2 − x2

Lin i. (17)

As COM converges to the limit cycle, they also asymptot-
ically converge to the start and end points of the steady
oscillation, respectively, as Fig. 6 depicts. More importantly,
it is guaranteed that ZMP lies within the left sole as long as
pZ satisfies

0 < φL < 1 (18)

where

φL ≡ � pZ/p̄Lin

� p̄Lout/p̄Lin
. (19)

In regular situations, φL increases from 0 to 1 smoothly
during the oscillation. Hence, φL is expected to work as
the phase information for the foot-lifting. Only when |pZ | >
xLin and condition (18) are satisfied, we define the lifting
height of the right foot zR with respect to φL as

zR =
1
2

h|pZ |
r

σ(ρ) (1 − cos 2πφL) (20)

where h is a constant for the nominal lifting height, and σ(ρ)
is defined as

σ(ρ) ≡

⎧⎪⎪⎨
⎪⎪⎩

1 (ρ > 1)
ρe − 1
e − 1

(e−1 ≤ ρ ≤ 1)

0 (0 ≤ ρ < e−1)

. (21)

Otherwise, we let zR = 0. The maximum lifting height
depends on ρ and |pZ |. ρ means the degree of self-excitation,
while |pZ |/r measures the degree of convergence to the limit
cycle; the larger both of them becomes, the more the stepping
motion is activated. The lifting height of the left foot zL is
also defined in a symmetric way. By using this technique,
the up-down motion of feet automatically synchronizes to
ZMP without the information of the actual pLin and pLout ,
which we cannot know during the motion.

Note that φL does not necessarily monotonically increase.
While the real part of pZ is ZMP, its imaginary part refers the
COM velocity. This difference possibly causes strange situa-
tions where both the start and end points of the intersection of
pZ and the left sole lie in the first quadrant of complex plane
as Fig. 7 shows. At the start point, pZ is not regarded as at
pLin but at pLout . However, this doesn’t violate consistency
of the stepping motion since zR is symmetric and continuous
with respect to φL = 0 ∼ 1.

IV. SIMULATION

An autonomous stepping motion is simulated based on
the dynamical model of a miniature anthropomorphic robot
mighty[18]. It is assumed that the total mass is concentrated
at COM, for simplicity. Two cases where r = 0.05[m] and
r = 0.09[m] were conducted with xZmin = −0.0845[m],
xZmax = 0.0845[m], z = 0.27[m], h = 0.02[m] and q =
0.5. ρ is defined as the function of time as

ρ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t

T1
(0 ≤ t < T1 = 0.2[s])

1 (T1 ≤ t < T2 = 4.8[s])
T − t

T − T2
(T2 ≤ t < T = 5.0[s])

0 (t ≥ T )

, (22)
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time series of imaginary parts of pZ and M pZ . Since r > |xZmax | = |xZmax |, ZMP is frequently saturated at the edge of the supporting region.

by which it is expected that the robot motion continually
switches from the steady stance to the oscillation, and back
from the oscillation to the steady stance again.

The left side of Fig. 8 shows loci of pZ and another
complex number

pG ≡ x − ẋ

ω
√

q
i, (23)

which visualizes the COM movement in complex plane for
r = 0.09. While they are far from the ellipsoidal limit cycle
in transition phase, they smoothly converge to the limit cycles
of each. Since r > |xZmin | = |xZmax |, ZMP was frequently
saturated at the edge of the supporting region, so that the
limit cycle of pZ is distorted. Hatched regions are for the
left and right soles. For reference, MpZ and pZ are plotted
in the center of Fig. 8. Time series of their imaginary parts
are also plotted in the right of Fig. 8. One can see that MpZ

largely jumps at each juncture and the phase often varies
discontinuously. Hence, the proposed definition of the phase
is preferable rather than Morimoto et al.’s.

Figs. 9 and 10 show the time series of ρ, x, xZ , zL, zR, φL

and φR in case of r = 0.05 and r = 0.09, respectively. The
supporting region is dotted in the graphs of x and xZ . While
the period of the stationary oscillation for ρ = 1 coincides
with its theoretical value � 1.47[s] in the former case, the
presence of uncontrollable phases due to the saturations of
ZMP in the latter case made the period of the stationary
oscillation longer than 1.47[s]. In spite of this difference of
period, the behaviors of the feet are consistent in any cases.

φR started from 1, was decreased and was again increased
to 1 in transition phase of both cases (around t � 0.3 in the
former case and t � 0.3 ∼ 0.5 in the latter case), which
means that pZ crossed xLin twice in the first quatient in this
term. As explained in the previous section, it didn’t affect
badly to the motion. Although ρ was varied according to
Eq.(22) without any care about the supporting region, self-
consistent biped stepping motions with COM and ZMP were
automatically emerged.

V. CONCLUSION

A self-consistent biped stepping control on the unified
regulation-oscillation control by dynamics morphing was
proposed. A novel motion index and successive estimation

of the foot-liftable segment enabled an automatic synchro-
nization of foot-step and COM-ZMP oscillation with the
unilaterality constraint on the reaction forces satisfied.

The proposed control scheme suggests a possibility to
maneuver the biped stepping only by modulating the degree
of self-excitation ρ, which will be a fundamental technique
for a completely autonomous controller design.
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