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Abstract—A simple nonlinear proportional-integral-derivative 

(PID) controller is proposed for global finite-time regulation of 
robot manipulators without velocity measurements. A 
Lyapunov-based stability argument is employ to prove global 
finite-time stabilization. The proposed control algorithm does not 
involve the model parameters in the control law formulation and 
the control gains can be explicitly determined based on some 
well-known bounds extracted from the robot dynamics, and thus 
permits easy implementation. Simulations are included to 
demonstrate the expected properties of the proposed approach. 
 

I. INTRODUCTION 
In the past several years, robot manipulators have served as 

an interesting benchmark for the design and test of novel 
nonlinear control strategies. Regulation of robots maybe 
recognized as the simplest aim in robot control and at the same 
time finds its main application in the robotic field. Despite the 
success of modern control theory, robot manipulator controllers 
still commonly use classic proportional-derivative (PD) or 
proportional-integral-derivative (PID) algorithms [1], [2], [5],  
[17], [18], due mostly to their conceptual simplicity and explicit  
tuning procedures. Arimoto [3] first showed that a local and 
independent PID-type servo-loop replacing the linear position 
error term by a saturated position error, gives rise to global 
asymptotic stability of regulation control for nonlinear 
mechanical systems. Motivated by this seminal work, some 
nonlinear PID control schemes incorporating favorable 
saturation functions for global asymptotic regulation of robot 
manipulators were proposed [7], [8], [13], [14], [20], [21]. 
Other control schemes for global asymptotic regulation of robot 
manipulators with adaptive control technique can be found in 
[9], [25], and the references therein. 

Most of the existing results so far on regulation of robot 
manipulators are achieved asymptotically [1]-[3], [7]-[9], 
[13]-[15], [17]-[21], [25]. Asymptotic stability implies that the 
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system trajectories converge to the equilibrium as time goes to 
infinity. It is now known that finite-time stabilization of 
dynamical systems may give rise to a high-precision 
performance besides finite-time convergence to the equilibrium 
[6], [10]-[12]. 

To the best of our knowledge, the only previous work which 
targets at the finite-time regulation of robot manipulators is 
given in [12], [22], [23]. Specially, Hong et al. [12] formulated 
a PD plus gravity compensation scheme with a model-based 
observer and achieved local finite-time result. This result was 
later extended in Su et al. [22] by introducing the “dirty 
derivative” technique and obtained global finite-time 
stabilization. A drawback of both approaches is that the exact 
knowledge of the gravity term which depends on some 
parameters as mass of the payload, usually uncertain, has to be 
known. To overcome parametric uncertainties on the 
gravitational torque vector, Su et al. [23] proposed a simple 
continuous model-independent nonlinear PID control for 
finite-time regulation of robot manipulators. The control 
algorithm does not refer to the model parameters, and thus 
permits easy implementation in practice. The closed-loop 
system is shown to be semiglobal finite-time stable. One minor 
weakness for this scheme is that both position and velocity 
measurements are required. 

The control of robot manipulators without velocity 
measurements is a topic that continuous to challenge control 
theoreticians. From a theoretical point of view, the challenge 
lies in the fact that, generally speaking, the separation principle 
does not hold true for such nonlinear dynamical systems. This 
topic is also of practical importance since many real-world 
robot manipulators are not commonly equipped with velocity 
sensors; hence, full access to the system states is impossible [4], 
[17], [21], [24]. 

In this paper the problem of designing a model-independent 
global finite-time controller for regulation of robot 
manipulators without velocity measurements is studied. The 
main contribution of this paper is twofold. A nonlinear filter is 
proposed to eliminate velocity measurements. A simple 
nonlinear PID control is developed for global finite-time 
regulation of robot manipulators with position measurements 
only. The closed-loop system formed by the nonlinear PID 
controller, filter and the robot system is shown to be global 
finite-time stable. The control algorithm does not utilize the 
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model parameter in the controller formulation, and thus permits 
easy implementation in practice. To the best of our knowledge, 
the proposed approach yields the first model-independent, 
output feedback, global finite-time regulation for robot 
manipulators. 

II. ROBOT MANIPULATOR MODEL AND PROPERTIES 
In the absence of disturbances, the dynamics of an n -DOF 

robot manipulator can be written as [2], [15] 
τ=+++ )(),()( qgqDqqqCqqM &&&&&                      (1) 

where nqqq ℜ∈&&&,,  denote the link position, velocity, and 

acceleration vectors, respectively, nnqM ×ℜ∈)(  represents the 

symmetric inertia matrix, nnqqC ×ℜ∈),( &  denotes the 

centrifugal-Coriolis matrix, nnD ×ℜ∈  stands for the constant 
diagonal static friction matrix, nqqUqg ℜ∈∂∂= /)()(  is a 
gravitational force, )(qU  is the potential energy due to 

gravitational force, and nℜ∈τ  denotes the torque input vector. 
Recalling that robot manipulators are being considered, the 
following properties can be established 

Property 1 [2], [15]: The static friction matrix D  is a 
diagonal positive definite matrix, i.e. 

IdDId 21 ≤≤                                        (2) 
where 1d  and 2d  are known positive constants, and I  denotes 
the approximate dimensional identity matrix. 

Property 2 [2], [15]: The inertia matrix )(qM  is symmetric 
and positive definite and bounded by 

)()()(0 MqMM Mm λλ ≤≤<                        (3) 
where )(⋅mλ  and )(⋅Mλ  denote the minimum and maximum 
eigenvalues of a matrix, respectively. 

Property 3 [2], [15]: The matrix ),(2)( qqCqM && −  is 
skew-symmetric, i.e. 

( ) nT qqCqM ℜ∈∀=− ζζζ ,0),(2)( &&                    (4) 

where )(qM&  is the time derivative of the inertia matrix )(qM . 
Equivalently, we have 

),(),()( qqCqqCqM T &&& +=                            (5) 
Property 4 [2], [15]: The matrix ),( qqC &  is bounded by 

n
Mm qqqCqqqCqC ℜ∈∀≤≤< &&&&& ,,),(0 22          (6) 

where mC  and MC  are some known positive constants. 
Property 5 [2]: There exists a constant positive definite 

diagonal matrix A  such that the following two inequalities, 
with a specified constant 0>a , are satisfied simultaneously for 
any fixed dq  and any q  

2

2
1)()()( qaqAqqgqqUqU T

d
T

d ∆≥∆∆+∆−−        (7) 

2)]()([ qaqAqqgqgq T
d

T ∆≥∆∆+−∆             (8) 
where dqqq −=∆  denotes the position error, and q  and dq  
denote the actual and desired coordinates, respectively. 

III. PRELIMINARIES 
Some concepts of finite-time stability and stabilization of 

nonlinear systems, and the properties of homogeneous systems 
are reviewed, following the treatment in [6], [11], [12]. 

Consider the system 
nff ℜ∈=== ζζζζζ ,)0(,0)0(),( 0

&             (9) 

with nUf ℜ→0:  continuous on an open neighborhood 0U  
of the origin. Suppose that system (9) possesses unique 
solutions in forward time for all initial conditions. The 
equilibrium 0=ζ  of system (9) is (locally) finite-time stable if 
it is Lyapunov stable and finite-time convergent in a 
neighborhood 0UU ⊂  of the origin. The finite-time 
convergence means the existence of a function 

{ } ),0(0\: ∞→UT , such that, nU ℜ⊂∈∀ 0ζ , the 
solution of (9) denoted by )( 0ζts  with 0ζ  as the initial 
condition is defined and { }0\)( 0 Ust ∈ζ  for ))(,0[ 0ζTt ∈ , 
and 0)(lim 0)( 0

=→ ζζ tTt s  with )( 0ζts  for )( 0ζTt > . When 
nU ℜ= , we obtain the global finite-time stability. 

A scalar function )(ζV  is homogeneous of degree ℜ∈σ  
with nirrr in ,,1,0),,,( 1 KK => , if for any given 0>ε , 

n
n

rr VV n ℜ∈∀= ζζεζεζε σ ),(),,( 1
1 K             (10) 

A continuous vector field T
nfff )](,),([)( 1 ζζζ K=  is 

homogeneous of degree ℜ∈κ  with ),,( 1 nrrr K= , if for any 
given 0>ε , 

n
i

r
n

rr
i niff in ℜ∈∀== + ζζεζεζε κ ,,,1),(),,( 1

1 KK   (11) 
System (9) is said to be homogeneous if )(ζf  is 

homogeneous. Some of results on finite-time stability of a 
nonlinear system in [11] that will be used in this paper are 
summarized by the following two lemmas. 

Lemma 1: Consider the following system 
nffff ℜ∈==+= ζζζζ ,0)0(ˆ,0)0(),(ˆ)(&       (12) 

where )(ζf  is a continuous homogeneous vector field of 
degree 0<κ  with respect to ),,( 1 nrr K . Assume that 0=ζ  is 

an asymptotically stable equilibrium of the system )(ζζ f=& . 
Then 0=ζ  is a locally finite-time stable equilibrium of the 
system (12) if 

0,,,1,0),,(ˆ
1lim

0

1

≠∀==+→
ζ

ε
ζεζε

κε
nif

i

n

r
n

rr
i K

K     (13) 

Lemma 2: Global asymptotic stability and local finite-time 
stability of the closed-loop system imply global finite-time 
stability. 

IV. CONTROL DESIGN 

A. Control Formulation 
Given a desired constant position dq  for nonlinear robot 

manipulator (1), we consider the finite-time regulation control 
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problem to design the input torque without velocity 
measurements and without reference to model parameters, such 
that 0)( →∆ tq  and 0)( →tq&  in finite time for any initial state 

))0(),0(( qq & . 
To aid the subsequent control design and analysis, we define 

the vectors nℜ∈⋅⋅ α)(Sig),(Tanh  and the diagonal matrix 
nn×ℜ∈⋅)(Sech  as follows: 

[ ]Tn )(tanh,),(tanh)(Tanh 1 ξξξ L=                     (14) 

[ ]Tnn )(sgn,),(sgn)(Sig 11 ξξξξξ ααα L=               (15) 
( ))(sech,),(sechdiag)(Sech 1 nξξξ L=                  (16) 

where [ ] nT
n ℜ∈= ξξξ ,,1 L , 10 << α , )(tanh ⋅  and )(sech ⋅  

being the standard hyperbolic tangent and secant functions, 
respectively, )(sgn ⋅  the standard signum function, and )(diag ⋅  
denotes a diagonal matrix. Based on the definitions (14)-(16), it 
can easily be shown that the following expressions hold: 

)(Tanh)(Tanh)(Sig)(Tanh)(Sig ξξξξξξ αα TTT ≥≥    (17) 

)(tanh21
ii ξξ α ≥+                                 (18) 

1))(Sech( 2 =ξλM                                 (19) 
The proposed output feedback nonlinear PID (ONPID) 

controller is formulated as 
21 )(Sig)(Sig αα υτ dip KzKqK −−∆−=                 (20) 

∫ ∆+∆=
t

dqqz
0

))((Tanh σσε                           (21) 

2)(Sig αBqqAq cc +−=&                                (22) 
Bqqc +=υ                                        (23) 

where pK , iK , dK , A  and B  are positive definite constant 

diagonal control proportional, integral, and derivative matrices, 
respectively, 10 1 << α , )1(2 112 += ααα , and ε  is a small 
positive constant and will be subsequently defined in (27). 

Introducing the following vector 
)(1

di qgKz −−=φ                                (24) 
Then substituting (20) and (24) into (1) and using (22) and (23), 
the closed-loop dynamics is given by 

0)(Sig)(Sig

)()(),()(
21 =++∆+

−+++

φυ αα
idp

d

KKqK

qgqgqDqqqCqqM &&&&&
        (25) 

qBA && +−= 2)(Sig αυυ                          (26) 

whose origin [ ] nTTTTT qq 40 ℜ∈=∆ φυ&  is the unique 
equilibrium. 

B. Stability Analysis 
Theorem 1: Given the robotic system (1), with the proposed 

output feedback nonlinear PID controller (20)-(23), the 
closed-loop system (25) and (26) is globally finite-time stable, 
provided the control gains are chosen as follows: 

)(
1

MCn
d

MM λ
ε

+
≤                           (27) 

)()1(2 2
1 Mk Mpi λεα +>                            (28) 

2

1

1

1
)(Tanh

)1(2
1

)()()(

1 qaqk

qgqqUqU
n

i
ipi

d
T

d

∆>∑ ∆
+

+

∆−−

=

+α

α
   (29) 

( )
2)(Tanh)(

2
1

)(Sig)(Tanh)()()(Tanh 1

qKa

qKqqgqgq

dM

p
T

d
T

∆⎟
⎠
⎞

⎜
⎝
⎛ +>

∆∆+−∆

λ

α

 (30) 

)(
2
1)( 1

dMdm KABK ελλ >−                     (31) 

where pik  denotes the thi  diagonal elements of matrix pK , a  

is a small positive constant. 
Remark 1: Condition (27) in Theorem 1 is not excessively 

restrictive and limitative, due to the fact that there always exists 
friction in practical robot and the friction coefficient matrix D  
is diagonal positive definite [2], [15], which guarantees that ε  
always exists and can be selected as so small [21], [23]. 

Remark 2: Note that inequalities (29) and (30) correspond to 
inequalities (7) and (8) of Property 5, respectively, and the 
existence of such a matrix pK  is confirmed by the same 

argument given in proposing (7), (8), (17), and (18) [2], [23]. 
Proof: The proof proceeds in the following two steps. First, 

the semiglobal asymptotic stability is proved with Lyapunov’s 
direct method and LaSalle’s invariance principle. Second the 
finite-time stability is shown using Lemma 1. Finally Lemma 2 
is involved to guarantee the semiglobal finite-time stability. 

1) Semiglobal asymptotic stability: To this end, we propose 
the following Lyapunov-like function candidate 

φφυ
α

ε
α

ε

α

α

i
Tn

i
iidi

n

i
ii

n

i
ipid

T

d
TT

Kbk

qdqkqgq

qUqUqqMqqqMqV

2
1

1
1

))(ln(cosh
1

1)(

)()()()(Tanh)(
2
1

1

11

2

11

1

1

2

1

+∑
+

+

∑ ∆+∑ ∆
+

+∆−

−+∆+=

=

+−

==

+

&&&

 

(32) 
where id , dik , and ib  denote the thi  diagonal elements of 
matrices D , dK , and B , respectively. It should be noted that 
the seventh term of (32) is motivated by the work given in [16]. 

We first consider the following 

∑ ∆⎥
⎦

⎤
⎢
⎣

⎡
−

+
≥

∆∆−∑ ∆
+

≥

∑ ∆
+

+∆∆−

∆+∆+=

∆+∑ ∆
+

+

=

=

+

=

+

=

+

n

i
iM

pi

Tn

i
ipi

n

i
ipi

T

T

Tn

i
ipi

T

qM
k

qqMqqk

qkqqMq

qqqMqq

qqMqqkqqMq

1

22

1

2

1

1

1

1

1

1

2

1

1

1

)(tanh)(
)1(2

)(Tanh)()(Tanh
)1(2

1
)1(2

1)(Tanh)()(Tanh

))(Tanh2)(())(Tanh2(
4
1

)()(Tanh
)1(2

1)(
4
1

1

1

1

λε
α

ε
α

α
ε

εε

ε
α

α

α

α

&&

&&&

 (33) 

where (2) of Property 2 and (18) have been used. 
Substituting (33) into (32), we have 
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φφυ
α

ε

α

λε
α

α

α

i
Tn

i
iidi

n

i
ii

n

i
ipid

T
d

n

i
iM

piT

Kbkqd

qkqgqqUqU

qM
k

qqMqV

2
1

1
1))(ln(cosh

)1(2
1)()()(

)(tanh)(
)1(2

)(
4
1

1

11

21

1

1

1

1

22

1

2

1

+∑
+

+∑ ∆+

∑ ∆
+

+∆−−+

∑ ∆⎥
⎦

⎤
⎢
⎣

⎡
−

+
+≥

=

+−

=

=

+

=
&&

 

(34) 
From (34), (28), and (29), we get 

0
2
1

1
1

))(ln(cosh)(Tanh)(
4
1

1

11

2

1

2

2 >+∑
+

+

∑ ∆+∆+≥

=

+−

=

φφυ
α

ε

α
i

Tn

i
iidi

n

i
ii

T

Kbk

qdqaqqMqV &&

   (35) 

for [ ] 0≠∆
TTTTT qq φυ& . 

Hence, we can conclude that V  is a positive definite 
Lyapunov function with respect to φυ,,, qq &∆ . 

Differentiating V  with respect to time, it follows that 

φφυυε

εε

ε

α

α

i
T

p
TT

p
T

d
TT

TT

TTT

KKqDq

qKqqgqqgq

qqMqqqMq

qqMqqqqMqqqMqV

&&&

&&&

&&&&

&&&&&&&&&

++∆+

∆∆+∆−+

∆+∆+

∆∆++=

2

1

)(Sig)(Tanh

)(Sig)()(

)()(Tanh)()(Tanh

)())((Sech)()(
2
1 2

   (36) 

where we have utilized the fact that qq && =∆  from (8) and the 
regulation control. 

Substituting qqM &&)(  from (25) and 

)(Tanh)( qtqz ∆+∆== εφ &&&  from (24), and (26) into (33), and 
using Property 3, we have 

[ ]
[ ]1

222

)(Sig)(Tanh))()()((Tanh

)())(Sech(),()(Tanh

)(Sig)(Tanh)(Sig)(Sig
2

1

α

ααα

ε

ε

υευ

qKqqgqgq

qqMqqqqqCqqDq

KqqABKV

p
T

d
T

TTTT
d

T
d

T

∆∆+−∆−

∆∆+∆+−

∆−−= −

&&&&&&

&&

 

(37) 
Using (3) of Property 2 and (6) of Property 4 and (19), the 

fourth term of the right-hand side of (37) can be upper bounded 
by 

[ ]
2

2

))((

)())(Sech(),()(Tanh

qMCn

qqMqqqqqCq

MM

TTT

&

&&&&

λε

ε

+≤

∆∆+∆
  (38) 

Note that in the derivation of the first term of (38) we utilized 
nq ≤∆ )(Tanh  according to (14) and 1)(tanh ≤∆q . 

Substituting (30) and (38) into (37), we have 

2

2

)(Tanh)(
2
1

))(()(Sig

)(Sig)(Tanh)(

2

2

qKa

qMCnqKq

qqKqDqV

dM

MMd
T

dM
T

∆⎟
⎠
⎞

⎜
⎝
⎛ +−

++−

∆+−≤

λε

λε

ελ

α

α

&&&

&&&&

       (39) 

Applying triangle inequality )(
2
1 22 cbbc +≤  with 

)(Tanh qb ∆=  and 2)(Sig αqc &=  to (39), it follows that 

[ ]
[ ] 21

22
1

2)(Sig)()(2
2
1

)(Tanh))((

αυελλ

ελε

dMdm

MM

KABK

qaqMCndV

−−

∆−+−−≤

−

&&

  (40) 

From (27), (31), and the fact that a  is a small positive 
constant, we conclude that 0≤V& . Since 0≡V&  means 

0)(Tanh ≡∆q , 0≡q&  and 0≡υ . From the definition of 
hyperbolic tangent function, we have 0  ≡∆q . Therefore, by 
LaSalle’s invariance theorem [19], we have 0)( →∆ tq , 

0)( →tq& , 0)( →tυ , and 0)( →tφ , as ∞→t  for any initial 
state ))0(),0(( qq & . Hence, we have global asymptotic stability 
about ( )0,0,0,0 ====∆ φυqq & . 

2) Finite-time stability: Following the idea presented in 
[12], the local finite-time stability is proved using Lemma 1. To 
do so, let qx ∆=1 , qxx && == 12 , υ=3x , and 

TTTT xxxx ),,( 321= . The state equation of the closed-loop 
system (25) and (26) can be rewritten as 

[
]

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−=

+++−

+++++−=

=
−

233

131

122211
1

2

21

2

21

)(Sig

)()(Sig)(Sig)(

)(),()(

BxxAx

xzKxKxKqg

qxgDxxxqxCqxMx

xx

idpd

ddd

α

αα

&

&

&

(41) 

Clearly, 0=x  is the equilibrium of (41). It can be seen that 
the closed-loop system (41) is not homogeneous. To use Lemma 
1, we rewrite (41) as follows: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=

+−=

=
−

)(ˆ)(Sig

)(ˆ)(Sig)(

333

21
1

2

21

2

1

xfxAx

xfxKqMx

xx

pd

α

α

&

&

&

            (42) 

with 
[

] 21 )(Sig)()(Sig),(~)(

)()(),()(ˆ

21
1

111

122211
1

2
αα xKqxMxKqxMxzK

qgqxgDxxxqxCqxMf

ddpdi

dddd

+−−+

−+++++−=
−

−

(43) 

23̂ Bxf =                                         (44) 
and 

)()(),(~ 1
1

1
1 ddd qMqxMqxM −− −+=               (45) 

It can be easily verified that the following system 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=

−=

=
−

2

1

)(Sig

)(Sig)(

33

1
1

2

21

α

α

xAx

xKqMx

xx

pd

&

&

&

                     (46) 

is homogeneous of degree 012 <−= ακ  with respect to 
),,,,,,,,,,,( 332312222111211 nnn rrrrrrrrr KKK  with 

)1(2 111 +== αrr i , 122 == rr i , and 123 == rr i . Note that 

0)0( =f  and 0)0(ˆ =f  from (46), and (43) and (44), 
respectively. 

Now we will use Lemma 1 to show the finite-time stability of 
the closed-loop system (42). To this end, we should show 0=x  
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is the asymptotic equilibrium of (46). Consider the system (46) 
and take a nonnegative Lyapunov function candidate as follows: 

3322
1

1
1

1
* 2

1)(
2
1

1
1 1 xxxqMxxkV T

d
Tn

i
ipi ++∑

+
=

=

+α

α
      (47) 

where ix1  denotes the thi  component of vector 1x . 
After taking the time derivative of (47) along (46), we have 

332211)46(* )()(Sig 1 xxxqMxxKxV T
d

T
p

T &&&& ++= α           (48) 

where we have utilized the fact that 0)( =dqM&  for regulation 
control. 

Upon substituting (46) into (48), it follows that 
2)(Sig 33)46(*

αxKxV d
T−=&                     (49) 

From (17), we can conclude that 0)46(* ≤V . Since 

0)43(* ≡V  means 03 ≡x . By LaSalle’s invariant principle [19], 

we have the conclusion that the equilibrium of the closed-loop 
system (46) is asymptotically stable. 

Next, from the definition of the hyperbolic tangent function 
and (21), we have 

)()( 11
1

rr xz εοε =                                 (50) 

Together with the fact that )( 1
1

dqxM +−  and ),( 21 xqxC d+  
are smooth and 0<κ  [12], [23], we have 

[
]

( )

0

)(limlim)0,()(

)()()(

),()(
lim

21

11

2221

2

1

00
2

1

11

2221
1

1

0

=

⎥⎦
⎤

⎢⎣
⎡ ++−=

+−++

++
+

−

−−

→

−

→

−

+

−

→

rr
idd

r
idd

r

rrr
d

r
r

d
r

KxDqCqM

xzKqgqxg

xDxxqxCqxM

κ

ε

κ

ε

κε

εοε

εε

εεεε
ε
ε

(51) 

Applying the mean value theorem to each entry of 
),(~

1 dqxM , it follows that [12], [23] 
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As a result, we have 

0)(lim
)(Sig),(~

lim 21

2

111

0

11

0
==− −−

→+→

rr
r

r
pd

r xKqxM κ

εκ

α

ε
εο

ε

εε
 (53) 

Moreover, from the definition given in (15), we have 
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Hence we obtain 
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Note that in the derivations of (51) and (53) we have utilized 
the fact that 0)1(2)( 121 >−=+− ακ rr  for 10 1 << α . 

Thus, for any nTTTT xxxx 3
321 )( ℜ∈= , we get 
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Similarly, for nTTTT xxxx 3
321 )( ℜ∈= , we have 
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Therefore, according to Lemma 1, we have the global 

finite-time stability of the closed-loop system. 
Finally, by invoking Lemma 2, we get the global finite-time 

stability. This completes the proof.                                           ■ 

V. AN ILLUSTRATIVE EXAMPLE 
Comparisons with the output feedback PID (OPID) control 

recently proposed by Su et al. [21] are conducted. The entries to 
model the robot manipulator can be found in [4] and [21]. 

The output feedback PID (OPID) control is given by 
υτ dip KzKqK −−∆−=                        (61) 

qBA && +−= 2)(Sig αυυ                          (62) 
where z  was defined by (21), and pK , iK , dK , A  and B  
were defined by (20) and (22). 

The desired positions were [ ] )rad(2,4 T
dq ππ= . The 

sampling period was ms1=T . A white noise with an amplitude 
of rad0.01  is added to the position signals to imitate the 
measurement noise. The initial parameters were all set as zero. 
The gains for the ONPID controller were chosen as 01.0=ε , 

5.01 =α , )100,380(diag=pK , )5,300(diag=iK , 

)15,75(diag=dK , )80,150(diag=A , and )60,120(diag=B . 
For a fair comparison, gains of the OPID controller were chosen 
the same as the ones of the proposed ONPID controller. 

Fig. 1 illustrates the position errors of the proposed approach 
and the OPID control. For a clear comparison, the requested 
input torques are shown in Figs 2 and 3. It can be seen that with 
the proposed ONPID controller, the robot successfully 
completed its movement at the desired final position, and after a 
transient due to errors in initial condition, the position errors 
tend to zero; while with the same gains, the OPID controller can 
not regulate the first link error to zero. Obviously a fast response 
of the ONPID controller is achieved over the OPID scheme 
presented in [21]. Moreover, the fast response is not achieved 
with expensive of much large torque. 
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Fig. 1. Position errors. 
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Fig. 2. Input torques of the proposed ONPID. 
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Fig. 3. Input torques of the OPID. 

VI. CONCLUSION 
We have resolved the global finite-time regulation of robot 

manipulators with simple nonlinear PID control and without 
velocity measurements. A nonlinear filter is developed to 
eliminate velocity measurements and a very simple output 
feedback nonlinear PID controller is proposed. The global 
finite-time stability is shown with Lyapunov’s direct method 
and finite-time stability theory. The algorithm does not refer to 
model parameters and the control gains can be explicitly 
determined based on some well-known bounds extracted from 
the robot dynamics, and therefore, is easy to implement in 
practice. The developed approach offers an alternative 
approach for improving the design of the robot regulator, and 
also solves the global finite-time stabilization control problem 
for a large class of nonlinear systems without velocity 
measurement. Simulations on a two-DOF robot manipulator 
demonstrate the effectiveness of the proposed approach. 
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