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Abstract— Vision-based robotic applications such as Simulta-
neous Localization and Mapping (SLAM), global localization,
and autonomous navigation have suffered from problems re-
lated to dynamic environments involving moving objects and
kidnapping. One of the possible solutions to these problems is to
establish robust correspondences when obtaining images from
static scenes. Therefore we propose an efficient technique for de-
termining correspondences to recover the current camera pose;
in the proposed method, the FAST corner detector and SIFT
descriptors are combined because in many methods for vision-
based robotic applications, corner features have been adopted
since they enable fast computation and simplify the computation
of the correspondences between consecutive images. However,
to recover the pose of the camera after kidnapping or at an
unknown initial position, a robust feature matching algorithm
is required because the pose of a camera is unlikely to be the
same as the poses in the database images. For this purpose,
first, we determine some candidates for correspondences by
combining corners with their multiple descriptors computed
from previously defined scales, and then we select one of these
candidates by optimizing the scale using a variant of the mean-
shift algorithm. We apply the proposed matching algorithm
to kidnapping and visual occlusion problems in autonomous
navigation.

I. INTRODUCTION

Intelligent robots require the ability to perform desired

tasks in the unstructured environment without continuous

human guidance. For this purpose, robots necessitate the

capability of autonomously arriving at the desired position.

Most autonomous navigation techniques start from defining

relations between the high-level environment perception and

the low-level robot operation. For this task, vision sensors

are especially efficient in that they provide more information

on scene interpretation than range scanning sensors such as

LRFs and sonar sensors. Vision-based autonomous naviga-

tion approaches can be classified into two categories based

on the environment representation.

In the model-based approaches, the environment is rep-

resented by landmarks and descriptions of the image fea-

tures which are involved in map building [1][2][3]. In the

appearance-based approaches, these navigation methods have

adopted the representation of the environment by composing

of a set of images or variants of images [4][5][6][7][8].

However, for most vision-based navigation methods, im-

ages obtained from vision sensors are strongly dependent
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of environment conditions such as illumination conditions

or visual occlusion by moving objects. Thus, when the

images are influenced by moving objects or kidnapping, the

previous navigation methods are prone to failure. To solve

these problems, some previous studies have been proposed in

the robotics community [9][10] and in the computer vision

community [11][12][13] for SLAM and mapping problems.

To cope with these problems, the robust feature matching

algorithm is required because a camera is unlikely to have

the same pose with those of previously obtained images, that

results in the large difference between two images. For this

purpose, existing feature detection and description methods

such as SIFT [14] and SURF [15] can be available. However,

the high computational complexity of these methods prevents

us from applying them to real-time robotic applications. In-

stead, in [11], the authors described a visual SLAM algorithm

that is compatible with erratic camera motion and visual

occlusion. In this approach, after the visual occlusion or

camera shaking, they use the uncertainty of the camera pose

and 3D scene points to predict scale changes in the images,

and descriptors are built at multiple scales. However, this

approach has an strong assumption that a camera is located

near the place where it fails SLAM.

In this paper, we present an efficient method for recovering

the camera pose under visual occlusion and kidnapping

problems during vision-based autonomous navigation. For

autonomous navigation, we also adopt our navigation sys-

tem [3] based on the teaching and replay strategy [2][6] in

which a robot is manually driven though the path once during

the teaching step; subsequently the robot follows the path

autonomously during the replay step.

This paper is organized as follows. In Section II, our

navigation system is briefly presented. In Section III, the pose

recovery algorithm is decribed to solve kidnapping and visual

occlusion problems. Section IV shows various experimental

results on scene recognition and vision-based navigation un-

der kidnapping and moving objects to demonstrate feasibility

of the proposed method.

II. AUTONOMOUS NAVIGATION

A. Teaching Step

Before autonomous navigation, we construct the global

map and store representative images by using visual odom-

etry that consists of a few sub-parts, as shown in Fig. 1.

For each stereo pair, we first extract FAST corner

points [16] in the left image and then apply the modified

KLT feature tracker [3] to stereo images to obtain correspon-

dences. The 3D coordinates of the matched corner points are
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Fig. 1. Overall procedure for the teaching step

used for map building and for motion estimation. For motion

estimation we use ’visual odometry’ [17] that estimates the

movement of a stereo head in real time.

The number of tracked corners between an incoming

image and a previous key-frame image is a measure to

determine the key-frame places. If the number of points

tracked by the KLT tracker [18] is smaller than a pre-defined

threshold, we designate an incoming image as a key-frame

image and estimate the relative pose w.r.t the previous key-

frame. During autonomous navigation the key-frame images

and the feature-based map computed from motion estimation

and stereo matching are used.

B. Replay Step

For home to destination locations, we use the coordinates

of the epipole [19]. The epipole is the image in one view of

the camera center of the other view. Thus, if a camera faces

a destination location, the epipole must be located near a

principal point in the image. Because we know camera poses

of two views, we compute the epipole using the following

way, as given in Eq. (1) [19].

e = K[Rc tc]Xd (1)

where Xd is the destination location where a key-frame

image was captured, and Rc and tc represent the current

pose of the left camera. K represents the camera matrix.

current location

image plane

destination location

e

Turn right Turn left Go straight

e e

current location

image plane

destination location

e

Turn right Turn left Go straight

e e

Fig. 2. Navigation strategy based on epipole coordinate

If the x-coordinate of the epipole, ex, is located at the right

side of the principal point, f cx, then a robot turns right, as

shown in Fig. 2. We can summarize the navigation strategy,

as stated in Eq. (2) and Eq. (4). If a camera is not close to

the destination location, a robot moves according to Eq. (2).

if ex > f cx + tx : turn right

else if ex < f cx − tx : turn left

else : go straight

(2)

where tx is a positive value.

To determine whether a robot reaches a destination place,

we compare locations of the robot by Eq. (3).

d = |RT
d td −RT

c tc| (3)

where −RT
d td stands for the location of destination with re-

spect to the global coordinate and −RT
c tc means the location

of the current camera computed by visual odometry.

When a robot reaches the destination location, we adjust

the robot orientation by correspondences between the current

image and one of key-frame images to satisfy the relation

given in Eq. (4). To determine the correspondences, we

use the feature matching method [3] that utilizes the 3D

coordinates of the landmarks in the map and the current

camera pose.

if x̂c > x̂d + ta : turn left

else if x̂c + ta < x̂d : turn right

else : stop

(4)

where ta is a marginal angle and x̂d and x̂c are means of x

coordinates among correspondences between key and current

images, respectively.

Before a robot stops according to Eq. (4), which means

a robot has the same pose with those of key-frame images,

we use visual odometry using a stereo camera to localize

a robot by estimating the frame-to-frame relative poses and

integrating them over time. Despite of environment changes,

e.g., some objects newly appeared or some were removed

from the environment, a robot can navigate through those

environments because it estimates its pose using visual

odometry instead of landmark-based localization.

When a robot stops according to the conditions stated in

Eq. (4), we regard this operation as home to the destination

location and designate the next key-frame image as the

destination image.

Since the incremental-motion-based visual odometry alone

will drift eventually as the error accumulates, it is only

locally accurate. To cope with this problem, the navigation

system returns to landmark-based localization when it satis-

fies the condition of ’stop’ stated in Eq. (4). We recompute

the current camera pose by using the 3-point algorithm [20]

followed by LM optimization [21] after finding correspon-

dences between 3D landmarks in the global map and their

image coordinates.
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III. GLOBAL LOCALIZATION STEP

Due to severe visual occlusion and kidnapping, the number

of tracked features drastically decreases and a robot cannot

continue to navigate. In these cases, a robot recovers its pose

using global localization when obtaining the images from the

static scenes. A robot moves backward until it succeeds in

recovering its pose.

(a) original image

.

.

.

.

(b) FAST corner extraction and description by using previ-
ously defined 3 scales (s1,s2, and s3)

Fig. 3. Feature Detection and Descriptrion

A. Scene Recognition

In scene recognition, the image in the database that

corresponds to a query image is determined. Because the

pose of a robot is unlikely to be identical to the poses in the

database images, scene recognition must be robust to view

variations and illumination changes. Moreover, to localize

a robot, we have to establish correspondences between 3D

points computed from the corners and their coordinates in

the incoming images. In our approach, we extract corners

using the FAST detector [16]; this detector outperforms other

detectors in terms of the computational cost and repeatability.

We also compute three SIFT descriptors for each corner

by using previously defined scales (16 × 16, 32 × 32 and

48 × 48 patches centered at the corner), as shown in Fig.

3, because the FAST detector does not provide scales for

computing descriptors. SIFT descriptors have shown to give

reliable feature matching over a wide range of view and

illumination conditions. We can reduce the computational

cost for computing the SIFT descriptors by constructing the

integral images. The integral images have been used for face

detection and feature detection to reduce the computation

time, as introduced in [22][15]. First, we construct 8 integral

images, and each integral image is computed by

Ji(x,y) = ∑
u≤x

∑
v≤y

δ (φ(u,v)−θi) (5)

where δ (x) represents the delta function which returns 1 if x

is zero, otherwise returns 0. θi is computed by dividing the

360 degree range of orientations into 8 bins, and φ(u,v) is a

quantized orientation that is computed at a pixel (u,v) based

on 8 bins.

We compute a SIFT descriptor from 16 sub regions that

are equally divided by a region defined by the center location

(x,y) and the scale s, as shown in Fig. 4, by

h(8m+ k−8) = wmJk(xr(m),yb(m))−wmJk(xl(m),yb(m))

−wmJk(xr(m),yt(m))+wmJk(xl(m),yt(m))
(6)

where m = 1,2, · · · ,16,k = 1,2, · · · ,8, wm is a weight for a

sub region rm. (xl(m),yt(m)) and (xr(m),yb(m)) represent

top-left and bottom-right coordinates of a sub region rm,

respectively. Each bin is normalized by h(i) = h(i)/∑ j h( j)

( )yx,

s
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Fig. 4. Computation of SIFT descriptors by using integral images

Even though we compute the multiple SIFT descriptors

(two more descriptors) for each corner, the computation

does not require much time because in this algorithm, a

majority of the computation time is devoted to computing

integral images 1. We assume that robot navigation does

not encounter the cases in which images are deformed by

camera rotation about the optical axis because we cannot

compute SIFT descriptors for arbitrary image rotations when

using the integral images. For efficient feature matching with

many descriptors in the database, we adopt an image-search

method proposed by Nister et al. [23]. In this method, all

SIFT descriptors are arranged in a vocabulary tree using

the K-means clustering algorithm [24]. For matching, each

descriptor is simply propagated down the tree at each level by

comparing it with the k clustering center vectors. Before the

replay step, we construct the vocabulary tree from the SIFT

descriptors that correspond to 3D landmarks computed from

FAST corners in all key-frame images. For scene recognition,

we also extract FAST corners and three SIFT descriptors for

each corner from a query image with same scales. During the

computation of three descriptors for each corner, we inspect

1In our implementation, the computational costs for computing 150 and
1800 descriptors using the integral images are 0.078 sec and 0.080 sec,
respectively. (The image resolution is 640 × 480 pixels.)
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the sensitivity to scale variation by computing σh that is

used for scale optimization in the next step and selection of

multiple candidates, as the following mean distance:

σh =
d (s1,s2)+d (s2,s3)

2
(7)

where d (si,s j) =
∥

∥ht(si)−ht(s j)
∥

∥

Using the vocabulary tree, we select a maximum of ten

descriptors2 that may correspond to each feature of the query

image by the following matching threshold:

dth = d0 +σh (8)

where d0 is the matching threshold for SIFT descriptors.

B. Scale Optimization

In the scene recognition stage, we select a maximum of

ten candidates among all the descriptors in a vocabulary tree

based on roughly defined scales. In this stage, we compute

the optimal scale with given a scale of the feature in the

database on the basis of the mean-shift algorithm [25][26].

We define the problem of estimating the optimal scale and

the corresponding corner in the database that maximizes the

following posterior distribution as follows:

argmax
s

p(s|sd) (9)

For each candidate sd , we represent the distribution of the

scale by a mixture of Gaussians as follows:

f (s) = p(s|sd) = α ∑
i

wiexp

(

−
(s− si)

2

2σ2
s

)

(10)

where α = 1
∑i wi

and σs is a parameter depending on the

defined scales.

wi is a weight for the ith Gaussian distribution; wi is

obtained by comparing the current descriptor corresponding

to si with a descriptor for a match candidate sd , as shown in

Eq. (11)

wi = exp

(

−
‖ht (si)−hd (sd)‖

2

2σ2
h

)

(11)

where hd(sd) is the SIFT descriptor which is selected as a

candidate.

This kind of a mixture of Gaussians can be optimized

by employing the mean-shift algorithm, a simple iterative

procedure in which each data point is shifted to the average

of data points.

By taking the estimate of the density gradient as the

gradient of the density estimate, we have

2When constructing the vocabulary tree, we assigned ten nearest descrip-
tors to each descriptor.

∇ f (s) =
α

σ2
s

∑
i

(si − s)wiexp

(

−
(s− si)

2

2σ2
s

)

=

α

σ 2
s

[

∑
i

wiexp

(

−
(s− si)

2

2σ2
s

)

]





∑i siwiexp
(

− (s−si)
2

2σ2
s

)

∑i wiexp
(

− (s−si)2

2σ2
s

) − s





(12)

where ∑i wiexp
(

− (s−si)
2

2σ2
s

)

can be assumed to be nonzero.

Therefore, the final pair of brackets in Eq. (12) contains the

sample mean-shift vector, mv(s).

mv(s) =
∑i siwiexp

(

− (s−si)
2

2σ2
s

)

∑i wiexp
(

− (s−si)2

2σ2
s

) (13)

The mean shift procedure is defined recursively by com-

puting the mean shift vector mv(s) and translating the center

of Gaussian kernel by mv(s).
Let us denote by {y j} j=1,2,··· the sequence of successive

scales that are iteratively estimated, where

y j+1 =
∑i wisiexp

(

−
(y j−si)

2

2σ2
s

)

∑i wiexp
(

−
(y j−si)2

2σ2
s

) (14)

Initially, we have 3 samples (scales) that are not sufficient

to compute the optimal scale. Thus we update the distribu-

tion, defined in Eq. (10) as follows:

f (s) = β

[

∑
i

wiexp

(

−
(s− si)

2

2σ2
s

)

+∑
j

v jexp

(

−
(s− y j)

2

2σ2
s

)]

(15)

where β is a normalizing term. wi = exp

(

− (ht (si)−hd(sd))2

2σ2
h

)

and v j = exp

(

−
(ht (y j)−hd(sd))2

2σ2
h

)

.

Based on Eq. (15) that uses newly computed scales and

their descriptors during the optimization step, we compute

the next optimal scale as follows:

yt+1 =

round







∑3
i=1 siwiexp

(

− (yt−si)
2

2σ2
s

)

+∑t
j=1 y jv jexp

(

−
(yt−y j)

2

2σ2
s

)

∑3
i=1 wiexp

(

− (yt−si)2

2σ2
s

)

+∑t
j=1 v jexp

(

−
(yt−y j)2

2σ2
s

)







(16)

where ’round’ means rounding off to the nearest integer

because we compute descriptors using integral images. We

initially set y0 to the scale that corresponds to the maximum

weight among three scales.

The mean shift iteration is terminated when one of the

below criterions is satisfied.

• there is no variation on the scale. i.e. yt+1 = yt

• the newly computed descriptor has larger error than

previous one. i.e. vt+1 < vt , we replace yt+1 with yt .

• it reaches at the maximum number of iterations.

1924



( )dd sh ( )1sht ( )2sht ( )3sht

( )yht
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After terminating mean shift procedure for each corner, we

determine whether two points match or not by

‖ht(yt+1)−hd(sd)‖ < d0 (17)

C. Designation of New Destination

A robot autonomously recovers the current pose by using

the 3-point algorithm and LM optimization with the corre-

spondences. If there exist enough inliers after estimating the

current pose, then a robot designates the next destination

according to its current pose as shown in Eq. (18). For

example, if a robot computes its pose, as shown in Fig.

6 then two angles α and β are measures of deciding

the next destination node. α represents how much a robot

should rotate and β measures overlapped image regions after

reaching at the destination.

n = argmax
k∈[i−σ ,i+σ ]

(cosαkcosβk) (18)

only if cosαk > 0,cosβk > 0

Here, n is the index of the next destination, i is the

index of the key-frame image corresponding to the maximum

posterior, and σ is a search range.

d α

Key-frame #1

#2#3
#4

current pose

β

d α

Key-frame #1

#2#3
#4

current pose

β

Fig. 6. Decision rule of the next destination from the recovered camera
pose

TABLE I

MEAN OF PROCESSING TIME FOR SCENE RECOGNITION WITH 19397

CORNER FEATURES IN THE DATABASE (2.4GHZ CPU, 320 × 240

PIXELS)

processing time for scene recognition (ms)

SIFT 205

Proposed 46

TABLE II

COMPUTATIONAL COST FOR NAVIGATION WITHOUT GLOBAL

LOCALIZATION (2.4GHZ CPU, 320 × 240 STEREO IMAGES )

total time (ms) the number of frames average time (ms)

69672 2201 31.655

IV. EXPERIMENTAL RESULTS

A. Scene Recognition

Table I lists the mean computational costs for computing

correspondences between corners in an incoming image and

19397 corners computed from 43 database images during the

evaluation of 200 query images.

Fig. 7 shows one example of feature matching performed

using 43 database images.

Fig. 7. Feature matching result with 43 database images

For performance evaluation, we select 10 database images

that are left images in stereo and 16 test images among the

right images that correspond to the first database image. Fig.

8(a) shows the number of inliers over a sequence of test

images. The red line is obtained by feature matching without

scale optimization, and the blue line shows the number of

inliers when using scale optimization. Fig. 8(b) shows the

ratio between the number of inliers and the number of

outliers. By using scale optimization, we can obtain more

inliers and effectively suppress outliers.

B. Navigation in Dynamic Environments

The proposed navigation algorithm was implemented on

a laptop that controlled a mobile robot mounted with a

stereo camera. Our system runs in real time and it processes

320×240 images captured from a stereo camera. Table II

shows the computational cost for navigation involving map

building and motion estimation after capturing 2201 frames

using the same processor without global localization. To

evaluate the efficiency of the proposed method, a robot

was manually driven in an environment during the teaching

step when there were no people as shown in Fig. 9(b).

After a few hours, when some people arrived at the office

environment and they wandered, the robot autonomously

navigated through the environment. During navigation, a

robot was moved compulsively to another location as shown

in Fig. 9(c). Fig. 9(a) shows both key-frame locations (red
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Fig. 8. Performance comparison for scene recognition without scale optimization and with scale optimization

dots) overlapped with the generated map. Even when there

exist walking people, sudden motion and kidnapping, a robot

can follows a desired using the proposed method.

V. CONCLUSION

We have presented a vision-based navigation system that

is robust to kidnapping and moving objects. For this pur-

pose, we proposed an efficient pose recovery method that

combines FAST corners and their multiple SIFT descriptors;

first, we determine some candidates for correspondences by

combining corners with their multiple descriptors computed

from previously defined scales, and then we select one of

these candidates by optimizing the scale using a variant of

the mean-shift algorithm. The proposed matching algorithm

can be used for many vision-based robotic applications. We

demonstrate the robustness of our navigation system to the

various conditions.
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(a) The global map and key-frame locations obtained during the teaching
step

(b) Some key-frame images taken at the office when there were no people

(c) Representative snapshots from a video of navigation at the office

Fig. 9. Navigation result for dynamic environments
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