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Abstract— This paper presents an approach to the control
of the KNTU CDRPM using an integrated control scheme.
The goal in this approach is achieving accurate trajectory
tracking while assuring positive tension in the cables. By
the proposed controller, the inherent nonlinear behavior of
the cable and the target tracking errors are simultaneously
compensated. In this paper asymptotic stability analysis of
the close loop system is studied in detail. Moreover, it is
shown that the integrated control strategy reduces the tracking
error by 80% compared to that of a single loop controller
in the considered manipulator. The closed–loop performance
of the control topology is analyzed by a simulation study
that is performed on the manipulator. The simulation study
verifies that the proposed controller is not only promising to
be implemented on the KNTU CDRPM, but also being suitable
for other cable driven manipulators.

I. INTRODUCTION

Increasing performance requirements necessitates design

of new types of manipulators working in a larger dexterous

workspace with higher accelerations. Parallel manipulators

can generally perform better than serial manipulators in

terms of stringent stiffness and acceleration requirements[1]

[2]. However, limited workspace and existence of many

singular regions inside the workspace of a typical parallel

manipulator, limit the use of parallel manipulators in various

applications. In the case of cable driven redundant parallel

manipulators (CDRPM), the conventional linear actuators of

parallel manipulators are replaced with electrical powered

cable drivers. This novel engineering design idea leads

immediately to a wider workspace, and higher accelerations

of the moving platform due to the fact of using lighter

moving parts [3]. However, forward kinematics of parallel

manipulators such as CDRPM’s are very complicated and

difficult to solve [4]. Cables are sagged under compres-

sion forces [5], and therefore, to achieve tension forces

in the cables throughout the whole dexterous workspace,

the moving platform must be designed over-constrained

[6]. In this case m = n + 2 cables are proposed to be

used in order to dextrously move the redundant actuated

end–effector in an n-dimensional space [7]. Redundancy

resolution is needed to assure tension force along each

cable, however, this is usually computationally expensive

[8]. The KNTU CDRPM uses a novel design to achieve high

stiffness, accurate positioning for high-speed maneuvers.
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Fig. 1. The KNTU CDRPM, a perspective view

This paper presents an approach to the control of the

CDRPMs using an integrated control scheme to achieve a

stringent tracking performance while all the cables are in

tension for such maneuvers. Control schemes for parallel

manipulators are grouped in two classifications in the lit-

erature. The first one classifies the control methodologies

in two frameworks. One is to design a controller based

on the leg space or joint space coordinates and the other

is based on the workspace or task space coordinates [9],

[10]. Most of the controllers are designed based on the joint

space coordinates [11], [12]. The other framework is based

on the workspace coordinates [10], [2]. The second clas-

sification sets the schemes in two categories: model–based

and non model–based schemes [11],non model–based con-

trols such as Proportional–Integral–Derivative (PID) control

[11], [13], fuzzy logic control [14] and neural network

control [15]; and model–based controls such as impedance

control [16] and adaptive control [17], etc. Nevertheless,

there are few researches focused on the position control of

Cable Driven Redundant Parallel Manipulators (CDRPM).

There are two general schemes in this field; The first one

works on the joint space coordinate, the length of the cables

are measured and then controlled to reach the desired cable

length corresponding to a desired position of an end–effector

[18], [19]. Kawamura et al. proved that such a controller can

guarantee the convergence of the motion of the end–effector

to a desired trajectory. However, as studied in the control

section, the joint space controller confronts some problems

in the tracking performance [19], [5]. On the other hand,

the second scheme controls the pose of the end–effector

based on the dynamics described by a feedback from a

6DOF position or acceleration sensor in the task space or
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workspace coordinates. For instance, a workspace controller

is proposed which uses the position of the end–effector to

acquire the pose of the moving platform [20] for an under-

constrained suspended CDRPM.

This paper presents a different control topology examined

for possible implementation on KNTU CDRPM using an

integrated control scheme. The proposed controller structure

guarantees fully tension forces on the cables, in a more

trusted fashion, and is capable to fulfill the stringent posi-

tioning requirements for these type of manipulators. This

paper is organized as follows. In section II the inverse

kinematics and the Jacobian is derived first. Subsection II-

C recalls dynamic modeling of the KNTU CDRPM. The

integrated control with on–line gravity compensation is

introduced in section III-A accompanying with the proof of

stability and simulation analysis. The proposed redundancy

resolution scheme is examined in section III-B, and finally,

the concluding remarks and contributions of this work are

enlightened in the last section.

II. KINEMATICS AND DYNAMICS

A. Kinematics

The KNTU Cable Driven Redundant Parallel Manipula-

tor is illustrated in figure 1. This figure shows a spatial

six degrees of freedom manipulator with two degrees of

redundancy. This robot has eight identical cable limbs.

The cable driven limbs are modeled as spherical-prismatic-

spherical(SPS) joints, for cables can only bear tension force

and not radial or bending force. Two cartesian coordinate

systems A(x, y, z) and B(u, v, w) are attached to the fixed

base and the moving platform. Points A1, A2, . . . , A8 lie on

the fixed cubic frame and B1, B2, . . . , B8 lie on the moving

platform. The origin O of the fixed coordinate system is

located at the centroid of the cubic frame. Similarly, the

origin G of the moving coordinate system is located at

centroid of the cubic moving platform. The transformation

from the moving platform to the fixed base can be described

by a position vector −→g =
−−→
OG and a 3 × 3 rotation

matrix ARB . Consider that ai and Bbi denote the position

vectors of points Ai and Bi in the coordinate system A

and B, respectively. Although in the analysis of the KNTU

CDRPM, all the attachment points, are considered to be

arbitrary, the geometric and inertial parameters given in

table I are used in the simulations. Similar to other parallel

manipulators, CDRPM has a complicated forward kinematic

solution [4]. However, the inverse kinematic analysis is suf-

ficient for dynamic modeling. For inverse kinematic analysis

of the cable driven parallel manipulator, it is assumed that

the position and orientation of the moving platform x =
[xG, yG, zG]

T
, ARB are given and the problem is to find

the joint variable of the CDRPM, L = [L1, L2, . . . , L8]
T

.

From the geometry of the manipulator as illustrated in figure

2 the following vector loops can be derived:

A−−−→AiBi +A −→ai =A −→g + Ei (1)

in which, the vectors g,Ei, and ai are illustrated in figure

2. The length of the i’th limb is obtained through taking the

Fig. 2. ith Attachment point on the moving platform and related vectors

dot product of the vector
−−−→
AiBi with itself. Therefore, for

i = 1, 2, . . . , 8:

Li =
{

[g + Ei − ai]
T [g + Ei − ai]

}

1

2 . (2)

B. Jacobian

Jacobian analysis plays a vital role in the study of robotic

manipulators [21]. Let the actuated joint variable be denoted

by a vector L and the location of the moving platform

be described by a vector x. Then the kinematic constrains

imposed by the limbs can be written in the general form

f(x,L) = 0 by differentiating with respect to time, we

obtain a relationship between the input joint rates and the

end-effector output velocity as:Jxẋ = JLL̇ where Jx = ∂f
∂x

and JL = − ∂f
∂L

. The derivation above leads to two separate

Jacobian matrices Hence the overall Jacobian matrix J can

be written as:

L̇ = J · ẋ (3)

where J = J−1

L Jx. Jacobian matrix not only reveals the

relation between the joint velocities L̇ and the moving

platform velocities ẋ, but also constructs the transformation

needed to find the actuator forces τ from the forces acting

on the moving platform F . When JL is singular and the

null space of JL is not empty, there exist some nonzero L̇

vectors that result zero ẋ vectors which called serial type

singularity and when Jx becomes singular, there will be a

non-zero twist ẋ for which the active joint velocities are

zero. This singularity is called parallel type singularity [22].

TABLE I

GEOMETRIC AND INERTIAL PARAMETERS OF THE KNTU CDRPM

Description Quantity

fa: Fixed cube half length 1 m
fb: Fixed cube half width 2 m
fh: Fixed cube half height 0.5 m
C : The moving platform cube half dimension 0.1 m
M : The moving platform mass 5 Kg
I: The moving platform moment of inertia 0.033 Kg · m2

ρ: The limb density per length 0.007 Kg/m
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In this section we investigate the Jacobian of the CDRPM

platform shown in figure 1. For this manipulator, the input

vector is given by L = [L1, L2, . . . , L8]
T

, and the output

vector can be described by the velocity of the centroid G

and the angular velocity of the moving platform as follows:

ẋ =

[

V G

ωG

]

(4)

Jacobian matrix of a parallel manipulator is defined as the

transformation matrix that converts the moving platform ve-

locities to the joint variable velocities, as shown in equation

3. Therefore, the CDRPM Jacobian matrix J is a non-

square 8 × 6 matrix. The Jacobian matrix can be derived

by formulating a velocity loop-closure equation for each

limb[23].

J =













Ŝ
T

1
(E1 × Ŝ1)

T

Ŝ
T

2
(E2 × Ŝ2)

T

...
...

Ŝ
T

8
(E8 × Ŝ8)

T













(5)

C. Dynamics

Newton-Euler method is used for dynamic modeling of

CDRPM. According to acceleration of rotating velocity

vector [23], the Newton-Euler equations for varying mass

cable results into:

F Bi =
−1

2
ρL2

i [
.

Liωi× Ŝi +
.
ωi× Ŝi + ωi×(ωi× Ŝi)]

−
ρ

2
(

.

Li

2

+ LiL̈i)Ŝi + F Ai (6)

Where, F Bi, F Ai, L̇i, Ŝi, ωi and ω̇i are resultant acting

force on the each moving attachment point, acting forces on

the Ai fixed joint, cable linear velocity along its straight, the

unit vector on ith cable straight as shown in figure 2, the ith

cable angular velocity about the fixed attachment point and

the ith cable angular acceleration about the fixed attachment

point, respectively. By using light weight cables such as the

ones used in this manipulator, the gravity force effects on

the cables can be ignored compared to the dynamic induced

forces [24]. The cable tension force applied by cable driver

unit, FS
Ai, can be represented by:

F S
Ai = −τ (7)

Relations between actuator forces and the end-effector af-

fected forces had been studied in cable-affected forces.

Writing the Newton-Euler equations for the moving platform

describes the relation between forces, torques and accelera-

tion of the moving platform as following:

M ẍ = F D + G +
m

∑

i=1

F Bi (8)

IGθ̈ = τD −
m

∑

i=1

Ei × F Bi (9)

In which, M and IG are moving platform mass and moment

of inertia and m is number of the cables. G is effect of
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Fig. 3. The integrated control scheme

gravity force on the end-effector, F D and τD are distur-

bance forces and torques effects on the moving platform with

respect to the fixed frame coordinate. Also, F Bi is calculated

by the equation 6. Angular and linear acceleration of each

cable ω̇i and L̇i in equation 6, depend on the end-effector

acceleration, which makes the dynamic equations implicit.

Therefore, equations 8 and 9 can be viewed as an implicit

6 × 1 vector differential equations of the form:

f(x, ẋ, ẍ,FD, τ ) = 0 (10)

in which, FD = [F D, τ d]
T is the vector disturbance wrench.

The governing motion equations of the manipulator can be

implemented for dynamic simulation of the system. For

dynamic simulation, it is assumed that the actuator forces

τ (t), are given and the manipulator motion trajectory x(t),
is needed to be determined. It is shown that the obtained

implicit equations can be converted to explicit form of 11

by decomposing dynamical terms from ẍ, ẋ.

M(x)ẍ + H(x, ẋ) + G(x) = JT τ (11)

in which, M is the mass matrix, H is the vector of Coriolis

and centrifugal terms, and G is the vector of gravity forces.

These explicit dynamical equations can be solved with usual

numerical integration routines such as Runge-Kutta methods

[25].

III. CONTROL

Due to closed-chain kinematics, redundancy, and nonlin-

ear dynamics, the CDRPMs have complex nonlinear behav-

ior. A variety of controllers are proposed for these types of

manipulators in the literature. However, there exist two main

control topologies which are popular and most applicable

due to their simplicity [5] and [26].

First, a joint space PD controller, proposed by Kawamura

et al [18], is applied for the SEGESTA robot [5] and the

KNTU CDRPM [26]. The resultant tracking error was 1.5×
10−3m and 0.35 × 10−3(deg) for translation and rotation

respectively. A joint space controller can not achieve the

desired high performance, because the end-effector position

is not measured and the coupled behavior of the cables and

its total effect on the position of the end-effector is ignored.

Additionally, the linear dynamic forces of the end-effector in

the task coordinate are projected onto the joint coordinate.

This fact degrades the performance of linear controller.

Next, a workspace PD controller is employed for tracking

a desired trajectory; the resulting order of errors is the same
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as joint space controller [26]. The controller based on the

workspace coordinates should compensate the nonlinear dy-

namic behavior of the cables arising from projecting the pa-

rameters in cable coordinates onto work space coordinates,

so it’s apparent that a joint space controller can achieve

a better performance in this area. Therefore, in order to

achieve a high tracking performance, the advantages of both

workspace and joint space controllers must be incorporated.

Based on this idea, an integrated control scheme is proposed

in this section. In the following subsections first the topology

proposed for the integrated controller is elaborated, and then,

controller stability is analyzed. Finally, simulation results

and their analysis are presented in detail.

A. The Integrated Control

The block diagram of the integrated control is shown in

figure 3. In this control scheme, two control loops are used,

namely, the internal loop, which is based on decentralized

PD controller in joint space and the external loop, which

is based on a decentralized PD controller in workspace.

Inherent nonlinear behavior of the cable manipulator is

controlled by the internal loop, while external loop can

effectively reduce the target tracking errors of the end-

effector in the presence of disturbance force/torques. The

gains of each controller are tuned such that the required

tracking performance is achieved. Note that in this topology

the redundancy resolution block is elaborated in section III-

B.

Assume that the desired path of the manipulator in 3D is

cylindrical as shown in figure 4. As illustrated in figure 3

the vector force, F , in the external loop is determined by:

F = Fw + FIDC (12)

Where Fw is the created vector force by PD controller

Fw = Kpwe(t) + Kvwė(t). Where e(t) = xd(t) − x(t) is

the trajectory tracking error and Kpw,Kvw are appropriate

position and velocity gain matrices, whose values in the

simulations are 104 × I6×6 and 103 × I6×6m respectively.

FIDC is the generated vector force by the IDC [27].

Inverse dynamics generated force, preserves the end-effector

current state of acceleration and obtains required force in the

external loop in the form of a feedback linearization:

FIDC = M̂ẍd + Ĝ (13)
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Fig. 4. Desired path in the workspace

Where, M̂ẍ, Ĝ are the computed inertia and gravity forces

of the end-effector represented in task coordinate. In the

internal loop, the cables length L are measured and its time

derivative L̇ are either measured or estimated. Let Ld, L̇d

denote the desired cable length and its velocity which can

be easily obtained through computing the inverse kinematics.

In this part, the control efforts are directly applied through

the cable driver units. In this loop, the control law is as

follows:

τ = τ j + τ r (14)

In which, τ is an 8×1 tension force vector along each cable,

τ r is redundancy resolution distributed forces vector and τ j

is part of the tension force in the joint space coordinate that

is provided by PD controller by τ j = Kpje + Kvj ė. The

values of Kpj and Kvj which is used in the simulations are

2 × 105 × I8×8 and 2 × 104 × I8×8, respectively. These

gains are tuned such that the required tracking performance

is achieved. Let e(t) = Ld − L and ė(t) = L̇d − L̇ denote

the error of actual cable length to that of the desired one

and its derivative.

The tracking performance of the CDRPM using the pro-

posed integrated controller is illustrated in figure 5. As

seen in this figure, the proposed control topology is capable

of reducing the tracking errors less than 4µm in position

and less than 4 × 10−5 degrees in orientation. In order to

compare the tracking performance of this control topology to

that of a single loop controller, consider the two and infinity

norms of the tracking performance as shown in figure 7,

and notice the logarithmic scale that is used to represent the

errors. As it is seen from this chart this proposed topology

can significantly improve the tracking error norms in all

the translational and rotational degrees of freedom. This

significant improvement is due to the fact that the internal

loop has a linearizing effect on the system, while the external

loop ensures better tracking of the robot manipulator.

B. Redundancy Resolution

Actuator redundancy of CDRPMs is an inherent require-

ment in order to move the end-effector by tension forces

of the cables. Redundancy resolution is an essential tool to

optimally project a desired wrench in the cartesian space on

the cable forces into the joint space. The KNTU CDRPM

uses 8 actuators in a 6 dimensional motion. Therefore, there
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are infinitely many solutions for the eight actuators forces to

solve the six dynamic equations. Let us denote the resulting

cartesian force/torque applied to the manipulator moving

platforms F . In this definition F is calculated from the

summation of all inertial, and external forces excluding the

actuator torques τ in the dynamic equations 10. Due to the

projection property of the Jacobian matrix [21], F = JT τ

is the projection of the actuator forces onto the moving

platform, and can be uniquely determined from the dynamic

equations by excluding the actuator forces from them. If the

manipulator has no redundancy in actuation, the Jacobian

matrix, J , would be squared and the actuator forces could

be uniquely determined by τ = J−TF , provided that J

is nonsingular. For redundant manipulators, however, there

are infinity many solution for τ to be projected into F . The

simplest solution is a minimum norm solution, which can

be determined by the pseudo–inverse of JT , through:

JT †
= JT (J .JT )−1 (15)

By this means, τ 0 = JT †
F determines the minimum

required force of each cable to generate the corresponding

force, F . However, this solution can result into positive

or negative tensions of the cables. Since the cable forces

must be kept in tension in all maneuvers, a constrained

optimization technique is proposed in here to resolve the

redundancy. Note that all the solutions of the projection can

be determined using the null space of the Jacobian matrix

by:

fτ (γ) = τ 0 +
(

Im×m − JT †
. JT

)

γ (16)

in which, I is the identity matrix and γ is an m di-

mensional vector in the joint space. fτ (γ) determines an

affine hyperplane as an intersection of n subspaces of

linear equality constraint defined by Jacobian transpose. To

achieve a solution for the actuator forces of the CDRPM,

the constrained optimization is numerically solved in order

to find an optimum value for fτ (γ) by finding an appropriate

value for γ vector in the equation 16. In this optimization

the norm of actuator efforts are minimized subject to:

τ = fτ (γ) ⇒ (∀i, i ∈ {1, 2, . . . , m} ⇒ τ i > τmin) (17)

where, τmin is the lower bound of the actuator forces. Other

optimization techniques can be used to find the actuator

forces projected from, F which can minimize another user

defined cost function [8].

The simulation result for the cascade controller using the

proposed redundancy resolution scheme is shown in figure

6. As it is seen the proposed redundancy resolution scheme

is capable to keep the actuator forces of the CDRPM always

positive.

C. Stability Analysis

In this subsection, the stability of CDRPMs under the inte-

grated control law is proved by Lyapunov stability theorem.

First, the dynamic equation of error is derived. Regarding

dynamic equation of the manipulator from 11 and the control

law from 14, we have:

M ẍ + H + G = Kpw(xd − x) + M ẍd + G (18)

+JT
(

Kpj(ld − l) + Kvj(l̇d − l̇)
)

or,

M ë+Kpwe+Kvwė+JT Kpjel+JT KvjJ ė+H = 0 (19)

which results in:

M ë+(Kvw+JT KvjJ)ė+Kpwe+JT Kpjel+H = 0 (20)

in which, e = xd − x and el = ld − l and (.)d is a notation

for desired values. Now, consider the following Lyapunov

function:

V =
1

2
ėT M ė +

1

2
eT
l Kpjel +

1

2
eT Kpwe (21)

Where M , Kpw and Kpj are positive definite matrices.The

time derivation of Lyapunov function V is given by

V̇ = ėT M ë +
1

2
ėT Ṁ ė + ėl

T Kpjel + ėT Kpwe (22)

By substituting M ë from the dynamic equation of error in

equation 20, we have:

V̇ = ėT
(

−(Kvw +JTKvjJ)ė −Kpwe +JTKpjel −H
)

(23)

+
1

2
ėT Ṁ ė + ėl

T Kpjel + ėT Kpwe

V̇ = −ėT (Kvw + JT KvjJ)ė +
1

2
ėT (Ṁ − 2H)ė (24)

V̇ = −ėT (Kvw + JT KvjJ)ė (25)

where, JT KvjJ is a positive definite matrix, because Kvj

is positive definite and:

yT
(

JT KvjJ
)

y = yT
(

JT K
1

2

vjK
1

2

vjJ
)

y = zT z > 0

Therefore, Kvw +JT KvjJ , the sum of two PD matrices, is

a PD matrix; Then we can conclude that V̇ ≤ 0. Thus, the

motion converges to a maximum invariant set which satisfies

V̇ = 0. In this case, V̇ = 0 means that ė = 0. Therefore,

due to the equation 20, the maximum invariant set is:

(Kpw + JT KpjJ)e = 0 (26)

From positive definiteness of (Kpw +JT KpjJ) , this leads

to e = 0 . Hence, we conclude: x = xd as time t tends to

infinity as long as the motion is within the wrench closure

workspace [7] and without any collision [28] parallel or

serial type singularity.
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Fig. 6. The actuator forces in the cascade controller
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Fig. 7. Comparison of norms between three control topologies

IV. CONCLUSION

An integrated control strategy is proposed to improve the

overall tracking performance of a cable driven redundant

parallel manipulator while system nonlinear behavior is

remedied and sensitivity of the external loop to nonlinearity

of the cables dynamics is decreased. The main idea in

this controller algorithm is the integration of two control

loops, namely the internal loop, which is based on decen-

tralized PD controller in the joint space and the external

loop, which is based on a decentralized PD controller in

the workspace. Inherent nonlinear behavior of the cable

manipulator is significantly reduced by internal loop, while

the external loop can effectively reduce the tracking errors of

the end-effector in the presence of disturbance force/torques.

The work presented here represents an effective attempt

to use two control loops for performance improvement in

trajectory-following tasks of this type of robot manipulators.

The simulation analysis presented on the KNTU CDRPM

verifies the expected theoretical claims and demonstrated

that the proposed algorithm can significantly improve the

overall tracking performance while keeping the cables under

positive tension. As shown in figure 7 the cascade strategy

can decrease the tracking error by 80% with respect to the

previously advised inverse dynamic control. The investigated

control topologies can be carefully implemented for the

other cable parallel redundant manipulators in real–time

applications.
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