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Abstract— Interaction of a robot with dynamic environments
would require continuous adaptation of force and impedance,
which is generally not available in current robot systems. In
contrast, humans learn novel task dynamics with appropriate
force and impedance through the concurrent minimization of
error and energy, and exhibit the ability to modify movement
trajectory to comply with obstacles and minimize forces. This
article develops a similar automatic motor behavior for a robot
and reports experiments with a one degree-of-freedom system.
In a postural control task, the robot automatically adapts
torque to counter a slow disturbance and shifts to increasing
its stiffness when the disturbance increases in frequency. In the
presence of rigid obstacles, it refrains from increasing force
excessively, and relaxes gradually to follow the obstacle, but
comes back to the desired state when the obstacle is removed.
A trajectory tracking task demonstrates that the robot is able
to adapt to different loads during motion. On introduction of a
new load, it increases its stiffness to adapt to the load quickly,
and then relaxes once the adaptation is complete. Furthermore,
in the presence of an obstacle, the robot adjusts its trajectory
to go around it.

I. INTRODUCTION

To interact skillfully with the environment, robots, as

humans [1], [2], need to control the force and impedance

at the contact points. Force provides movement and contact

stability during the task while impedance helps stabilizing

the system against disturbances. Most industrial manipulators

use high stiffness trajectory control, as they were primarily

conceived to move in the free space (e.g. to place chocolate

in boxes), or were made stiff enough that the dynamic

interaction can be neglected. However, modern lightweight

robots will interact with fragile objects, other machines and

humans [3], [4]. Such demanding and varying dynamics

requires continuous adaptation of force, impedance, and, to

avoid obstacles, of trajectory [5].

If a task has reproducible dynamics, suitable forces to

perform it can be learned and compensated for. This is the

essence of iterative and adaptive control [6], [7] which were

demonstrated in implementations with various robots with

nonlinear dynamics [8], [9]. However, learning forces cannot

deal with unpredictable dynamics or instability. Increasing

impedance is an efficient strategy to deal with incorrect

forces arising from novel thus unknown dynamics, and can

help perform unstable tasks, e.g. many tasks involving tool

use [10]. Thus impedance control has gained popularity in

recent robotics implementation, e.g. [11].
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While high impedance can increase stability in most

movement tasks, it can lead to instability during interaction

with stiff environments, expend large energy while resisting

disturbances, and may cause safety issues for the robot,

and objects or humans interacting with the robot [3]. In

fact energy consumption is a major issue for autonomous

robots, e.g. recent humanoids running on limited power

from onboard batteries. Learning of the optimal forces and

impedance appropriate to different tasks can help achieve

them with minimum error and least energy, similar to what

is seen in humans [12].

Humans have amazing ability to learn novel tasks with

appropriate force and impedance, by concurrent minimiza-

tion of error and energy [13], [14]. When meeting obstacles,

they further modify their reference trajectory [15], thus

minimizing forces. Our goal is to make robots able to

perform tasks skillfully in changing dynamic interactions,

by learning suitable impedance, force and trajectory.

Our recent studies [2], [12] show that human motor control

fulfills about such adaptive properties. In this paper we will

first formalize motor adaptation in humans as appears from

our recent study [14]. We will then adapt this biomimetic

controller on robots, and demonstrate it on typical robot-

human interaction tasks. These include slowly changing

and high frequency perturbations in postural and trajectory

control tasks, as well as obstacles met during movements.

Though previous studies proposed iterative tuning of force

[6], trajectory [16] and impedance [17] separately, our al-

gorithm provides the first implementation for adapting the

three simultaneously. This enables the algorithm to deal with

tasks requiring adaptation of both force and impedance, and

presents the unique ability to learn performing unstable tasks

successfully and with minimal impedance.

II. HUMAN MOTOR CONTROL AND LEARNING

A. Feedforward and feedback control

To model human motor control and learning let us first

analyze them from a robotics point of view. When the human

hand is slightly perturbed during arm movements it tends to

return to the undisturbed trajectory, as if the hand would be

connected to a spring along the planned trajectory [18]. This

spring-like property stems mainly from muscle elasticity and

the stretch reflex, which produce a restoring force towards

the undisturbed trajectory.

Further, the strength of this spring-like property, or me-

chanical impedance, increases with muscle activation [19]

or with endpoint force [20], such that the damping ratio is

kept constant [21]. Therefore, both stiffness and damping can
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where εi,+ = max{εi, 0} is the positive part and εi,− =
(−ε)i,+ the negative part of the feedback error

εi = π(ei + δ ėi) , π, δ > 0 , (5)

where

ei ≡ λr,i − λi (6)

is the difference of muscle length λi to the reference length

λr,i.

We assume that learning corresponds to the gradient

descent minimization of the cost function (2), i.e. activation

is updated proportionally to the gradient of this function:

△pk ≡ pk+1 − pk=̇ −
dV

dp
, (7)

where k is a trial index. The gradient descent update of cost

(2) is

∆pk = −
dV

dp
= −α

(
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)T
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...
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N

, (8)

wi represents the environment being learned and is as-

sumed to be independent of pj , hence using ∂wi/∂pj =
0 for all (i, j). Equation (1) then yields:

△pk = α

(

∂ui

∂pj

)T

vk − γ1N , α, γ > 0 . (9)

The second term, −γ1N , producing the same decrease

of activation in all parameters pi, is minimizing the overall

activation and thus impedance in a subtle way. If activation i
is larger than activation j, then the smaller, pj , is decreasing

relatively faster than the larger, pi. This enables learning law

(9) to realize a winner-take-all scheme selecting the activa-

tion directions that were increased most from α
(

∂ui

∂pj

)T

v.

In the initial trials, the feedback error is large and most of

the activation modification results from α
(

∂ui

∂pj

)T

v. Later in

the learning, optimization of impedance is performed from

the term −γ1N , producing large decrease of impedance

in the directions less activated, i.e. the direction of small

impedance.

C. Learning law

We focus on the case that the motor command is linear in

the activity parameters (3). With this structure the learning

law (9) yields

△pk ≡ αΨ(s)T vk − γ 1N , (10)

where s is the state. We recognize the term αΨT v of

traditional nonlinear adaptive control [7], which is now in

muscle space (instead of nonredundant joint or hand space

for traditional adaptive control).

In contrast to traditional adaptive control of force, the

feedforward will continue to be adapted even when the error

is 0, as energy is now minimized concurrently to error.

However, muscles can only pull and not push, and they are

naturally bounded by a minimum positive pull value.

Note that the update of each activation depends only on

the error and is independent on the other activations, i.e.

no explicit dependence between the activations is needed

to regulate endpoint force and impedance with the coupled

and highly nonlinear dynamics of a redundant multi-neuron,

multi-muscle, multi-joint system.

How do the force and impedance vary with this scheme?

The adaptation law (10), with the asymmetric V-shaped

feedback error (4), can be decomposed into an antisymmetric

proportional function of the feedback error, a symmetric

function and a negative bias:

△pk = αΨT
ε

k
+ + αχΨT

ε
k
−

− γ1N (11)

=
α

2
(1 − χ)ΨT

ε
k +

α

2
(1 + χ)ΨT |εk| − γ1N ,

where

|ε| ≡ (|ε1|, . . . , |εi|, . . . , |εN |) (12)

is defined componentwise. As it was shown in [12] that a

deviation to one direction is compensated for by a force in the

opposite direction in the next trial (principle 3), hence χ < 1.

In this representation, the first term in ε produces a force

opposed to the error, i.e. compensates for systematic error,

the second term in |ε| increases co-activation in response to

deviation, i.e. increases stability, and the third term −γ1N re-

moves superfluous (co-)activation. Therefore, the adaptation

of (10) concurrently increases stability, decreases movement

error and decreases effort.

The first term produces a modification of reciprocal ac-

tivation, and corresponds to the force regulation algorithms

of nonlinear adaptive control [7], iterative control [6], and

previous models of motor learning [25], [26], [27]. The other

terms tune the co-activation in all antagonist muscles groups,

i.e. our scheme is extending these algorithms to simultaneous

regulation of force and impedance.

III. AUTOMATIC MOTOR BEHAVIOR FOR ROBOTS

In adaptive control [8], [9] index k corresponds to time,

i.e. the dynamic model Ψp is modified during motion. Here

we will illustrate the possibility of this human motor control

model when movements are repeated trial after trial, i.e. for

iterative control [6], [9]. In this case k corresponds to the

trial number and (3) reduces to u ≡ p, thus Ψ ≡ 1.

Similar to the human controller (1), the robot controller

involves feedforward and feedback, where now w stands

for the overall control torque, u is feedforward torque, and

feedback error is

vk ≡ Kkek + Dkėk , ek ≡ qk
r − qk , (13)

where q represents the robot angles vector and the error

signal e is calculated with respect to the reference qr.

Feedforward and mechanical impedance are adapted as in

the human controller (11):

△uk ≡ uk+1 − uk ≡ α ε
k , α > 0, (14)

△Kk ≡ Kk+1 − Kk ≡ β |εk| − γ1, β, γ > 0 (15)
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C. Obstacle avoidance

In order to test the trajectory adaptation by the algorithm

in the presence of an obstacle, we use a ramp up and down

as obstacle (thick black trace in Fig.7) added to the original

plan (dashed grey trace) of the robot movement. When the

obstacle is suddenly removed in the 5th adaptation trial, the

movement is reduced by as much as it was increased due to

adaptation, mirroring the obstacle (dashed black trace). This

behavior shows that the robot initially tries to increase the

torque to counter the obstacle.

The obstacle is then re-introduced from the 6th trial on.

When the obstacle is removed in the 25th trial the robot

movement (black trace) and plan (grey trace) can be clearly

seen to have adapted to the shape of the obstacle. The robot

movement (black trace) lies to the right of the plan (grey

trace), indicating that the robot still applies some contact

force onto the obstacle after 25 trials. This behavior is similar

to the adaptation observed in humans [15].

VI. DISCUSSION

Robots interacting with dynamic environments require

to continuously adapt their position, force and impedance

depending on the requirements of the task. Traditionally

this was solved using nonlinear model based control and

design approaches [33], [34], [11], but due to parametric

uncertainties it is difficult to get an accurate model of

robot dynamics. Thus robot performance was shown to be

better when the robot model is learnt during motion [9]

than computed from design and material information [35].

Further, it is hard to model the interaction with an unknown

environment. Unlike robot dynamics, environment dynamics

may be time variant and thus require continuous model

adaptation.

Robot manipulation is usually employed to perform repet-

itive tasks. Even if a robot, naive to its dynamics and that of

its environment, is initially unsuccessful in a task, it can

use the knowledge gained in previous trials to gradually

improve the next one through learning of a feedforward,

which corresponds to a model of the robot dynamics and its

environment. This is the basic observation of motor learning

in animals, including humans [24], [2], [12] and is similar

to the concept of iterative learning proposed in robotics [6],

[36], [9].

Forces/torques help generate robot motions while im-

pedance is important to maintaining stability against distur-

bances. Adapting force and impedance as per the requirement

of an environment helps maximizing interaction safety and

minimizing energy consumption. Trajectory adaptation, on

the other hand, helps robots to change motion depending on

the changes in the environment such as the introduction of

an obstacle. Though theoretically force and trajectory adap-

tations do not need to be considered independently, because

the impedance acts about the trajectory as reference, it is

practical to separate them in order to distinguish movement

related forces from interaction forces.

While iterative tuning of force [6], trajectory [16] and

impedance [17] were proposed separately in previous studies,

our algorithm combines iterative feed-forward learning and

adaptive impedance control, to give the first implementation

for adapting the three functions simultaneously. This gen-

eralizes the applications field of robots to tasks requiring

simultaneous adaptation of force and impedance, e.g. most

tasks performed in interaction with the environment.

Previous iterative algorithms try to converge the robot

states to a predefined desired force [37], position [38], [39]

or impedance [17]. In contrast, our algorithm proposes a

flexible-supervised approach where the reference trajectory

is not rigid and slowly changes with time so as to minimize

the task error, forces and energy. Simultaneously the error

with respect to the flexible reference is used to tune the

force and impedance values. However our algorithm does

require an initial reference trajectory at each joint. As this

trajectory is kinematic, it may be ideally achieved by higher

level processes like imitation learning, similar to what has

been observed in humans [40].

During interaction with objects and humans, a compliant

robot can provide a safe interaction for the robot and the

obstacles [41], or a stable contact can be provided by

control of contact forces. Task space force control [42] and

impedance control [33], [11] are popular control structures

proposed for such tasks. Our algorithm does not perform

force control directly, but it learns to follow obstacles in

a manner similar to force control, while retaining the dis-

turbance robustness properties of impedance control. This

behavior can be observed in Fig. 7 where the incomplete

convergence of the reference (solid grey trace), due to the

presence of two attractors (18), leads to maintenance of a

contact force between the obstacle and robot. Due to the

presence of this contact force, on obstacle removal, the robot

movement (solid black trace) lies inside the obstacle.

The contact force on the surface in the 1 DOF case may

be obtained by setting (17) and (18) to zero and is given by

Fc =
α Kmin δ2

µ δ
(qt − qr) L , (19)

where Kmin represents the minimum stiffness allowed for

the joint and L is the link length. In the case of a multi-joint

system while a contact force will still be kept, its magnitude

will also dependent on the robot kinematics. If required,

the magnitude of the contact force can be controlled by the

relative strength of the attractor trajectories of (18).

A significant advantage of our algorithm over existing

impedance adaptation algorithms [17], [43] is in its ability to

deal with unstable environments [28] where task error fluc-

tuates randomly. In traditional iterative or adaptive control,

as the learning is related to feedback, random trial errors

in different directions can lead to the cancelation of model

from the previous trials [14]. In the proposed algorithm, any

error, irrespective of its direction, leads to an initial increase

in impedance which helps reduce the error and promotes

the iterative learning of force. Once the appropriate forces

are learnt, the task error is reduced, which in turn leads

to a decrease in impedance to levels which still keep the

system stable. Implementation of the algorithm in a multi-
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joint system has now been realized (and will be reported

elsewhere) giving automatic spatial tuning of task impedance

as seen in humans [2], [44], where impedance is adapted to

be large only in specific directions or joints as required by

the task.
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