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Abstract— This paper presents the upper-limit evaluation of
robot audition based on ICA-BSS in multi-source, barge-in
and highly reverberant conditions. The goal is that the robot
can automatically distinguish a target speech from its own
speech and other sound sources in a reverberant environment.
We focus on the multi-channel semi-blind ICA (MCSB-ICA),
which is one of the sound source separation methods with a
microphone array, to achieve such an audition system because
it can separate sound source signals including reverberations
with few assumptions on environments. The evaluation of
MCSB-ICA has been limited to robot’s speech separation and
reverberation separation. In this paper, we evaluate MCSB-ICA
extensively by applying it to multi-source separation problems
under common reverberant environments. Experimental results
prove that MCSB-ICA outperforms conventional ICA by 30
points in automatic speech recognition performance.

I. INTRODUCTION

A. Background

Our goal is the development of a robot that can extract a
user’s speech from a mixture of sounds and can interact with
humans naturally through speech in various environments.
For example, a robot can talk with a target user a near loud
television; a person may talk to it from far away; a user
can interrupt a robot’s utterance and begin speaking while
the robot is speaking (called “barge-in”). Since speech is
the most natural communication channel for human, such
robots are useful and will help us in many situations, such
as in housekeeping or rescue tasks. To achieve such a robot
audition system, we must cope with the following three
problems at the same time,

1) multi-source (speech and other noise) signals,
2) the robot’s own speech signal, and
3) the reverberations of them.
These problems are posed by the microphones which

are installed on its body, and not attached close to the
user’s mouth (Fig. 1). This degrades the performance of
conventional automatic speech recognition (ASR) seriously
because many ASRs or spoken dialogue systems work well
in the laboratory but not in such noisy and reverberant
environments. Additionally, robots must have the least prior
information about the environment and should be adaptive
to environments to work even in unknown environments.
Therefore, we can say that robot audition is challenging
research.
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B. Previous Works

1) Robot Audition Aspects: Most robot audition research
does not tackle the reverberation and barge-in problems
although they cover a broad range of topics, such as sound
source separation (SSS), sound source localization (SSL),
tracking (SST), integration SSS with ASR and real-time
processing.

HARK is open source software for robot audition [1], and
it can achieve a real-time SSS, SST and ASR. However, it
also can not deal with reverberation and barge-in problems.
The robot spoken dialogue system [2] guides at a railway
station, and it accomplished a good ASR performance in a
real station. This system also is not evaluated in a reverberant
environment or in a situation where a speaker is far away
from microphones.

2) Signal Processing Aspects: The problems that we
tackle are categorized in blind source separation (BSS), blind
dereverberation (BD, separation of reverberation) or multi-
channel blind deconvolution (MBD), and echo cancellation
(EC, separation of known source), respectively. Here, Blind
means that a method only uses the observed and simple prior
information. BSS or MBD problems under high reverberant
environments are especially hot topics now. We pick up
microphone array methods because it is easy to treat multi-
source situations unlike missing data techniques [3] or others
[4] that need some prior knowledge or models about sound
sources and environment.

Previously, those problems, such as BSS and EC, have
been treated as an isolated problem; some of them have
not dealt with EC [5], others have not dealt with BD

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4366



[6], or have not been able to deal with BD or MBD [7].
Recently, integrated methods have been proposed, which
can solve these problems at the same time. For example,
Yoshioka integrates these techniques, such as BSS and BD,
with maximum likelihood framework [8]. We also proposed
a method that can solve BD and EC with Independent
Component Analysis (ICA) framework [9]. Note that these
integrated methods have not been discussed enough, and we
can not conclude yet which one is the best way for robot
audition.

C. Our Approach and Contribution

We adopted multi-channel semi-blind ICA (MCSB-ICA)
[9], which we have proposed before for BD and EC, and
which is categorized in a higher order statistics ICA. The
reasons why we use it are that

1) it is theoretically robust against Gaussian noise, such as
that from fans,

2) it can theoretically deal with MBD and EC with the
linear order calculation cost of reverberation time, and

3) there is a lot of knowledge regarding real application,
such as second order solution [10] and source model
estimation [2].

The performance of MCSB-ICA has not been evaluated
although its framework can deal with BSS or MBD as
mentioned above. Because of the generality of the ICA
framework, there is no need to extend the separation algo-
rithm to deal with multi-source situation.

In this paper, we reveal the performance of MCSB-ICA
as MBD and EC method

1) by using a large vocabulary and continuous ASR (not
isolated word recognition with small size dictionary)

2) with many microphones embedded in a robot’s head
3) under multi-source and reverberant situation.

And we compared it with the conventional frequency-domain
ICA (FD-ICA) [7], which is used as a baseline method in [8].
We believe that these is no paper which evaluates a method
under these conditions. Especially, ICA originally assumes
that the number of microphones and sound sources are equal.
In real applications, it is difficult to estimate the number of
sound sources in advance, and we can use more microphones.
Then, it is beneficial to show whether the MCSB-ICA works
well or not with so many microphones. Note that we ignore
the problems of permutation and calculation cost to evaluate
the pure performance of MCSB-ICA. The latter problem will
be solved by parallel processing or the development of a CPU
in the future although the former problem is essential and
we treat it as another problem as mentioned in the following
section.

D. Paper organization

This paper consists of 7 sections. Section 2 explains
the MCSB-ICA. Section 3 explains the conventional FD-
ICA, and Section 4 shows other configuration of ICA. and
discusses evaluations of our method in Section 5 and 6. The
last section concludes the paper and discusses future work.
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II. MULTI-CHANNEL SEMI-BLIND ICA

This section explains MCSB-ICA [9]. The MCSB-ICA
model described here uses a short-time Fourier transforma-
tion (STFT) representation [5], which is a form of multi-rate
processing (Fig. 2). We denote the spectrum after STFT as
s(ω, t) at frequency ω and frame t. For the sake of simplicity,
we have skipped denoting the frequency index, ω. The signal
flow of MCSB-ICA is illustrated in Figure 3. We explain how
the filter is estimated in this section.

A. Observation and Separation Model

We denote the spectra observed at microphones
M1, . . . ,ML as x1(t), . . . , xL(t) (L is the number
of microphones) and its vector form as x(t) =
[x1(t), x2(t), . . . , xL(t)]T . With the spectrum of the user’s
utterance, su(t), and a known-source (robot’s) spectrum,
sr(t), the observed signals, x(t), can be described as a
finite impulse response (FIR) filter model:

x(t) =
N∑

n=0

hu(n)su(t − n) +
M∑

m=0

hr(m)sr(t − n), (1)

where hu(n) and hr(m) correspond to the N - and M -
dimensional FIR coefficient vectors of the user’s and known-
source spectra.

Before explaining the MCSB-ICA separation model, let
us define the observed vector, X(t), and the known-source
vector, Sr(t):

X(t) = [x(t),x(t−1), . . . ,x(t−N)]T and (2)

Sr(t) = [sr(t), sr(t−1), . . . , sr(t−M)]T . (3)

The separation model for MCSB-ICA is set so that the
direct sound frame of a user’s speech, su(t), is independent
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of the delayed-observed and known sound spectra, X(t−d)
and Sr(t). Here, d (> 0) is an initial-reflection interval
parameter, and we consider the dependence between the
direct and adjacent frames of su(t). The separation model
is written as⎛

⎝
ŝ(t)

X(t−d)
Sr(t)

⎞
⎠=

⎛
⎝

W 1u W 2u W r

0 I2 0
0 0 Ir

⎞
⎠
⎛
⎝

x(t)
X(t−d)
Sr(t)

⎞
⎠ ,(4)

where ŝ(t) is an estimated signal vector with an L dimension,
and W 1u and W 2u correspond to L×L and L×L(N +1)
blind separation and blind dereverberation matrices, respec-
tively. W r is the L × (M +1) echo cancellation separation
matrix. I2 and Ir correspond to optimally-sized unit matri-
ces.

Note that the estimated signal, ŝ(t), includes the direct
sound signals, some reflected signals and uncertain indepen-
dent signals because we assume the number of microphones
is larger than that of sound sources. Then, we must select the
target speech signals from the output signals by using some
criteria. In this paper, we select required signals by using
reference signals to evaluate the upper-limit of MCSB-ICA.

B. Estimation of Filter Parameters

The filter parameter set, W = {W 1u,W 2u,W r}, is
estimated by minimizing the Kullback-Leibler divergence
between the joint probability density function (PDF) and the
products of the marginal PDF of s(t), X(t− d) and Sr(t).

We obtain the following iterative update rules for W with
a natural gradient method [11].

D = Λ − E[φ(ŝ(t))ŝH(t)], (5)

W
[j+1]
1u = W

[j]
1u +μDW

[j]
1u, (6)

W
[j+1]
2u = W

[j]
2u +μ

(
DW

[j]
2u−E[φ(ŝ(t))XH(t−d)]

)
,(7)

W [j+1]
r = W [j]

r +μ
(
DW [j]

r −E[φ(ŝ(t))SH
r (t)]

)
, (8)

where ·H denotes the conjugate transpose operation,
and Λ is a non-holonomic constraint matrix, i.e.,
diag(E[φ(ŝ(t))ŝH(t)]) [12]. The μ is a step-size pa-
rameter, and φ(x) is a non-linear function vector,
[φ(x1), · · · , φ(xL)]H . φ(x) is defined as,

φ(x) = −d log p(x)
dx

. (9)

We assume that the source PDF is a noise-robust one p(x) =
exp(−|x|/σ2)/(2σ2) with variance σ2, and that φ(x) equals
x∗/(2σ2|x|), where x∗ denotes the conjugate of x. The two
functions are defined in a continuous area, |x| > ε.

For pre-processing, we use enforced spatial sphering,
which is an approximation of sphering. The observed signal,
X(t), and the known signal, Sr(t), are transformed using
two rules:

z(t) = V ux(t), V u = EuΛ−1/2
u EH

u , (10)

s̃r(t) = λ−1/2
r sr(t), (11)

where Eu and Λu are the eigenvector matrix and eigenvalue
diagonal matrix of Ru = E[x(t)xH(t)]. After sphering, x
and sr in Equations (4) – (8) are substituted into z and s̃r.

III. FD-ICA: BASELINE METHOD

The FD-ICA is one of the most popular BSS method for
real acoustic signal separation because of its fast convergence
speed and good performance. The conventional FD-ICA,
such as [7], is considered as a sub-set of MCSB-ICA in
the formulation. If we set the filter length N and M to 0,
the algorithm of MCSB-ICA reduces to that of FD-ICA.

The difference of FD-ICA and MCSB-ICA is whether
the reverberation is considered or not. This extends the
separation ability of FD-ICA, but it also increases the com-
putational cost. Since the cost of MCSB-ICA is O(L2(M +
N+2)), the disadvantage will be overcome in the near future
if L is small and N,M are not so huge. We do not discuss
this disadvantage in this paper.

IV. COMMON CONSIDERATIONS

The FD-ICA and MCSB-ICA have problems called scal-
ing and permutation problems. They are caused by the
property of ICA which can not decide the amplitude and
the permutation of output signals at all frequency bins.
In this section, we explain these and other configurations
of ICA, except the permutation problem. As mentioned in
the previous section, we aligned output signals by using
reference signals to solve the permutation problem.

1) Scaling: We used the projection back method [13]. We
multiplied the i-th row and j-th column element cj of Ĥu =
(W 1uV 0)−1, which satisfies the following equation for the
scaling of the j-th element of ŝu(t).

lj = arg max
l

|Ĥu(l, j))| (12)

cj = Ĥu(lj , j) (13)

2) Initial value of separation matrix: The initial value of
the separation matrix at the frequency ω, W 1u(ω), was set
to that of the estimated matrix at frequency ω+1, W 1u(ω+
1). We used the unit matrix for the initial value of the first
separation matrix. Empirically, the performance of MCSB-
ICA degrades if we use a unit matrix as an initial value of
the separation matrix for every frequency bin.

3) Step-size scheduling: To accelerate the convergence
speed, we used a partial adaptive step-size method[14].

V. EXPERIMENTS

We evaluated MCSB-ICA by ASR performance with
simulated data. The data is generated by using the im-
pulse responses recorded in a real environment, and impulse
responses can reconstruct the acoustic property, such as
reflections. Note that robot’s noises are not recorded and not
used.

A. Experimental Settings

1) Data for evaluation: The impulse responses for speech
data were recorded at 16 kHz in a reverberant room, whose
RT20 is about 940 [ms]. Here, RT20 means the reverberation
time. The size of the room was 4.8 m × 5.55 m × about 3 m
(depth x width x height). The target speaker was 1.0 m apart
from a microphone mounted on the head of Honda ASIMO.
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TABLE I

CONFIGURATION FOR DATA AND SEPARATION

Impulse response 16 kHz sampling
Reverberation time (RT20) 940 [ms]

Direction of speaker B 10◦, 20◦, 30◦, 60◦, 90◦

Number of microphones Eight (embedded in ASIMO’s head)
STFT analysis Hanning: 32 [ms] and shift: 10 [ms]

Input wave data [-1.0 1.0] normalized

TABLE II

CONFIGURATION FOR SPEECH RECOGNITION

Test set 200 sentences
Training set 200 people (150 sentences each)

Acoustic model PTM-Triphone: 3-state, HMM
Language model Statistical, vocabulary size of 21 k
Speech analysis Hanning: 32 [ms] and shift: 10 [ms]

Features MFCC 25 dim. (12+Δ12+ΔPow)

20

1.0m1.5m

10

1.95m

Work desk

Work desk

5.55m

4.8m

1.9m

1.4m2.2m
30

60

90
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ASIMO Target 

Speaker 

Another 

Speaker

Music Direction 

of sound

Fig. 4. The layout of room, robot, speaker, and music signal.

The noise speaker was located 1.5 m apart from ASIMO,
and the angles between the noise speaker and the front of
ASIMO were six patterns of 10, 20, 30, 60, 90 degrees.
Music noise was at 2.12 m away from ASIMO coming from
315 degrees. We also recorded the impulse response from the
robot’s speech. The height of the microphones was 1.25 m
and that of the other speakers were 1.4 m. These settings are
illustrated in Figure 4. The relative amplitude among these
impulse responses are saved. All data (16 bits, PCM) were
normalized to [−1.0 1.0] for processing.

2) Separation parameters: The STFT parameters were set
the same for all three experiments: the window size was 512
points (32 ms) and the shift-size was 160 points (8 [ms]).
The frame interval parameter d was 2, and the filter lengths
of echo cancellation and dereverberation was the same, that
is, N = M = 32. The parameters for adaptive step-size
control were set as a previous [14]. The number of iteration
at the filter estimation was 25, and it is not a huge iteration
number. To estimate the separation matrices, we used all
observed data (off-line and batch processing). Note that the
voice active section is given in our experiments.

3) ASR configuration: We used 200 Japanese sentences
for the speaker’s and robot’s speech, and they were con-
voluted in the corresponding recorded impulse responses.
Julius1 was used for HMM-based ASR with the statis-
tical language model. Mel-frequency cepstral coefficients
(MFCC) (12+Δ12+ΔPow) were obtained after STFT with
a window size of 512 points and a shift size of 160 points
for the speech features, and we then applied Cepstral Mean
Normalization. A triphone-based acoustic model (three-state
and four-mixture) was trained with 150 sentences of clean
speech uttered by 200 male and female speakers (word-
closed). The statistical language model consisted of 21,000

1http://julius.sourceforge.jp/

Fig. 5. The microphone layout on ASIMO’s head. The eight microphones
forms like circle.

words, which were extracted from newspapers. The other
experimental conditions are summarized in Tables I and II.

B. Combination of Noise Patterns and Evaluation Criteria

We compared the performance of MCSB-ICA with that of
FD-ICA under the following noise combinations:

1) a target speech and a robot speech (and a music noise)
for a barge-in situation,

2) a target speech and a noise speech (and a music noise)
for a simultaneous-talk situation, and

3) a target speech, a noise speech and a robot speech (and
a music noise) for a worst situation.

We can cluster the patterns with or without background
music noise. Note that a maximum of four sources exists
at the same time.

The performances are measured by word correctness (Cor.)
and word accuracy (Acc.) of the target speech (Target sp.)
and noise speech (Another sp.). The correctness and accuracy
are defined by the following equation,

Cor. =
# of correct words

# of all words
, (14)

Acc. =
# of correct words − # of inserted words

# of all words
.(15)

Cor. increases if the words in the sentence are recognized
without missing words, and Acc. increases if the irrelevant
words are not recognized.

VI. DISCUSSION

A. Results

Figure 6 shows the wave signal and spectrum examples of
the clean speech signal, a reverberant one, an observed signal
and two separated speech signals. The top left is a clean
speech and the top right is a reverberant one. We can see the
belt-like effect of reverberation from the spectra. The middle
is an observed signal, the bottom left is the result of MCSB-
ICA and the bottom right is that of FD-ICA. Obviously,
MCSB-ICA separates the target speech from other sources
better than FD-ICA.
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Fig. 6. Wave signals and spectra: clean (top left), reverberated (top right), observed signal (middle), separated by our method (bottom left) and separated
by previous method (bottom right). The observed signal consists of two reverberated speech signals (30 degree interval) and one reverberated music signal.

Tables III and IV are the ASR result with music noise
and without music noise, respectively. The ASR performance
with clean speech is about 92%. In the case without music,
the ASR results of MCSB-ICA are better than that of FD-
ICA by an average of 30 points. Even in the case of 10 degree
interval data, the performances are improved by about 30
points. In the music noise case, the results are similar to those
without music. Since the spectrum of music is widespread
to all the frequencies, ASR performance is degraded in all
situations.

We concluded that MCSB-ICA accomplished MBD and
EC at the same time, and outperforms conventional FD-
ICA. Note that these results may be slightly affected by the
location of microphones, but they will not change greatly.

B. Unsolved Problems

There remains several problems for MCSB-ICA to apply
it to robot audition. The first one is computational cost,
the second one is data buffering time and the last one is a
permutation problem. The computational cost will be solved
by the development of hardware and parallel-processing
techniques. However, the latter two should be discussed
seriously.

The data buffering time is very important for ICA because
the separation performance is directly affected by it. Even
if we adopt block-wise processing, the separation matrices
must be re-estimated to perform best because the degree
of the time-independency is different among the blocks
and the estimated matrices of them are different to some
extent. Then, the multi-layer recognition mechanism will

be required, such as the combination of fast-processing
middle-quality recognition, and slow-processing high-quality
recognition to cope with any situation.

The permutation and interest problem can be solved if the
likelihood of sound source is defined. For example, permu-
tation should be determined to maximize the likelihood, and
we can select the speech signals from many separated signals
according to the likelihood. However, we must consider
which abstraction level of the likelihood is appropriate for
required processing. The ASR likelihood result can be a
criteria of it, but it must evaluate likelihood many times and
this results in over-spec processing. It will be enough to have
a simpler model only to distinguish noise or speech. The cost
function estimation [2] is the lowest and abstract level model
estimation, that is, wave signal level. Therefore, the moderate
likelihood construction is required to solve the permutation
and interest problem efficiently.

VII. CONCLUSION

Our goal is the development of a robot that can distin-
guish a user’s speech from a mixture of sounds and can
interact with humans naturally through speech in various
environments. The MCSB-ICA is a useful MBD method
to satisfy such requirements. However, MCSB-ICA has not
been applied to the problems actually while is has been
applied to robot speech and reverberation separation. We
evaluated the performance limitation of MCSB-ICA under
multi-source, barge-in and reverberant environments. The
experimental results demonstrated the effectiveness of our
methods compared with conventional FD-ICA by about 30
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TABLE III

ASR PERFORMANCES (%) WITHOUT MUSIC NOISE.

Noise angle method Target sp. Another sp.
type Cor. Acc. Cor. Acc.

reverberated speech w/o noise 26.0 19.7 16.9 12.4

Robot
no proc. 15.9 8.4 – –

fd-ica 51.7 44.6 – –
mcsb-ica 86.6 85.0 – –

Speech

10
no proc. 10.9 5.0 – –

fd-ica 27.9 18.4 11.7 7.2
mcsb-ica 64.7 54.2 48.7 37.9

20
no proc. 11.1 3.4 – –

fd-ica 37.1 28.6 17.1 11.2
mcsb-ica 73.6 66.2 65.2 58.3

30
no proc. 10.5 3.6 – –

fd-ica 39.7 31.8 23.8 17.1
mcsb-ica 81.3 78.0 72.7 67.9

60
no proc. 12.3 5.1 – –

fd-ica 38.4 30.2 20.9 14.1
mcsb-ica 82.5 79.2 73.4 67.9

90
no proc. 11.7 5.5 – –

fd-ica 41.4 33.7 22.3 14.3
mcsb-ica 81.0 78.0 67.9 60.3

Speech
& Robot

10
no proc. 9.9 3.9 – –

fd-ica 22.2 13.8 10.3 6.6
mcsb-ica 57.8 47.8 37.6 28.3

20
no proc. 9.9 4.1 – –

fd-ica 28 20.8 13.4 8.6
mcsb-ica 69.2 61.8 57.0 49.5

30
no proc. 9.6 3.8 – –

fd-ica 30.9 23.7 17.0 11.3
mcsb-ica 75.8 72.2 66.7 61.7

60
no proc. 9.8 5.2 – –

fd-ica 31.6 23.5 15.2 8.9
mcsb-ica 77.6 74.2 67.7 63.1

90
no proc. 9.1 5.1 – –

fd-ica 32.8 25.3 15.9 9.7
mcsb-ica 77.2 73.2 64.7 58.2

TABLE IV

ASR PERFORMANCES (%) WITH MUSIC NOISE.

Noise angle method Target sp. Another sp.
type Cor. Acc. Cor. Acc.

reverberated speech w/o noise 26.0 19.7 16.9 12.4

Robot
& Music

no proc. 0.7 0.7 – –
fd-ica 20.5 18.8 – –

mcsb-ica 77.3 75.6 – –

Speech
& Music

10
no proc. 1.0 1.0 – –

fd-ica 9.0 8.5 3.0 2.8
mcsb-ica 40.7 31.3 18.7 13.9

20
no proc. 0.7 0.7 – –

fd-ica 13.9 13.0 3.4 3.4
mcsb-ica 59.4 55.2 36.7 33.0

30
no proc. 0.7 0.6 – –

fd-ica 14.6 13.8 5.0 4.8
mcsb-ica 68.7 65.6 49.0 46.3

60
no proc. 0.4 0.4 – –

fd-ica 14.2 13.1 4.9 4.6
mcsb-ica 70.4 68.4 51.3 48.4

90
no proc. 0.7 0.7 – –

fd-ica 14.9 13.8 4.8 4.5
mcsb-ica 68.6 66.2 43.4 40.1

Speech
& Robot
& Music

10
no proc. 0.7 0.7 – –

fd-ica 7.3 6.7 2.5 2.4
mcsb-ica 33.9 25.5 14.8 10.8

20
no proc. 0.5 0.5 – –

fd-ica 9.8 9.1 3.3 3.1
mcsb-ica 54.0 49.4 30.1 27.4

30
no proc. 0.5 0.5 – –

fd-ica 12.8 12.1 4.8 4.6
mcsb-ica 62.0 59.1 42.8 40.6

60
no proc. 0.4 0.4 – –

fd-ica 12.3 11.7 3.6 3.5
mcsb-ica 64.6 62.3 43.0 40.7

90
no proc. 0.6 0.6 – –

fd-ica 12.3 11.7 4.1 3.8
mcsb-ica 64.3 61.7 36.5 33.3

points in ASR performance. And we revealed the actual
problems of BSS for robot audition.

In the future, we intend to work on the permutation and
buffering problems as mentioned in the discussion section.
We also need to integrate MCSB-ICA with other methods,
such as sound source localization, to enable real-time pro-
cessing for robot audition.
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