
Multiple Depth/Presence Sensors:
Integration and Optimal Placement for Human/Robot Coexistence

Fabrizio Flacco and Alessandro De Luca

Abstract— Depth and presence sensors are used to prevent
collisions in environments where human/robot coexistence is
relevant. To address the problem of occluded areas, we extend
in this paper a recently introduced efficient approach for
preventing collisions using a single depth sensor to multiple
depth and/or presence sensors. Their integration is systemat-
ically handled by resorting to the concept of image planes,
where computations can be suitable carried out on 2D data
without reconstructing obstacles in 3D. To maximize the on-line
collision detection performance by multiple sensor integration,
an off-line optimal sensor placement problem is formulated
in a probabilistic framework, using a cell decomposition and
characterizing the probability of cells being in the shadow of
obstacles or unobserved. This approach allows to fit the optimal
numerical solution to the most probable operating conditions
of a human and a robot sharing the same working area. Three
examples of optimal sensor placement are presented.

I. INTRODUCTION

When humans and robots share the same working area,
safety is the primary issue of concern [1]. While potential
injuries of unexpected human-robot impacts can be limited
by lightweight/compliant mechanical design of the manip-
ulator [2] and collision reaction strategies [3], preventing
collisions in a dynamic and largely unpredictable environ-
ment relies on human-phriendly motion planning [4] and,
primarily, on the extensive use of exteroceptive sensors [5].

Different types of sensors can be used to detect objects in
the environment, including proximity sensors, laser scanners,
single and stereo cameras, or a combination thereof (e.g.,
PMD cameras). One can categorize all these sensors, and
their way of use, either as depth or presence sensors, the
latter providing only a binary information in the sensed
direction. Data processing and computational issues depend
on the type of applications, such as surveillance, object
reconstruction, or collision prevention.

In [6], based on a single depth sensor, a novel approach has
been proposed for characterizing on line the configurations
of a manipulator that are most dangerous for collision with
a human operator moving in its workspace. Collision is
prevented by commanding the robot motion via repulsive
forces from such configurations, thus achieving safe human-
robot coexistence. The originality of the method is that it
processes sensed data on a (virtual) 2D image plane without
the need of a 3D reconstruction or approximation of the
human, as opposed to other approaches for detecting the
presence or estimating the depth of objects in human-robot
interaction, e.g., [7], [8].
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When using a single depth or presence sensor to monitor
the environment, the main problem is the lack of infor-
mation on the occluded areas behind the sensed obstacles.
As a consequence, a conservative estimation for collision
detection needs to include the occluded area as part of the
obstacle, resulting in a (pseudo) obstacle that is bigger than
its real dimension. Using multiple sensors that observe the
scene from different point of views is the natural solution to
reduce occlusions, though requiring a suitable sensor inte-
gration strategy to limit the computational burden. Multiple
presence sensors have been used to detect collision between
known and unknown obstacles, fusing only data from vision
cameras [9] or also from force/torque sensing [5]. In [10],
multiple depth images are elaborated to calculate a conser-
vative 3D approximation of all detected obstacles.

Fig. 1. A work cell with a robot manipulator and a human monitored by
one presence and one depth sensor

The problem of optimal placement of sensors becomes
even more relevant in the presence of sensing devices of
different type, with the need of trading off information gains
and additional costs. Finding an optimal sensor placement
can be regarded as an extension of the art gallery problem
originally posed by Victor Klee in 1973, which consists in
finding the minimum number of cameras covering a given
space, and is a prototypical problem for automated surveil-
lance applications, see, e.g., [11]. The minimum number and
optimal 2D placement of vision systems for total coverage
is introduced in [12], using directional and omnidirectional
cameras and in the presence of static obstacles. The 3D
version of the same problem is tackled in [13] by a voting
scheme and a greedy heuristics. When the number of sensors
is given a priori, the problem reduces to finding what is
their best placement. Examples include the optimal camera
placement for monitoring a specified mobile robot trajec-
tory [14], the optimal placement for minimizing the error
on triangulation of fixed 3D features [15], the minimization
of features error while considering performance degradation
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due to occlusions [16], and the use of networked cameras
for totally covering specified regions in the work cell [17].

In this paper, we extend the work in [6] so as to include
both depth and presence sensors and their integration for
human-robot collision prevention. Moreover, we formulate
the optimal sensor placement problem in a probabilistic
framework. The working area is decomposed in cells, and the
probability that a cell belongs to the shadow of obstacles or
is unobserved by the sensors is derived. These probabilities
are computed starting from the presence or depth maps of ob-
stacles on their image plane, including the robot manipulator
maps, and then integrating over all sensors. A cost function
depending on the pose parameters of the sensors is defined
and minimized numerically. The formulation is especially
useful for providing sensor placement solutions that take into
account different operative conditions, weighting cells in the
working area according to the probability that the human or
the manipulator will occupy them.

The paper is organized as follows. Section II provides a
general description of the problem, introducing the notation
used in the paper. In Sect. III the collision prevention
approach proposed in [6] is recalled, and then extended
to the consideration of multiple sensors of the depth or
presence type. Section IV formulates in detail the optimal
sensor placement problem and the associated probability
computations. Finally, Section V presents the obtained nu-
merical results for three optimal sensor placement examples
of increasing complexity.

II. PROBLEM DESCRIPTION

With reference to Fig. 1, define the Work Cell WC as
a parallelepiped containing a number of static obstacles,
the workspace of a fixed-base manipulator, and the typical
workspace of a moving human operator. The work cell is
monitored by p presence and d depth sensors. A coordinate
frame is associated to each sensor, and we assume that all
frames have been calibrated w.r.t. a global reference frame.

A. Sensor Modeling

We model each of the depth and presence sensors as a
virtual camera, with the sensed information stored in its
Image Plane IP. Using the so-called pinhole camera model,
each projection ray passes through a point called focal center
Fc and assigns its associated data to a point on the IP.
The geometry of this ray projection is given by the sensor
projection matrix P , which contains extrinsic and intrinsic
parameters. The extrinsic parameters are organized in an
homogenous transformation matrix E from the global to
the sensor frame. The intrinsic parameters are contained in
a matrix K that projects a Cartesian point in the sensor
coordinate frame to a point on its IP. If X is a point in
the global frame, the corresponding point x on the IP is

x = PX = KEX. (1)

Indeed, all Cartesian points X laying on the same projection
ray yields the same value x. Moreover, the depth of a

Cartesian point with respect to a sensor is given by

depth(X) = ‖Fc −X‖. (2)

A presence or depth sensor is characterized by an IP
size, i.e., the dimensions of the array of pixels of its spatial
discretization, and by a field of view (a solid angle). For
a depth sensor, a range (between a minimum ρmin and a
maximum ρmax) and a depth resolution are also specified.
Depth and presence sensors differ by the type of information
stored in the pixels of the IP. The IP of a presence sensor
contains a boolean information: a pixel is TRUE if the
corresponding projection ray intercepts an object, FALSE
otherwise. We call the IP content of a presence sensor the
Obstacle Presence Map OPM . To obtain the OPM map,
one can use background subtraction [9] or motion flow
techniques on camera images. Instead, a pixel in the IP of a
depth sensor contains the distance between the focal center
and a detected object along the corresponding projection ray
(or simply the depth). For an empty ray, the value of the
corresponding pixel is set to ρmax. We call the IP content
of a depth sensor the Obstacle Depth Map ODM . The ODM

map can be computed using a stereo vision system, laser
beams, PMD cameras, or integrated stereo vision cameras.
Both maps OPM and ODM may be a function of time t in
case of moving objects (i.e., the human operator).

B. Work Cell Analysis

Using depth and presence sensors it is possible to char-
acterize which Cartesian points of the WC may belong to
an obstacle. For a presence sensor, if a Cartesian point is
detected as a part of an obstacle then all the points along
the corresponding projection ray are considered part of the
obstacle. Similarly, for a depth sensor, all the points along
the corresponding projection ray with depth larger than the
sensed value are considered as part of the obstacle.

Limiting ourselves to Cartesian points belonging to the
work cell, the following standard definitions are recalled.
The Gray Area GA of a sensor is the set of all Cartesian
points in WC that are occluded by obstacles. The points of
the GA that do not belong to the union O of real obstacles
are called Shadow Obstacle SO. A Pseudo Obstacle PO is
the union of O and SO1. Finally, the Dark Area DA of a
sensor is the set of Cartesian points in WC that are not in
its field of view while the Free Area FA of a sensor is the
set of points in WC that are detected as certainly free of
obstacles. Summarizing, at any time t, it is:

WC = FA(t) ∪ PO(t) ∪DA(t)
PO(t) = O(t) ∪ SO(t)

FA(t) ∩ PO(t) = ∅
FA(t) ∩DA(t) = ∅
PO(t) ∩DA(t) = ∅.

1We shall regard the sets GA and PO as equivalent. They differ slightly
only in the case of depth sensors, where the points X of the surface of the
sensed obstacles belong to PO but not to GA.
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Fig. 2. Sketch of decomposition of a 2D WC into regions performed by
a presence (left) or a depth sensor (right). A moving body (manipulator) is
added here, and the (fixed) dark area DA is expanded with a variable part
(V DA), possibly containing unobserved obstacles UO, see Sect. IV

For the two types of considered sensors, a pseudo obstacle
is characterized via the 2D information on the IP (see Fig. 2).
For a presence sensor, it is

POP (t) = {X ∈WC : OPM (PX, t) = TRUE}.

For a depth sensor, it is

POD(t) = {X ∈WC,with ρmin ≤ depth(X) < ρmax :

ODM (PX, t) ≤ depth(X)}.

For illustration, consider the WC in Fig. 3, where a single
(human) obstacle is monitored by two sensors. Figure 4
shows the OPM map and the POP obtained using only
the presence sensor, while Figure 5 shows the ODM and
POD for the depth sensor. The real obstacle in the WC is
displayed with darker intensity. When integrating multiple
sensors, it should be expected that all pseudo obstacles can
be reduced to real obstacles. Apparently, the way to obtain an
optimal sensor placement is to minimize/eliminate the dark
areas and the shadow obstacles, as discussed in Sect. IV.

Fig. 3. Example of a work cell (left) monitored by two sensors (right)

Fig. 4. The OPM map obtained with the presence sensor (left) and the
associated POP (right) for Fig. 3

Fig. 5. The ODM map obtained with the depth sensor (left) and the
associated POD (right) for Fig. 3

III. COLLISION PREVENTION

Based on the approach presented in [6] for determining
configurations of the manipulator to be considered dangerous
for collision with a pseudo obstacle (a so-called pseudo
collision) when using a single depth sensor, we include first
the case of a presence sensor and then the integration of
multiple sensors.

A. Manipulator Presence and Depth Maps

The robot manipulator is represented by a 3D geometric
model that can be created using CAD programs or using
simple primitive shapes such as cylinders or spheres2. For
a given manipulator configuration q, we can compute the
position of all its Cartesian points using the manipulator
direct kinematics and the geometric model. Applying the
homogenous transformation E , we obtain the coordinates of
the manipulator points in the sensor frame.

The Manipulator Presence Map MPM (q) is obtained by
projecting these points on the presence sensor IP using its
intrinsic transformation K. Since the norm of the position
vector of a point in the sensor frame represents its depth,
associating this information pixel by pixel in the depth sensor
IP provides also the Manipulator Depth Map MDM (q). In
particular, for a pixel x associated to Cartesian points X
laying on the ray PX = x that does not intercept the robot
body RB ⊂ R3, we set

MPM (x,q) = FALSE and MDM (x,q) = 0.

On the other hand, for a pixel x associated to Cartesian points
X laying on the ray PX = x that does intercept the robot
body, we set

MDM (x,q) = max
X∈RB
PX=x

depth(X).

It should be noted that the manipulator presence and depth
maps can be computed off-line for all manipulator configu-
rations, being the relative pose between each sensor and the
manipulator known and constant.

B. Estimation of Collision Configurations

Once the manipulator presence and depth maps have been
obtained, the collision between a manipulator configuration
and the pseudo obstacle can be easily estimated. With
reference to Fig. 6, consider now both the presence and the
depth maps of the manipulator and of the observed pseudo

2A small increase in robot dimensions allows more robust computations
at the cost of some conservativeness.

3918



obstacle. At a given time t, a generic configuration q of the
manipulator is in pseudo collision if the following relations
hold in the respective IPs. For a presence sensor,

∃x ∈ IPP : {MPM (x,q) AND OPM (x, t)} = TRUE. (3)

For a depth sensor,

∃x ∈ IPD : MDM (x,q) ≥ ODM (x, t). (4)

The collision tests are reduced to a trivial comparison be-
tween two-dimensional matrices. However, the inclusion of
the robot in the WC should be handled with care, because
the maps OPM and ODM will contain also the projections
of the manipulator. The shadow of the observed manipulator
would be evaluated as an obstacle, resulting in (false) self-
colliding configurations at/close to the current robot config-
uration. The handy solution is not to scan those pixels in the
maps during the collision test. This pixel omission produces
what we call the Variable Dark Area —see Sect. IV.

Fig. 6. For a single depth sensor, possible collisions are evaluated by
comparing in the IP the obstacle map ODM and the manipulator depth maps
MDM (q) for a number of configurations q close to the current one [6]

C. Multiple Sensor Integration

Each sensor checks the collision between the robot ma-
nipulator and the pseudo obstacle, which is in general an
overestimation of real Observed Obstacles Ô. This conser-
vative estimation can be made more stringent by integrating
the information of multiple sensors. Consider n sensors
(of any type) that monitor the same work cell, so that n
presence/depths maps are obtained with pseudo obstacles
POi, i = 1, . . . , n. The observed obstacles Ôi from the i-th
sensor satisfy

Ôi ⊆ POi, i = 1, . . . , n.

Moreover, it is
n⋃

i=1

Ôi ⊆ P̃O =
n⋂

i=1

POi, (5)

where P̃O is the pseudo obstacle obtained by integrating
information from all sensors. While each sensor checks
pseudo collisions using (3) or (4), the relation (5) leads to
the simple rule for collision checking by sensor integration:

Collision with obstacles of a manipulator in the
configuration q does not occur if at least one
sensor has not detected a pseudo collision.

Since P̃O ⊆ POi, for all i = 1, . . . , n, the evaluation of
observed obstacles obtained by multiple sensor integration
is more accurate than the evaluation by each single sensor.

For the example of Fig. 3, integrating the information from
the two sensors gives the P̃O shown in Fig. 7. The shadow
obstacle is reduced, while the isolated gray zone above the
obstacle and the large one on the far right are due to the
limited field of view of the two sensors. These zones could
be shrunk with a better sensor placement.

Fig. 7. The pseudo obstacle gPO obtained integrating the two sensors of
the example in Fig. 3

The analysis of the presence/depth maps for possible
collisions proceeds as follows. Scan the first sensor map
until a collision pixel is found. If no such pixel is found,
then there is no collision. Else, move to the next sensor and
repeat. Therefore, the worst case complexity grows linearly
with the number n of sensors.

The above results extend the approach of [6], and can
be directly used for improving the performance of the safe
human/robot collision prevention scheme considered therein.

IV. OPTIMAL SENSOR PLACEMENT

To address the problem of optimal placement of multiple
depth/presence sensors in the environment, we present a
probabilistic approach based on work cell discretization.

Let the WC be decomposed in N regular elementary
cells Ci, i = 1, . . . , N . For each cell, we associate an a
priori probability PO(Ci) to be part of an obstacle. These
probabilities are assumed spatially independent and can be
either set uniformly for all cells, or can be tailored based
on previous experiments or knowledge about the environ-
ment. The probability to be an obstacle will be larger for
cells where the human operator is expected to work. Cells
belonging to known static obstacles, such as walls or tables,
will have PO(Ci) = 1.

Based on the geometry and placement of a single sensor, a
cell occluded by other cells is in the gray area GA and then
part of the pseudo obstacle for this sensor. We need actually
to evaluate the probability PSO(Ci) that a cell is part of the
shadow obstacle SO, i.e., part of the pseudo obstacle but
not of the real obstacle. Thus, minimizing PSO(Ci) over all
cells would give a good sensor placement.

Cells that are not observed are in the dark area of the sen-
sor. It is useful to divide this area in two: the Fixed Dark Area
is composed by cells that are not in the field of view of the
sensor; the Variable Dark Area V DA is composed instead
by cells that are behind the manipulator at a configuration
q. All those cells that are also part of a real obstacle will
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form an Unobserved Obstacle UO. Therefore, a better sensor
placement should associate a lower probability PUO(Ci)
to cells of an unobserved obstacle. Actually, cells in the
dark area must be analyzed depending on the application of
concern. For surveillance tasks, all cells in this area can be
considered as part of the UO. For human/robot coexistence
tasks, in order to ensure global human safety, cells in the
fixed dark area must be considered in the first place as PO,
while those in the variable dark area are counted as UO. In
this way, in the collision prevention method proposed in [6]
and extended in Sect. III, the manipulator will not be repulsed
by its own shadow.

A. Cost Function

The cost function to be minimized for optimal sensor
placement is defined as

J(s) =
N∑

i=1

wSO(Ci)PSO(Ci) + k

N∑
i=1

wUO(Ci)PUO(Ci),

(6)
where the sensor placement vector s contains all the pose
parameters of the sensors to be optimized. For instance, if
we use n = 2 sensors, one to be placed on a vertical wall
with constant orientation and another fixed in position but
subject to a choice for its pan/tilt orientation, we will have a
four-dimensional s with two linear and two angular variables.
In (6), k is a positive factor used to globally determine the
importance of covering the whole WC (k � 1, especially in
surveillance tasks) with respect to minimizing detection of
false collisions, and wSO(Ci) and wUO(Ci) are non-negative
weights for locally handling cells in the two terms of the
cost function. For example, we choose a large wSO(Ci) if
we are mainly interested in detecting a potential collision in
the particular cell Ci, or a large wUO(Ci) if this cell needs to
be certainly covered by the sensors. For numerical purposes,
the cost function (6) can be scaled by 1/N .

Using (6), the optimal placement is obtained by solving
the nonlinear optimization problem

min
s
J(s) s.t. As ≤ b, (7)

where the set of linear inequality constraints models the
physical limits for the sensor poses (e.g., the range of angular
values for a pan/tilt camera).

B. Computation of Probabilities

In order to evaluate the cost J in (6) for a given vector
value s, we need to compute probabilities of the cells in the
WC according to their nature. Consider a single presence or
depth sensor sens. When building the projection of cells on
the IP through (1), one should take into account the finite
size of pixels and cells. As a consequence, a single cell is
projected onto more pixels and a single pixel contains the
projection from multiple cells. In particular, with reference
to Fig. 8, the projection rays to a pixel form a pyramid with
tip on the focal center. All cells projected on the same pixel
x will be ordered according to their (central) depth (2), by
subdividing the pyramid in m slices Sx

j , j = 1, . . . ,m. Each

slice contains cells with the same range of depth; cells in Sx
j

have a larger depth than cells in Sx
k , for j > k.

Fig. 8. Due to the finite size of a pixel, the rays of projection form
a pyramid with tip on the focal center (left); a 2D view of the pyramid
associated to a pixel and how cells are sorted in slices (right)

We will compute probabilities of slices rather than of
single cells, and then assign these values to all cells in a
slice. The probability of a slice to be part of an obstacle is
given by

PO(Sx
j ) = 1−

N∏
i=1

Ax
j (Ci)PO(Ci), (8)

where P = 1−P and the binary indicator Ax
j (Ci) is 1 if cell

Ci is projected on the jth slice of pixel x and 0 otherwise.
Based on the Ax

j (Ci)’s, it is useful to define also another
binary indicator associated to sens:

Esens(Ci) =
{

1 if Ci is projected on the IP of sens,
0 otherwise.

For a presence sensor, a slice will contain cells that are
in the gray area if at least one slice of the same pixel is an
obstacle:

PP
GA(Sx

j ) =


1−

h−1∏
k=1
k 6=j

PO(Sx
k ) if j < h,

1 if j ≥ h,
(9)

where h is the index of the first slice for which PO(Sx
h ) = 1.

Such index is needed because the techniques used to obtain
the presence map (e.g., background subtraction) are not able
to individuate static obstacles in the scene. Actually, when
static obstacles are subtracted from the presence map, the
slices beyond Sx

h should always be considered as obstacles.
For a depth sensor, a slice will contain cells that are in

the gray area if the previous slice is not free, i.e., it contains
an occluded cell which is part of the pseudo obstacle:

PD
GA(Sx

j ) = PD
GA(Sx

j−1) + PO(Sx
j−1). (10)

Note that when the manipulator is not considered, the
probabilities for slices (cells) in the variable dark area will
be PP

V DA(Sx
j ) = PD

V DA(Sx
j ) = 0.

C. Probabilities Including the Robot Manipulator

When a manipulator is included in the WC, a cell can
belong to a pseudo obstacle, to the robot body RB, or to the
free area. The probability PR(Ci) of a cell Ci to be part of
the robot can be determined based on a frequency approach,
either considering all robot configurations q to have the same
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probability or taking advantage of the known robot motion
during a specific task. The probability PR(Sx

j ) that a sensor
slice belongs to the robot body is

PR(Sx
j ) = 1−

N∏
i=1

Ax
j (Ci)PR(Ci). (11)

In our implementation, the robot manipulator images ac-
quired by the sensor are subtracted respectively from OPM

and ODM , in order to eliminate the trivial case of self-
collision when using (3) or (4). Therefore, slices (cells)
behind the manipulator are not considered as they will be
part of the variable dark area.

For a presence sensor, a slice Sx
j before an obstacle con-

tains gray area cells if no other slice contains robot cells and
if there is at least a slice in the ray of projection containing
an obstacle. The probability that the robot manipulator is not
in the projection ray up to the h-th slice is

PNR(Sx
j ) =

h−1∏
k=1
k 6=j

PR(Sx
k ). (12)

Thus, the probability of slice Sx
j to be in the gray area is

PP
GA(Sx

j ) =


PNR(Sx

j )

1−
h−1∏
k=1
k 6=j

PO(Sx
k )

 if j < h,

1 if j ≥ h
(13)

and the probability that slice Sx
j is in the variable dark area

is

PP
V DA(Sx

j ) =

{
1− PNR(Sx

j ) if j < h,

0 if j ≥ h.
(14)

For a depth sensor, a slice Sx
j contains gray area cells if

a previous slice contains an obstacle and this obstacle is not
subtracted due to the presence of the robot manipulator. The
probability that the j-th slice contains an obstacle and no
previous slices contains cells of the robot is

PONR(Sx
j ) = PO(Sx

j )
j−1∏
k=1

PR(Sx
k ). (15)

Thus, the probability of slice Sx
j to be in the gray area is

PD
GA(Sx

j ) = PD
GA(Sx

j−1) + PONR(Sx
j−1)

−PD
GA(Sx

j−1)PONR(Sx
j−1),

(16)

since the two considered events are not disjoint. Similarly,
the current slice is in the variable dark area if a previous
slice contains cells of the robot manipulator and none of the
previous slices contain an obstacle. The probability that Sx

j

contains cells of the robot and no previous slice contains an
obstacle is

PRNO(Sx
j ) = PR(Sx

j )
j−1∏
k=1

PO(Sx
k ), (17)

and thus

PD
V DA(Sx

j ) = PD
V DA(Sx

j−1) + PRNO(Sx
j−1)

−PD
V DA(Sx

j−1)PRNO(Sx
j−1).

(18)

D. Integration of Probabilities

Having computed the probabilities for all slices and all
pixels of a given sensor, the relevant probabilities of the cells
are obtained as

P sens
GA (Ci) = 1−

m∏
j=1

P sens
GA (Sx

j )

P sens
V DA(Ci) = 1−

m∏
j=1

P sens
V DA(Sx

j ),
(19)

where products involve only factors with Ax
j (Ci) = 1.

When using n sensors (p for presence and d for depth,
n = p+d), the probabilities of each sensor must be integrated
according to the general rule presented in Sect. III-C:

PGA(Ci) =
n∏

sens=1
P sens

GA (Ci)

PV DA(Ci) = 1−
n∏

sens=1
P sens

V DA(Ci),
(20)

where products involve only factors with Esens(Ci) = 1.
Equation (20) represents the probabilistic version of the
following deterministic statements: i) a cell is in the gray
area only if all sensors categorizes it in their gray area; ii) a
cell is the variable dark area if at least a sensor categorizes
it in its variable dark area.

Finally, if a cell Ci is not in the field of view of any sensor,

N∑
sens=1

Esens(Ci) = 0,

then it is part of the fixed dark area and we set

PGA(Ci) = 1, PV DA(Ci) = 0. (21)

We have now all ingredients for evaluating the probabili-
ties that are used in (6) within the cost function J . A cell is
part of a shadow obstacle if it is in the gray area but is not
an obstacle:

PSO(Ci) = PGA(Ci)PO(Ci). (22)

A cell is part of an unobserved obstacle if it is in the variable
dark area and is an obstacle:

PUO(Ci) = PV DA(Ci)PO(Ci). (23)

Furthermore, the cell weights appearing in J can take special
values that depend on the probability of a cell to belong to
the robot body. In fact, the main objective for human/robot
coexistence tasks is to monitor and detect potential collisions
in those cells of the WC that correspond to configurations
that can be assumed by the manipulator. It is useful to set

wSO(Ci) = wUO(Ci) = PR(Ci), (24)

when PR(Ci) ≤ 1 − ε, being ε > 0 a suitable small
parameter. On the other hand, if PR(Ci) > 1 − ε, we shall
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set wSO(Ci) = wUO(Ci) = 0, since such a cell will almost
always be occupied by the manipulator.

In our probabilistic developments, we have considered that
sensors are mutually independent. Without consideration of
the pixel and cell finite size, this assumption holds unless two
sensors have the same position. In practice, this assumption is
valid if the sensors are not too close to each other. Although
such sensor placement would certainly be not optimal, these
situations can be avoided by adding a penalty term to J for
sufficiently close conditions on the parameter values.

V. EXAMPLES OF OPTIMAL SENSOR PLACEMENT

The presented theory and the optimal sensor placement
method has been tested on different simulated environments.
To this end, we have realized a simulator that includes the
kinematics of an articulated manipulator, static obstacles, a
human operator, and the extrinsic/intrisic projection charac-
teristics of presence and depth sensors. For each of the N
elementary cells Ci of the work cell WC, the probabilities
PO(Ci) to be an obstacle and PR(Ci) to be part of the robot
manipulator can set by the user.

For each problem of the form (7), the optimal solution was
obtained using the pattern search algorithm of the Genetic
Algorithm and Direct Search Toolbox of MatlabTM, using a
final tolerance of 0.01 for the solution s∗ and without the
need of the gradient of cost function J . We present three
examples with a WC of size 270×270×300 cm decomposed
in N = 836381 cubic cells of 3 cm side. The IPs of all
sensors have 640× 480 pixels and depth sensors have 2 cm
resolution. The robot is a 3R elbow-type manipulator.

A. One Sensor

In the first example, shown in Fig. 9, we have considered
the two cases of using a single depth or a single presence
sensor, which can be positioned on a circular support or
radius 170 cm surrounding the WC. The optimization pa-
rameter is a scalar s, normalized between 0 and 1. The work
cell contains a wall that may occlude the sensor. The cell
probabilities associated to the manipulator are set considering
all configurations in its joint ranges as equally probable.
The cell probabilities associated to the moving obstacle (the
human operator) are chosen larger slightly on the right of the
center of the WC, decreasing linearly toward the edges (see
the shade intensities in the right part of Fig. 9). The factor
k = 14 was used in (6), after some trials.

Fig. 9. Environment of the first example: 3D view (left) and schematic
top view (right). The optimal solution for the depth sensor is shown

Fig. 10. Cost function for the first example

Figure 10 shows the costs J obtained with the presence or
the depth sensor respectively, as a function of the normalized
position of the sensor. It should be noted that both plots have
the maximum at s = 0, due to the presence of the occluding
wall. The cost function is always smaller for the depth sensor,
as we may have expected from the poorer capabilities of the
presence sensor. The optimal placement for depth sensor is
at s∗D = 0.5781. This position allows the best discrimination
between cells typically occupied by the manipulator and
cells mostly occupied by the human, according to the given
probabilities. The solution was obtained after 16 iterations of
the algorithm starting at s0 = 0. The computational time was
85 min on a Intel Core Duo 2.4 GHz processor. Similarly,
the optimal placement for the presence sensor is s∗P = 0.5.

B. Two Sensors

In the second example, shown in Fig. 11, we consider
two sensors. The depth sensor can be placed on a horizontal
circular support, as in the first example, while the presence
sensor is on a vertical circular support of the same size.

Fig. 11. Environment of the second example: two sensors are used
(presence in red, depth in green) and their optimal placement is shown

Fig. 12. Cost function for the second example

Figure 12 shows the 2D plot of the cost J . The highest sat-
urated zones (in deep red) correspond to the wall occluding
the depth sensor and to approaching a situation of sensor
dependence, i.e., when sD = 0.5 and sP = 0, which is
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penalized in the cost function. Note that when the depth
sensor is placed behind the wall, the value of J is the same
as in the first example, with presence sensor at sP = 0.5.
The optimal placement is s∗ = (s∗D, s

∗
P ) = (0.5, 0.9688),

obtained in 26 iterations from s0 = 0 and 320 min time.

C. Three Sensors

In this last example, we consider one presence and two
depth sensors that can be placed on limited square areas
of 200 × 200 cm, each located on one of three orthogonal
walls (see Fig. 13). An orientation constraint is added, so
that the sensors focal axes point to Pc = (15, 35, 30) [cm]
(the intersection of the normals to the centers of the feasible
square areas) from any chosen position. The parameter vector
is s = (x1, y1, y2, z2, x3, z3) ∈ R6, and is initialized at s0 =
(15, 35, 35, 30, 15, 30) [cm], i.e., with the presence sensor
pointing downward vertically and the two depth sensors
pointing straight horizontally. The human operator works
mainly in front of the manipulator and this is taken into
account in the probability distribution PO(Ci) of the cells.
An occluding wall is also present. The optimal placement
s∗ = (−85, 134.96, 134.56,−70, 8.07,−69.98) [cm] is ob-
tained after 568 iterations in about 5500 minutes running
time, and is shown in Fig. 13.

Fig. 13. Environment of the third example: three sensors are used (one
presence and two depth) and their optimal placement is shown

VI. CONCLUSION

We have extended the method for checking potential colli-
sion configurations of a manipulator with a human and/or
obstacles introduced in [6], including both presence and
depth sensor types. A systematic procedure to obtain multiple
depth/presence sensor integration has been proposed. The
key aspect is that 2D computations are made in parallel on
each image plane of the different sensors, and information
is then fused in a straightforward way.

In order to maximize the sensor integration performance,
an optimal sensor placement problem was formulated within
a probabilistic framework and analyzed in detail. Based on
a cell decomposition of the working area, the probabilities
of having unobserved and shadow obstacles are determined
in an incremental way and their weighted sum can be
minimized numerically. The solution can be tailored to the
specific tasks that the human operator and robot manipulator
are expected to perform, in a probabilistic sense.

Results were presented for three representative environ-
ments with static obstacles, an articulated manipulator, and
a human operator. The obtained sensor placements are sig-
nificant, also from an intuitive point of view. The current bot-
tleneck seems to be the large computational times required
for solving off-line the optimization problem by standard
numerical algorithms, in particular when the number of
sensor placement parameters grows.
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