
Refining Grasp Affordance Models by Experience

Renaud Detry, Dirk Kraft, Anders Glent Buch, Norbert Krüger, Justus Piater

Abstract— We present a method for learning object grasp
affordance models in 3D from experience, and demonstrate
its applicability through extensive testing and evaluation on a
realistic and largely autonomous platform. Grasp affordance
refers here to relative object-gripper configurations that yield
stable grasps. These affordances are represented probabilis-
tically with grasp densities, which correspond to continuous
density functions defined on the space of 6D gripper poses.
A grasp density characterizes an object’s grasp affordance;
densities are linked to visual stimuli through registration with
a visual model of the object they characterize. We explore
a batch-oriented, experience-based learning paradigm where
grasps sampled randomly from a density are performed, and
an importance-sampling algorithm learns a refined density from
the outcomes of these experiences. The first such learning cycle
is bootstrapped with a grasp density formed from visual cues.
We show that the robot effectively applies its experience by
downweighting poor grasp solutions, which results in increased
success rates at subsequent learning cycles. We also present
success rates in a practical scenario where a robot needs to
repeatedly grasp an object lying in an arbitrary pose, where
each pose imposes a specific reaching constraint, and thus forces
the robot to make use of the entire grasp density to select the
most promising achievable grasp.

I. INTRODUCTION

In cognitive robotics, the concept of affordances [7],
[14] characterizes the relations between an agent and its
environment through the effects of the agent’s actions on the
environment. Affordances have become a popular formaliza-
tion for cognitive control processes, while bringing valuable
insight on how cognitive control can be done. Within the field
of robotic grasping, methods formalized as grasp affordances
have recently emerged [2], [21], [3], [11]. Grasp affordances
generally allow for an assessment of the success (effect) of a
grasp solution (action) on a particular object (environment).

Grasping skills can be programmed into a robot in many
different ways, starting with completely hard-wired kine-
matics, and ranging over a wide variety of methods of in-
creasing autonomy and adaptivity. Amongst these, providing
a robot with the means of learning grasping skills from
experience appears particularly appealing – even beyond the
conveniently autonomous aspect of the process: First, in
performing manipulation tasks, a robot produces valuable
information about its environment, and making use of that
information seems only natural. Secondly, learning from
experience directly involves the body of the robot, therefore
producing a model intimately adapted to its morphology.
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A generally accepted aspect of the theory of affordances is
that it relates the opportunities provided by the environment
to the abilities of the agent, instead of expressing a property
of the environment alone [17], [14]. Learning from experi-
ence thus appears as a natural way of discovering grasp affor-
dances. The main contribution of this paper is the application
of a method for learning grasp affordances probabilistically
from experience [3] and its thorough evaluation. Evaluation
is conducted on a realistic, largely autonomous platform,
through the collection of a large grasp dataset – more than
2000 grasps tested on a robot.

In this work, affordances express relative object-gripper
configurations that yield stable grasps. They are represented
probabilistically with grasp densities [3], which correspond
to continuous density functions defined on the space of
6D gripper poses SE(3). A grasp density characterizes
an object’s grasp affordance; densities are linked to visual
stimuli through registration with a visual model of the object
they characterize.

Grasp densities are learned and refined through experience.
Intuitively, the robot “plays” with an object in a sequence of
grasp-and-drop actions. Grasps are selected randomly from
the object’s grasp density. After each (successful) grasp, the
object is dropped to the floor. When a satisfying quantity
of data is available, an importance-sampling algorithm [5]
produces a refined grasp density from the outcomes of the
set of executed grasps. Learning is thus organized in cycles
of batches of grasps.

In theory, the grasp density of an object that has never
been grasped could be initialized to a uniform distribution.
Unfortunately, the success rate of completely random grasps
is extremely low and cannot allow for reasonable learning
time; in the experiments presented in this paper, initial grasp
densities are bootstrapped from visual cues. Throughout the
paper, these densities constructed from visual cues will be
called bootstrap densities. By contrast, densities which are
the result of experience will be referred to as empirical
densities. Within each learning cycle, the density used by
the robot to produce grasps will be called hypothesis density.
In the first cycle, the hypothesis density is a bootstrap
density. In subsequent cycles, the hypothesis density will
typically correspond to the empirical density learned during
the previous cycle.

Experiments are run on the robotic platform of Fig. 1. A
simple control algorithm drives the grasp-and-drop protocol
on the robot. The pose of the object is recovered by visual
pose estimation on the imagery provided by the camera,
using a previously-learned visual model [4]. Path planning
automatically excludes most of the grasps that would pro-
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Fig. 1: Experiment platform (industrial arm, force-torque
sensor, two-finger gripper, stereo camera, foam floor)

duce a collision with the ground, and some of the grasps
that would collide with the object. Success is assessed by
measuring the distance between the fingers of the gripper
after the arm has been brought up. The resulting system is
largely autonomous and forms a realistic setup. We show that
the robot successfully exploits its actions to downweight poor
grasp solutions, which is reflected in the higher success rates
achieved in subsequent learning cycles. We finally quantify
the success rate of our method in a practical scenario where
a robot needs to repeatedly grasp an object lying in an
arbitrary pose, where each pose imposes specific reaching
constraints, and thus forces the robot to make use of the
entire grasp density to select the most promising grasp within
the achievable region.

II. RELATED WORK

As discussed above, learning grasp affordances from ex-
perience has become an interesting and popular paradigm. In
the work of A. Stoytchev [18], [19], a robot discovers suc-
cessful ways of grasping tools through random exploratory
actions. When subsequently confronted with the same object,
the robot is able to generate a grasp that should present a
high likelihood of success. Montesano et al. [11] learned
2D continuous and probabilistic grasp affordance models
for a set of objects of varying shape and appearance, and
developed means of qualifying the reliability of their grasp
predictions. Detry et al. [3] presented a method for learning
continuous and probabilistic grasp affordance models in 3D
along with preliminary experimental results.

We note that one problem in learning from experience is
that it is usually slow. The main alternative to learning from
experience is learning from a human teacher [2], [15], which
is typically much faster. However, with this paradigm, the
model is not necessarily adapted to the robot morphology.

A large body of literature on learning how to grasp focuses
on methods that produce a number of discrete grasping
solutions [15], [1]. A few recent methods instead explicitly
aim at producing a continuous, probabilistic characterization
of the grasping properties of an object [2], [3], [11]. The
latter can naturally be used to produce grasping solutions;
additionally, they allow for ranking grasps, i.e. provide a
likelihood of success for an arbitrary grasp.

In learning a continuous characterization of object grasp-
ing properties probabilistically, one has a choice between
learning success probabilities or learning success-conditional
grasp densities. Denoting by O a random variable encoding

grasp outcomes (success or failure), and by G a random
variable encoding grasp poses, this translates to learning
P (O = success|G) or learning P (G|O = success). The for-
mer allows one to directly compute a probability of success;
it will generally be learned through discriminative methods
from positive and negative examples (successful and failed
grasps). The latter allows for grasp sampling, while still
providing direct means of computing relative success prob-
abilities – e.g. grasp a is twice as likely to succeed as grasp
b. Success-conditional grasp densities are generative models
computed from positive examples only. We note that one can
theoretically be computed from the other using Bayes’ rule.
However, depending on the means of function representation,
this process may prove either too costly or too noisy to be
feasible in practice.

The learning of success-conditional grasp densities has
been discussed in the work of de Granville et al. [2], where
grasp densities are defined on hand approach orientations.
Instead of considering success-conditional grasp probabil-
ities, Montesano et al. [11] model grasp affordances as
success probabilities. Formally, they learn a representation
of P (O|I), where I is a local image patch. A grasp action
consists in servoing the robot hand to a selected 2D position,
approaching the object from the top until contact is made,
and closing the hand. A robot thus learns a mapping from 2D
image patches to grasp success probabilities, where a grasp
is parametrized by its 2D hand position.

The most important application of grasping research is in
generating a grasping solution from visual percepts of an
object. Grasping research may thus be pertinently classified
on the relationship a method entertains with visual percep-
tions. In the field of robotics, visual perception encompasses
a wide spectrum of representations: At the lower level, a
scene may be described in terms of a large number of
point elements, such as image pixels or depth maps. At the
other end of the spectrum, a scene may be represented by
instances of object models and their 2D or 3D poses. The gap
between these two extremes is filled, bottom-up, by visual
features of varying size and complexity, and, top-down, by
object models that are recursively formed of visual parts of
decreasing size and complexity. Intuitively, grasping methods
that link to lower-level visual percepts can easily generalize
across objects. These methods typically learn a continuous
mapping from local visual descriptors to the probability of
success of a grasp [11]. Grasp parameters are deduced from
the visual descriptor, e.g. 2D grasping coordinates from the
2D position of the descriptor [11], or 3D grasp position
from stereo matching of 2D grasping points [15]. On the
other hand, methods that link to higher-level visual entities
benefit from an increased geometric robustness. These will
generally allow the encoding of richer grasp parameters
such as 3D relative position and orientation. They typically
learn a mapping from objects to grasp parameters and grasp
probabilities [2], [3]; grasps are registered with the visual
object model. They are aligned to an object pose through
visual pose estimation.

In this paper, we develop and evaluate a method for
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Fig. 2: ECV (accumulated) reconstructions. Each cylinder
corresponds to an ECV descriptor. The axis of a cylinder is
aligned with the direction of the modeled edge. Each cylinder
bears the two colors found on both sides of the edge in 2D
images.

learning by experience continuous tree-dimensional success-
conditional grasp densities [3]. Densities encode object
grasps; they are linked to a high-level object model. The
contribution of this paper include original means of boot-
strapping densities, a technique for exploiting local density
maxima, and a thorough evaluation of the resulting system
through a realistic robot setup and scenario. By that, we
can demonstrate the full potential of the concept of grasp
densities in a setting in which a motion planner interacts
with them. In particular we show that besides increasing the
success rate for physically executed grasps, the number of
grasps to be tested by the motion planner reduces by a factor
of ten.

III. VISION

This section presents the vision methods used in this work.
We first introduce 3D object-edge reconstructions which
are used in Section V for bootstrapping densities. These
reconstructions also serve as a basis for a hierarchical object
model introduced next.

A. Early Cognitive Vision (ECV)

ECV descriptors [10], [13] represent short edge segments
in 3D space, each ECV descriptor corresponding to a circular
image patch with a 7-pixel diameter. They are computed by
combining 2D edge extraction in image pairs and stereopsis
across the pairs. Each descriptor is defined by a position
(3 degrees of freedom – DOF) and edge tangent (2 DOF),
therefore living in R3 × S2

+ where S2
+ is a 2-hemisphere.

Descriptors may be tagged with color information, extracted
from their corresponding 2D patches (Fig. 2).

ECV reconstructions can further be improved by manip-
ulating objects with a robot arm, and accumulating visual
information across several views through structure-from-
motion techniques [8]. Assuming that the motion adequately
spans the object pose space, a complete 3D reconstruction of
the object can be generated, eliminating self-occlusion issues
[9] (see Fig. 2).

B. Pose Estimation

The visual models we use for pose estimation have the
form of a hierarchy of increasingly expressive object parts
[4], where bottom-level parts correspond to generic ECV

descriptors. Visual inference of the hierarchical model is
performed using a belief propagation algorithm (BP) [12],
[20], [4]. BP derives a probabilistic estimate of the object
pose, which in turn allows for the alignment of the grasp
model to the object. Means of autonomously learning the
hierarchical model and the underlying accumulated ECV
reconstruction are presented in prior work [4], [9].

IV. GRASP DENSITIES

This section explains how grasp densities probabilistically
model grasp affordances, and how importance sampling is
used to learn empirical densities.

A. Mathematical Representation

We are interested in modeling object-relative gripper con-
figurations. The grasps we consider are thus parametrized by
a 6D gripper pose composed of a 3D position and a 3D ori-
entation. Grasp densities are continuous probability density
functions defined on the 6D pose space SE(3); they model
the likelihood of success of any grasp x ∈ SE(3). Their
computational representation is nonparametric: A density is
represented by a large number of weighted samples called
particles. The probabilistic density in a region of space is
given by the local density of the particles in that region. The
underlying continuous density function is accessed through
kernel density estimation [16], by assigning a kernel function
to each particle supporting the density. Density evaluation at
a given pose x is performed by summing the evaluation of
all kernels at x. Sampling from a distribution is performed
by sampling from the kernel of a particle drawn at random.

Grasp densities are defined on the Special Euclidean
group SE(3) = R3 × SO(3), where SO(3) is the Special
Orthogonal group (the group of 3D rotations). We use a
kernel that factorizes into two functions defined on R3 and
SO(3). Denoting the separation of an SE(3) pose x into a
translation λ and a rotation θ by x = (λ, θ), µ = (µt, µr),
σ = (σt, σr), we define our kernel with

K(x;µ, σ) = N(λ;µt, σt) Θ(θ;µr, σr) (1)

where µ is the kernel mean point, σ is the kernel bandwidth,
N is a trivariate isotropic Gaussian kernel, and Θ corre-
sponds to a pair of antipodal von-Mises Fisher distributions
which forms a Gaussian-like distribution on SO(3) [6], [20].
Formally, the value of Θ is given by

Θ(θ;µr, σr) = C4(σr)
eσr µ

T
r θ + e−σr µ

T
r θ

2
(2)

where C4(σr) is a normalizing constant.
The position bandwidth σt is fixed to 10 mm; the orienta-

tion bandwidth σr allows rotations of about 5◦. For a more
detailed mathematical description and motivation of SE(3)
kernels and kernel density estimation, we refer the reader to
the work of Sudderth et al. [20] and Detry et al. [4]. Fig. 3
illustrates SE(3) kernels and continuous densities.

Grasp densities are defined in the same reference frame
as visual features. Once visual features have been aligned to
an object pose (Section III-B), the object grasp density can
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(a) (b) (c)

Fig. 3: Grasp density representation. The top image of
Fig. (a) illustrates a particle from a nonparametric grasp
density, and its associated kernel widths: the translucent
sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how
the schematic rendering used in the top image relates to a
physical gripper. Fig. (b) shows a 3D rendering of the kernels
supporting a grasp density for a toy pan (for clarity, only ten
kernels are rendered). In Fig. (c), the opacity of the green
mask is proportional to the value of a grasp density for the
pan (orientations were ignored for this 2D projection).

be similarly aligned, and one can readily draw grasps from
the density and execute them on the object. The association
of grasp densities with the visual model is covered in more
detail in prior work [3].

B. Learning Algorithm
Learning is organized in cycles, within each of which the

robot exploits its current grasping knowledge and impor-
tance sampling [5] to produce a refined empirical density.
Importance sampling is a technique that allows one to draw
samples from an unknown target distribution by properly
weighting samples from a preferably similar proposal distri-
bution. The target distribution t(x) cannot be sampled from,
but it can be evaluated. Therefore, samples are drawn from
the known proposal distribution p(x), and the difference
between the target and the proposal is accounted for by
associating to each sample x a weight given by t(x) /p(x).

Let us model with g(x) the outcome of grasp x as

g(x) =

{
1 if grasp at x succeeds,
0 if grasp at x fails.

In the context of this paper, the target distribution corre-
sponds to a perfect model of the object grasp affordance
a(x). An empirical density could be build from a set of
samples from a; yet sampling a cannot be done directly.
However, by approximating a(x) ' g(x), we can produce
binary evaluations of a(x) by executing grasps. Importance
sampling thus allows us to indirectly draw samples from
a(x), by drawing samples from a hypothesis density h(x),
and weighting each sample x̂ as g(x̂)/h(x̂). Fig. 4 illus-
trates the concept of importance sampling in a simple one-
dimensional case.

V. EXPERIMENTS

This section demonstrates the applicability of our method
to learning empirical densities, quantifies the efficacy of

h(x): hypothesis density

x

a(x): grasp affordance

1

1
2

h(x1) = 1

w1 = 1

h(x2) = 1
2

x2x1
w2 = 2

g(x2) = 1

g(x1) = 1

Fig. 4: 1D illustration of the importance-sampling weight
computation. Although grasps such as x2 are less likely to
be executed than grasps like x1, the weight associated to x2

is twice as large as that associated to x1.

the various learning cycles, and estimates the efficacy of
empirical densities in a typical grasping scenario.

Section V-A explains the process of executing a set of
grasp trials, and details the nature of recorded data. Section
V-B presents the application of this process for both learning
empirical densities and estimating their efficacy in practical
scenarios. Results are discussed in Section V-C.

A. Setup

Our robotic platform is composed of an industrial robotic
arm, a force-torque sensor, a two-finger gripper, and a stereo
camera. The force-torque sensor is mounted between the arm
and the gripper. The arm and the camera are calibrated to
a common world reference frame. The execution of a set of
grasp trials is driven by a finite state machine (FSM), which
instructs the robot to grasp and lift an object, then drop the
object to the floor and start again. The floor around the robot
is covered with foam, which allows objects to lightly bounce
during drop-off. This also allows the gripper to push slightly
into the floor and grasp thin objects lying on the foam surface
(e.g. the knife of Fig. 2).

The FSM is initially provided with an object model, which
includes a visual model as described in Section III-B, and a
grasp density registered with the visual model. The FSM then
performs a set of grasp trials, which involve the following
operations:

i. Estimate the pose of the object and align the grasp
density,

ii. Produce a grasp from the aligned grasp density,
iii. Submit the grasp to the path planner,
iv. Servo the gripper to the grasp pose,
v. Close the gripper fingers,

vi. Lift the object,
vii. Drop the object.

Pose estimation (i) is performed by means detailed in
Section III-A and Section III-B. Depending on the purpose,
grasps (ii) are drawn either randomly, or from a local
maximum of the density.

The path planner has a built-in representation of the floor
and the robot body. Its representation of the floor is defined a
few centimeters below the foam surface, to allow the gripper
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to grasp thin objects as explained above. The planner is
provided with a gripper pose (ii) and the 3D scene recon-
struction extracted during pose estimation (i). Because the
3D scene reconstruction does not cover self-occluded parts
of the object, a 3D accumulated reconstruction of the object
is also provided (Section III-A). The path planner computes
a collision-free path to the target gripper configuration. It
can avoid self-collisions and most ground collisions from
its built-in knowledge of the arm and workspace; it can
also avoid some object collisions from the 3D-edge scene
reconstruction and the aligned object reconstruction. When
no path can be found, the path planner is able to produce a
detailed error report.

During servoing (iv) and grasping (v), measures from the
force-torque sensor are compared to a model of the arm
dynamics, allowing for automatic collision detection. Closure
success is verified after grasping (v) by measuring the gap
between the fingers, and after lifting (vi) by checking that
the fingers cannot be brought closer to each other. The object
is finally dropped to the floor from a height of about 50 cm
and bounces off to an arbitrary pose.

Robot assessments are monitored by a human supervisor.
Pose estimation will sometime fail, e.g. because the object
fell out of the field of view of the camera, or because
of a prohibitive level of noise in the stereo signal. Pose
estimates are visualized in 3D; if pose estimation fails, the
trial is aborted and the supervisor moves the object to another
arbitrary pose. After path planning, the supervisor has a
chance to abort a grasp that would clearly fail. During servo,
grasp and lift, he can notify undetected collisions. Despite
this supervision, the resulting system is largely autonomous:
The role of the supervisor is limited to notifying wrong robot
assessments; pose estimates and grasps are never tuned by
hand.

If the robot properly executes the operations mentioned
above and lifts the object, the trial is a success. When an
operation produces an error, the trial is a failure, and the
FSM starts over at step ii, or at step i if the error involved an
object displacement. Errors can come from a pose estimation
failure, no found path, supervisor notification of bound-to-
fail grasp, collision (notified either from the force-torque
sensor or from the supervisor), or empty gripper (v and vi).
We define two mutually-exclusive error classes. The first
class, denoted by Ep, includes errors arising from a path-
planner–predicted collision with the ground or the object.
The second class, Er, correspond to object collisions, ground
collisions, or void grasps, either asserted by the supervisor,
or physically occurring on the robot. Errors Er also include
cases where the object drops off the gripper during lift-up.
The FSM keeps track of errors by counting the number of
occurrences er and ep of errors of class Er and Ep. Pose
estimation failures and cases where the path planner cannot
find an inverse-kinematics solution at all (e.g. object out of
reach) are ignored because these are not intrinsically part of
the concept of grasp densities. Naturally, the number s of
successful grasps is also recorded.

The execution of a complete grasp trial typically takes

Fig. 5: Bootstrapping grasp densities from ECV descriptors

Fig. 6: Particles supporting bootstrap densities

40 to 60 seconds. Through the process described above, the
robot will effectively learn grasp affordances offered by an
object lying on a flat surface in a natural pose.

B. Protocol

This section applies the process of the previous section to
learn and evaluate empirical densities. Experiments were run
on the three objects of Fig. 2, selected for their differences in
shape and structure, which offer a large variety of grasping
possibilities. Visual models were acquired by performing
a 3D reconstruction of the object edges (Section III-A),
and organizing the resulting ECV descriptors in a hierarchy
(Section III-B).

Grasp densities were bootstrapped from the ECV recon-
structions of the objects, through a process that is inten-
tionally kept simple in order to limit the amount of bias
introduced into the system. As explained in Section III-A,
an ECV reconstruction represents object edges with short
3D segments. Object edges appeared as natural candidates
for grasping, and an interesting way to bias grasp learning.
We thus define bootstrap densities as functions yielding a
high value around object edges. Bootstrap densities are, just
like other densities, represented nonparametrically. They are
formed by generating sets of SE(3) particles from ECV
descriptors. Mathematically, ECV descriptors live in R3 ×
S2

+; an ECV descriptor thus cannot fully define an SE(3)
grasp. Therefore, we create a set of SE(3) particles for each
ECV descriptor, effectively covering the ECV orientation
degree of freedom (See Fig. 5 and Fig. 6).

One known weakness of importance sampling is its slow
convergence when the target distribution has heavier tails
than the proposal. This is unfortunately the case with boot-
strap densities, since they only cover a part of the object
affordance – pinch grasps are applicable to parts that are
not supported by a visual edge. For this reason, we slightly
modify the importance-weight computation (Section IV-B),
effectively using g(x)/ (h(x) + C) instead of g(x)/h(x),
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Fig. 7: Samples from empirical densities learned during the
first cycle

Batch s er ep rrp rr

Pan
cycle 1 200 370 1631 0.091 0.351
cycle 2 100 86 114 0.333 0.538
test 75 39 24 0.543 0.658

Knife
cycle 1 100 131 751 0.102 0.433
cycle 2 100 153 157 0.244 0.395
test 63 71 89 0.283 0.470

Basket
cycle 1 151 173 1121 0.104 0.466
cycle 2 100 62 77 0.418 0.617
test 64 26 22 0.571 0.711

TABLE I: Success/error counts and success rates. (See also
Fig. 8.)

which amounts to using a hypothesis density that contains
a uniform component of value C from which grasps always
fail.

To each object of Fig. 2, we applied two learning cycles.
In the first cycle, the robot uses the object bootstrap density b
as hypothesis to learn an empirical density g1. In the second
cycle, the hypothesis density corresponds to g1, and the robot
learns a second empirical density g2. The purpose of the
second cycle is to provide a quantitative comparison of the
grasping knowledge expressed by bootstrap and empirical
densities through the success statistics of both processes; g2
is not used thereafter.

We tested the performance of our method in a usage
scenario in which it has to successively allow a robot to
perform the grasp that has the highest likelihood of success
within the robot’s region of reachability. However, expressing
the region of SE(3) that the robot can reach is not trivial,
and goes beyond the scope of this paper. Our usage scenario
thus implements each grasp trial by randomly drawing a set
of grasps from an empirical density, and sorting these grasps
in decreasing order of likelihood according to that empirical
density. The grasps are sequentially submitted to the path
planner and the first feasible grasp is selected. The empirical
density used in the usage scenario is g1, in order to provide
a direct comparison with the statistics collected during the
second learning cycle.

C. Results and Discussion

The empirical densities produced during the first learning
cycle are shown in Fig. 7. Comprehensive quantitative results
are displayed in Table I. Columns s, er, and ep correspond
to the statistics collected during the experiment. The last two

0.
50

1.
00

Knife BasketPan0.
00

(a) rrp

0.
50

1.
00

Pan Knife Basket0.
00

(b) rr

Fig. 8: Success rates. Red, green, and blue bars respectively
illustrate rates for the first cycle, second cycle, and test.
Numerical rates can be read from Table I.

columns show success rates computed as

rrp =
s

s+ er + ep
, rr =

s

s+ er
.

Rows titled cycle 1 and cycle 2 correspond to the first and
second learning cycles. Rows titled test correspond to the
usage scenario defined above. Fig. 8 shows success rates
graphically.

Fig. 7 shows that the empirical densities learned in the
first cycle are a much better model of grasp affordances
than the bootstrap densities of Fig. 6. The global success
rate rrp (Fig. 8a) for the two learning cycles provides a
quantitative comparison of the grasping knowledge expressed
by bootstrap and empirical densities. The empirical den-
sities produced during the first cycle allow the robot to
collect, during the second cycle, a similar amount of positive
examples with a much smaller number of trials. The red
bars in Fig. 8a show that grasps generated from modes of
an empirical indeed have a higher chance of success than
randomly sampled grasps.

Fig. 8b shows success rates in which planner-detected
errors Ep are ignored. Since planner-detected errors largely
amount to ground-collisions, Fig. 8b shows that a large
portion of the knowledge acquired by the robot models which
side of the object most often faces up, hence encouraging
the robot to produce grasps approaching to that side. This
situation is pushed to the limit with the knife: All grasps
suggested by its bootstrap density would effectively work for
a free-floating knife, i.e. all grasps that do not collide with
the ground have the same chance of success. When ignoring
Ep errors, the success rate for the first and second cycles of
the knife are almost identical.

Our results make a number of issues explicit. For all
objects we can reduce the number of grasps that need to
be considered by the motion planner by an average factor
of 10. This is an important result, since path planning is
generally slow, and ground plane information may not always
be available to the planner. The average success rate of
grasps performed by the robot (ignoring those rejected by
the planner) grows from 42% to 52%. In test scenarios,
the success rate of robot grasps is 61% in average. These
numbers are quite encouraging, given that we tested our
system under realistic settings: Visual models, which are
learned autonomously [4], [9], do not exhaustively encode
relevant object features. During pose estimation, estimates
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that are considered successful are nevertheless affected by
errors of the order of 5–10 mm in position and a few degrees
in orientation. The path planner approximates obstacles with
box constellations that may often be imprecise and over-
restrictive. Inverse kinematics can perform only up to the
precision of the robot-camera calibration. When grasping
near the floor, the force-torque sensor may issue a collision
detection for a grasp that has worked before, because of a
different approach dynamic. For the pan, and in particular
for the knife, we have a very difficult grasping situation,
given the short distance between the object and the ground.
As a consequence, small errors in pose estimates can lead to
collisions even with an optimal grasp. Therefore, the error
counts in Table I do not exclusively reflect issues related to
grasp densities.

We showed that comprehensive grasp affordance models
can be acquired by largely autonomous learning. The concept
of grasp densities served as a powerful tool to represent these
affordances and exploit them in finding an optimal grasp in
a concrete context.

VI. CONCLUSION AND FUTURE WORK

We have presented a method for learning three-
dimensional probabilistic grasp affordance models in the
form of grasp densities, and demonstrated their applicability
through extensive testing on a largely autonomous platform.

Grasp densities are learned from experience with an
importance-sampling algorithm: samples from an object af-
fordance are indirectly drawn by properly weighting samples
from an approximating hypothesis density. Densities are
bootstrapped from a 3D object-edge reconstructions, yielding
bias towards edge grasps.

We assembled an experiment setup which efficiently im-
plements a realistic learning environment: The robot handles
objects appearing in arbitrary poses, and deals with the noise
inherent to autonomous processes. We have collected a large
amount of data quantifying the progress made from bootstrap
to empirical densities. We also evaluated empirical densities
in a realistic usage scenario, where the robot effectively
selects the grasp with the highest success likelihood amongst
the grasps that are within its reach. Result are particularly
convincing given the low level of control on the overall
experiment process.

In this paper, grasp densities characterize object grasps;
they are registered with a visual model of the object.
Yet, affordances generally characterize object-robot relations
through a minimal set of properties, which means that object
properties not essential to a relation should be left out.
This in turn allows e.g. for generalization of affordances
between objects that share the same grasp-relevant features.
Ultimately, instead of registering densities with a whole
object, we aim to relate them to visual object parts that
predict their applicability. The part-based model of Section
III-B offers an elegant way of locally encoding visuomotor

descriptions, allowing for generalization of grasps across
objects that share the same parts.
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