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Abstract— Piezo micro-positioning actuators have been 

widely used in micro-positioning applications due to the fast 

expansion, high force generation, and unlimited resolution. 

However, these actuators exhibit some rate-dependent 

hysteresis effects which affect the accuracy of these micro-

positioning systems and may even lead to system instability. In 

this paper, the rate-dependent Prandtl-Ishlinskii model is 

employed to characterize the rate-dependent hysteresis 

nonlinearities of a piezo micro-positioning stage. The analytical 

inverse of the rate-dependent Prandtl-Ishlinskii model is then 

formulated using the initial loading curve concept. This inverse 

is utilized as a feedforward compensator to compensate for the 

hysteresis nonlinearities of a piezo micro-positioning stage 

under excitation in the 1–50 Hz frequency range. 

 

I. INTRODUCTION 

IEZO micro-positioning actuators offer nanometer 

resolution, high stiffness, and fast response when subject 

to a varying electrical field [1]. Because of these 

advantages, these actuators are increasingly used in micro-

positioning applications [2-7]. These smart actuators, 

however, show hysteresis nonlinearities that increase as the 

excitation frequency of the input voltage increases. The 

hysteresis effects are known to cause inaccuracies and 

oscillations in the system responses, which is especially 

severe for the micro-positioning case. Various control 

strategies have been proposed to compensate the hysteresis 

effects and thus enhance the tracking and positioning 

performances of smart actuators [8- 14]. These could be 

broadly classified into two groups based on the 

methodology. The first group employs a hysteresis 

compensator based on inversion of the hysteresis model, and 

has been applied for control of various smart actuators, such 

as piezoceramic, shape memory alloy, and magnetostrictive 

actuators [10-12,14,15]. The compensation strategies used in 

studies within the second group do not require the hysteresis 

inversion, and include the PID feedback controller, robust 

adaptive control, energy-based control, etc. [13].  

The identification of an effective hysteresis model, and its 

inverse, however, involves many challenges, particularly 

when the rate-dependent hysteresis nonlinearity is 

considered. Considerable efforts have been made towards 

modeling of hysteresis properties of smart actuators and 

their inverse. A number of models have been evolved to 
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describe the hysteresis nonlinearities [7].  The Preisach and 

Prandtl–Ishlinskii models are the most widely used 

phenomenological hysteresis models, which are based on the 

hysteresis operators. Since the Preisach is not analytically 

invertible, numerical algorithms have been proposed to 

invert these models [1,5,7]. However, Prandtl-Ishlinskii 

model is analytically invertible [8,19,20]. The Prandtl-

Ishlinskii model, however, has not been explored to describe 

rate-dependence of the hysteresis nonlinearity.  

The hysteresis nonlinearities of piezo-micro positioning 

actuators are known to be strongly dependent on the rate of 

the input. It has been shown that the hysteresis in the output 

displacement of piezo micro-positioning actuators increases 

with increase in the frequency of the applied voltage [16,17]. 

The Prandtl-Ishlinskii model thus yields considerable error 

under high frequency inputs. The application of the inverse 

rate-independent model would also yield considerable errors 

in the compensated outputs under high frequency inputs.  

In this paper, the inverse rate-dependent Prandtl-Ishlinskii 

model is formulated analytically incorporating the rate-

dependent hysteresis nonlinearity. The inverse is derived 

using the recently-proposed rate-dependent Prandtl-

Ishlinskii model for describing the hysteresis nonlinearities 

of smart actuators over a wide range of input frequencies 

[16,17]. The analytical inverse is subsequently applied as a 

feedforward compensator for mitigating the hysteresis 

effects over a wide range of excitation frequencies. The 

results show the capability of the inverse model to 

compensate hysteresis at different excitation frequencies. 

  

II. BACKGROUND  

In this section a brief description regarding the Prandtl-

Ishlinskii model and its initial loading curve is presented. 

This section is essential to introduce the rate-dependent 

Prandtl-Ishlinskii model. 

A. Prandtl-Ishlinskii model 

Prandtl-Ishlinskii model, integrates play operator and 

density function to characterize hysteresis nonlinearities. 

Play operator is continuous and rate-independent hysteresis 

operator [18]. This hysteresis operator is constructed using 

single threshold r, the previous state of the output w, and the 

input v. For any input v(t)Cm[0, T],  where 0 = t0 < t1 < … < 

tN = T are intervals in [0, T] such that the function v  is 

monotone on each of the sub-intervals [ti,  ti+1], the output of 

the play operator w(t) over each interval, 1 ii ttt , is 
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analytically expressed as [18]: 
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The argument of the operator Γr is written in square 

brackets to indicate the functional dependence, since it maps 

a function to another function. Owing to the unity slope 

between the input v and the output w, the play operator Γr is 

a Lipschitz continuous operator. The play operator Γr can 

thus be extended to a Lipschitz continuous operator such that 

operator Γr: C [0, T]× → C [0, T] [18]. The output of the 

Prandtl-Ishlinskii model can be presented as [18]: 
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where θr is an integrable density function, identified from 

experimental data and satisfying θr > 0, and σ is a positive 

constant. The Prandtl-Ishlinskii model was applied to 

characterize and to compensate hysteresis nonlinearities in 

piezo micro-positioning stage [11]. The Prandtl-Ishlinskii 

model, however, is limited to rate-independent hysteresis 

nonlinearities, which is attributed to the rate-independent 

output of the play hysteresis operator. The model thus 

cannot be applied for predicting rate-dependent hysteresis 

properties, which is invariably observed in piezo micro-

positioning stages. 

B. Initial loading curve  

The initial loading curve is used as an alternative 

description of the Prandtl-Ishlinskii model and to derive its 

analytical inverse in [6]. The curve is physically described 

by stress-strain relation, corresponding to an increasing load 

from zero to a final value, which describes the possible 

hysteresis loops generated by the Prandtl-Ishlinskii model. 

The initial loading curve for the Prandtl-Ishlinskii model Π 

can be expressed as [18]: 
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The alterative description of Prandtl-Ishlinskii model (2) 

using initial loading curve (3) can be expressed analytically 

as: 
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III. RATE DEPENDENT PRANDTL-ISHLINSKII MODEL   

Rate-dependent Prandtl-Ishlinskii model is employed in 

this paper to characterize hysteresis nonlinearities of a piezo 

micro-positioning actuator over different excitation 

frequencies [16]. The rate-dependent Prandtl-Ishlinskii 

model Φ is formulated upon integrating the rate-dependent 

play operator and the density function. The output of the 

rate-dependent play operator Γs(v(t)) can be expressed as: 
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The output of the rate-dependent play operator Γs(v(t)) with 

envelope function )(v : →  is defined as: 
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where η is strictly continuous increasing function. The rate- 

dependent play operator could be utilized to realize the rate- 

dependent hysteresis in a piezo micro-positioning actuator. 

The rate-dependent play operator is subsequently integrated 

to the Prandtl–Ishlinskii model together with a density 

function to predict hysteresis properties as a function of the 

rate of the input. The output of the rate-dependent Prandtl-

Ishlinskii model can be expressed as: 
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where θs is a dynamic density function. The model could be 

applied to characterize the rate-dependent hysteresis 

properties in piezo micro-positioning actuators [16]. The 

inverse rate-dependent Prandtl-Ishlinskii model is proposed 

to compensate the rate-dependent hysteresis of the piezo 

micro-positioning stage. 

IV. RATE DEPENDENT PRANDTL-ISHLINSKII MODEL   

The inverse model-based hysteresis compensation method 

that employs a cascade of a hysteresis model and its inverse 

to compensate for the hysteresis effects is employed in this 

paper to compensate the rate-dependent hysteresis effects. 

 
Fig. 1.  Play hysteresis operator. 
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This method, however, necessitates the formulation of the 

hysteresis model inverse, which is often a challenging task. 

The concept of an open-loop inverse control system for 

compensation of hysteresis effects is shown in Fig. 2, where 

ud is the desired input, v is the control input, and u is the 

output of the inverse compensation. 

 

 

 
Fig. 2. Illustration of hysteresis inversion. 

 

The objective of the inverse compensation is to obtain 

identity mapping between the desired input ud(t) and the 

desired output u(t), such that : 

))(()( 1 tuotu d
  (8) 

where o denotes the composition operator. Analytical 

inverse of the rate-dependent Prandtl-Ishlinskii is presented 

analytically in this section. In other words, the exact inverse 

of the rate-dependent model can be obtained, consequently 

making it attractive for real-time applications. For rate-

dependent Prandtl-Ishlinskii model (7), if both the inverse of 

the function η
 
and the inverse the initial loading curve exist; 

the inverse of the rate-dependent model can be analytically 

expressed as:  
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where σ
-1

 is a positive constant, z  is the dynamic threshold 

of the inverse rate-dependent Prandtl-Ishlinskii model, and 

)(ˆ z  
is the dynamic density function of the inverse rate-

dependent Prandtl-Ishlinskii model. 

V. NUMERICAL IMPLEMENTATION    

In this section the numerical implementation for the rate- 

dependent Prandtl-Ishlinskii model and it is inverse are 

presented. The weights of the dynamic density function can 

be defined as:  

))(()( 1 jjjsj ssss 
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The rate-dependent Prandtl-Ishlinskii model can be defined 

numerically as: 
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where J is the number of the rate-dependent play operators 

that employed in the rate-dependent Prandtl-Ishlinskii model 

and θ(sj) are weights of the model. The rate-dependent initial 

loading curve for rate-dependent Prandtl-Ishlinskii model Φ 

(9) can be expressed numerically as: 
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The derivative of the rate-dependent initial loading curve 

with respect to the dynamic threshold s is expressed as:  
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The density function of the rate-dependent model is defined 

as:  

)()('' jss    (14) 

The output of the rate-dependent Prandtl-Ishlinskii model 

can be defined via the rate-dependent initial loading curve 

as:  
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The output of the inverse rate-dependent Prandtl-Ishlinskii 

model can be expressed as: 
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where the weights of the inverse rate-dependent Prandtl-

Ishlinskii model can be defined as: 
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The weights of the rate-dependent Prandtl-Ishlinskii model 

and its inverse can be expressed as: 
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The inverse of the rate-dependent initial loading curve can 

be expressed numerically as: 
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where J  is the number of the rate-dependent play operators 

of the inverse rate-dependent Prandtl-Ishlinskii model.  The 

relationship between the rate-dependent initial loading curve 

and its inverse can be defined as: 
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To obtain the weights of the inverse model, Equation (20) 

can be represented in the following manner: 










J

j

J

j

j

j

1

1

1ˆˆ



  

(21) 

The positive constant of the inverse rate-dependent Prandtl-

Ishlinskii model is defined as: 
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Equation  (21) can be expressed as: 
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It can be concluded that the weights of the model can be 

obtained as: 









1

11

))((

ˆ
j

i

j

j

i

j

j

j




  

(24) 

The dynamic threshold zk of the inverse rate-dependent 

Prandtl-Ishlinskii model can be defined using the weights 

and the thresholds of rate-dependent model (11) as: 
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VI. MODELING RATE- DEPENDENT HYSTERESIS IN A PIEZO 

MICRO-POSITIONING STAGE  

In this section, modeling rate-dependent hysteresis of a 

piezo micro-positioning stage is carried out via the rate-

dependent Prandtl-Ishlinskii model at different excitation 

frequencies. The inverse model is applied in Section VII to 

compensate the rate-dependent hysteresis effects at different 

excitation frequencies. 

A. Experimental setup  

 The experiments were performed on a piezo micro-

positioning stage (P-753.31C) from Physic Instrumente 

Company. The actuator provided maximum displacement of 

100 m from its static equilibrium position, and it integrates 

a capacitive sensor (sensitivity = 1m/V; resolution  0.1 

nm) for measurement of stage displacement response. The 

excitation module compromises a voltage amplifier 

(LVPZT, E-505) with a fixed gain of 10, which provides the 

excitation voltage to the actuator. Fig. 3 illustrates a 

schematic of the experimental setup for the experiment, 

where the input was directly applied to the actuator.  

 

Fig. 3. Schematic of the experimental setup used for characterization  

hysteresis of the piezo micro-positioning stage. 

B. Experimental results  

The measurements with the piezo micro-positioning 

stage were performed under a harmonic input, v(t)= 

40sin(2πft) at 3 different excitation frequencies (1, 25, and 

50 Hz). The input voltage and output displacement signals 

were acquired using dSpace ControlDesk data acquisition 

card at a sampling frequency of 10 kHz. The resulting 

hysteresis loops relating displacement responses to the input 

voltage are shown in Fig. 4.  The measured data were further 

analyzed to quantify hysteresis and displacement attenuation 

as a function of the applied excitation frequency. It is 

evident that the micro-positioning stage exhibit highly rate-

dependent nonlinear effects between the input voltage and 

the output displacement. From the experimental results it can 

be concluded that the use of the inverse rate-independent 

hysteresis models could yield high positioning errors in the 

output displacement. 

C. Parameters identifications 

Measured rate-dependent hysteresis loops between the 

applied voltage and the output displacement shown in Fig. 4 

are used to identify the parameters of the rate-dependent 

Prandtl-Ishlinskii model. The dynamic threshold of the rate-

dependent play operator can be presented as: 
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where g is a positive function.  

515



  

On the basis of the observed rate-dependent hysteresis of 

the piezo micro-positioning actuator, the function g of 

dynamic threshold (26) is proposed as: 

 




L

l

lll vvg

1

ln)(  

 

 (27) 

where αl¸ βl >1, and λl are positive constants. The order of 

the rate-dependent threshold is determined by the positive 

integer L. Owing to symmetric rate-dependent hysteresis 

nonlinearities the following linear function is applied in the 

rate-dependent play operator: 
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where c is a positive constant. The weights of the rate-

dependent Prandtl-Ishlinskii model are chosen as: 
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where ρ > 0, τ >0, and µ are constants.  

 
 

Fig. 4. Measured hysteresis loops relating displacement response of the 
piezoceramic actuator to the applied voltage at different frequencies. 

 

The experimental data obtained for the piezoceramic 

actuator harmonic inputs at 1, 25, and 50 Hz are applied to 

identify the model parameters. The parameter vector X = 

{α1, α2, β1, β2, λ1, λ2, c, ρ, ζ, τ, µ}, was identified through 

minimization of an error sum-squared function over a wide 

frequency range, given by: 
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subject to:  

α, λ1, λ2, ρ, τ, ζ > 0 

β1, β2 ≥ 1 
 

where Ф is the displacement response of the rate-dependent 

Prandtl-Ishlinskii model corresponding to a particular 

excitation frequency and Y is the measured displacement 

under the same excitation frequency. The error function is 

constructed through summation of squared errors over a 

range of input frequencies. The index i (i = 1, … , I ) refers 

to the number of data points considered to compute the error 

function Q for one complete hysteresis loop. 100 data points 

(I = 100) were available for each measured hysteresis loop. 

Three different excitation frequencies of 1, 25, and 50 Hz 

are used. The error minimization is performed using the 

MATLAB constrained optimization toolbox. 

VII. COMPENSATION OF RATE-DEPENDENT HYSTERESIS 

NONLINEARITIES OF A PIEZO MICRO-POSITIONING STAGE     

In this section, the effectiveness of the inverse model in 

compensating the rate-dependent hysteresis effects is 

investigated through simulation and laboratory experiments. 

The inverse rate-dependent Prandtl-Ishlinskii model is 

applied as a feedforward compensator to compensate for 

rate-dependent hysteresis effects.  

A. Inverse rate-dependent Prandtl-Ishlinskii model   

The inverse of the rate-dependent Prandtl-Ishlinskii 

hysteresis model was derived and employed as a 

feedforward compensator to compensate for rate-dependent 

hysteresis nonlinearities of the piezo micro-positioning 

stage. The parameters of the inverse model were identified 

using the relations in (24) and (25). The measured input-

output characteristics of the inverse rate-dependent Prandtl-

Ishlinskii model at 1, 25, and 50 Hz are shown in Fig. 5. The 

results show that the nonlinearity of the output of the inverse 

rate-dependent Prandtl-Ishlinskii model increases as the 

excitation frequency of the input voltage increases. Since the 

experimental results of the piezo micro-positioning stage 

show similar behavior, the inverse can compensate the 

hysteresis effects of the piezo micro-positioning stage at 

different excitation frequencies.  

 

     

 

Fig. 5. Input-output characteristics inverse rate-dependent Prandtl-

Ishlinskii model at different excitation frequencies. 
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B. Compensation of rate-dependent hysteresis in a piezo 

micro-positioning stage  

 In this section, the inverse rate-dependent Prandtl-

Ishlinskii model presented in Fig. 5 is applied as a 

feedforward compensator to compensate for the rate-

dependent hysteresis nonlinearities of the piezo micro-

positioning stage. The measured output-input characteristics 

of the piezo micro-positioning stage with inverse 

compensator are illustrated in Fig. 6 at 1, 25, and 50 Hz. The 

results show that the inverse model can effectively 

compensate the hysteresis effects at different excitation 

frequencies. However, some deviations are also evident at 

50 Hz. These deviations are attributed to small prediction 

errors between the output of the rate-dependent model and 

the measured displacement of the piezo micro-positioning 

stage. 

      

  
 

Fig. 6.  Input-output characteristics of the piezo micro-positioning stage 

with inverse feedforward compensator at different excitation frequencies. 

VIII. CONCLUSIONS 

This paper presents inverse rate-dependent Prandtl-

Ishlinskii model to compensate for rate-dependent hysteresis 

nonlinearities in a piezo micro-positioning stage. The rate-

dependent hysteresis nonlinearities are modeled via the rate-

dependent Prandtl-Ishlinskii model. An analytical inverse 

rate-dependent Prandtl-Ishlinskii model is then derived to 

compensate for hysteresis nonlinearities at different 

excitation frequencies. Furthermore, compensation of the 

rate-dependent hysteresis in a piezo micro-positioning stage 

is carried out experimentally. Experimental results show the 

capability of the inverse rate-dependent Prandtl-Ishlinskii 

model (inverse feedforward compensator) to compensate for 

hysteresis nonlinearities at different excitation frequencies.  
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