
 

 

 

  

Abstract—Microassembly is an enabling technology for micro 
manufacturing that offers well-known pathways to building 
heterogeneous microsystems with a higher degree of robustness 
and more complex designs than monolithic fabrication. The 
success of assembly in micro domain, however, is directly 
related to the level of precision automation employed. Control 
and planning are two defining factors for the microassembly 
yield and its cycle time. Assembly at the microscale harbors 
many difficult challenges due to scaling of physics, stringent 
tolerance budget, high precision requirements, limited work 
volumes, and so on. These difficulties warrant new control and 
planning algorithms, different than their macro-scale 
counterparts. In this paper, we use precision metrics to 
formalize a hybrid controller for automated MEMS assembly. 
In the past, we formulated the “high yield assembly condition 
(HYAC)”, which gives a quantitative condition for the success 
and failure of compliant microassembly. Using this quatitative 
tool, we formalize a precision-adjusted hybrid controller 
switching between open, closed, and calibrated operation in the 
microassembly cell. Simulation and experimental results for the 
assembly of a microspectrometer are presented to indicate that 
the proposed hybrid controller lead to high yields at faster cycle 
times than traditional precision control methods.  

I. INTRODUCTION 
NLIKE semiconductor integrated circuits (ICs), newer 
microsystems combine sensors, actuators, mechanical 

structures, electronics, and optics on a single substrate. In 
such a diversified system, heterogeneous manipulation of 
components becomes unavoidable. In an effort to find a 
solution for increased yields and speeds in manufacturing at 
the micro-scale, research initiated in 1990s has sought to 
understand top-down aspects of micromanipulation, sensor-
based precision control of robots, self alignment effects 
using compliant micro structure designs, and so on.  

Several papers describe and classify the architecture and 
algorithms used in high precision robotic cells for the 
purpose of directed (top-down) microscale assembly [1-4]. 
Multi-scale assembly methods can be classified based on 
throughput (serial or parallel), deliberate intervention 
(deterministic or stochastic), type of end-effectors (contact, 
non-contact) or level of human intervention (manual, 
teleoperated or automated). Many examples of the use of 
microgrippers to manipulate compliant microparts can be 
found, including passive grippers [5], thermal, electrostatic, 
or piezoelectric micro-grippers [6], or the use of adhesive 
forces for micromanipulation [7].   
 

 
Manuscript received September 15, 2009. The authors are with Automation 
and Robotics Research Institute, University of Texas at Arlington, TX, 
USA. (e-mail: popa@uta.edu) 

An important turning point for the practical feasibility of 
MEMS snap-assemblies to construct 3D microstructures 
occurred when Metal LIGA and Silicon DRIE (Deep 
Reactive Ion Etching) machining allowed for thicker 2½D 
part geometries. This enabled the use of automation in 
MEMS assembly, as pursued by several research groups [8, 
9]. An example of a very well-designed fastener allowing 
2½D compliant assemblies with SOI (silicon on insulator) 
MEMS parts is the Zyvex® connector [5]. 

Out-of-plane manipulation of micro-sized parts using high 
precision robots offers flexibility to integrate different 
materials, have comparatively simpler design and smaller 
real-estate, and use reconfigurable modular structures. 
However automated microassembly also requires adressing 
control and planning related challenges. High volume 
production of miniaturized devices requires the successful 
operation at required throughput and yield across multiple 
scales of tolerance, dimension and workspace limitations. 

In this paper we focus on planning and control of 
automated deterministic serial microassembly. Typically, 
sequential microassembly requires a high precision 
micromanipulator and motion control; either by off-line 
programming with calibration or by on-line sensory feedback 
control. The latter can be accomplished via a microscope or 
a force sensor integrated with the gripper, or both. However, 
the price paid in assembly speed is considerable, resulting in 
low assembly throughputs. On the other hand, open loop 
control does not accomplish the necessary precision, but it is 
considerably faster and “cheaper” to implement. 

A hybrid controller is proposed here, in order to take 
advantages of both such control methods. The tersm 
“hybrid” is used primarily to denote switching between feed-
forward and feedback controllers based on precision metrics. 
The use of such control schemes is widely adopted in macro 
scale for a variety of control applications [10, 11], but 
relatively few applications use it at small scales, with the 
notable exceptions of vibration suppression [12]. We present 
preliminary experimental results for a microspectrometer, 
indicating that the hybrid controller achieves 35% higher 
accuracy than pure open loop control, while the assembly 
throughput is 60% faster than pure closed-loop control.  

This paper is organized as follows; in section II an 
overview of a microspectrometer assembly problem is 
presented. In section III we discuss the precision metrics in 
microassembly scenario and the hybrid controller. 
Experimental results are presented in section IV along with 
comparative yield and cycle time of the microspectrometer 
assembly.  Finally section V concludes the paper with 
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discussion of future work. 

II. MICROSCALE ASSEMBLY 
Manufacturing of a complex and heterogeneous 

microsystem involves several steps such as design, 
fabrication, assembly, packaging, testing etc. Whereas at the 
macro scales, automation is often undertaken after, and often 
benchmarked against manual assembly, deterministic 
automation at the MEMS scale requires a more holistic 
approach. This means that the design of the assembly cell, 
part and end-effectors should be considered simultaneously, 
and that by doing so, we can automate assembly operations 
in a realistic manner by ensuring higher process yield, lower 
cycle time and lesser sensor overhead. 

A.  A microassembly case study 
As a case study for the proposed planner/controller, in this 

paper we consider the automated assembly of a 
microspectrometer, a complex MOEMS (micro-opto-electo-
mechanical-systems) sensor for wide range spectrum analysis 
and gas detection applications [13].  

A micro-robotic system called “μ3” has been configured 
at ARRI’s Texas Microfactory Laboratory to carry out 
general microassembly tasks (see figure 1). It consists of 
three robotic manipulators (M1, M2 and M3) with 19 DoF, 
four high magnification microscopes to provide stereo vision 
for tele-operated as well as visual servoing [14].  

 
Figure 1: μ3 microassembly system at ARRI’s Texas Microfactory. 

 
Automated microassembly of the microspectrometer using 

the μ3 poses unique challenges, because multiple 
heterogeneous micro-components need to be assembled with 
a tight mechanical, as well as optical alignment. Compliant 
part and socket designs are used to snap-fit several 2½D 
silicon MEMS parts onto the substrate. The microparts are 
fabricated on SOI wafers using DRIE. As seen in figure 2, 
automated assembly of the microspectrometer using μ3 
involves: (i) grasping of four MEMS part from the parts die 
using a friction-fit (or “passive” jammer) (see figure 2(b)), 
(ii) maneuvering the parts through collision free paths, (iii) 
releasing the parts onto their designated compliant sockets 
on the device die. Additionally two spherical lenses and one 

beamsplitter cube are also aligned and assembled on the 
device die. Precise alignment of micro components is critical 
according not only to the mechanical configuration but also 
to the optical interference path. To ensure high yield we 
formulate an assemblability criterion and categorize various 
uncertainties that are associated with microparts and fixtures 
throughout the microassembly process. 

   
(a)            (b) 

  
(c)                                                   (d) 

Figure 2: 3D rendering of assembly configuration of microspectrometer; (a) 
virtual μ³ robotic assembly setup (b) close-up view of the micropart 

(mirrors, grippers, lens holders) and device dies (assembly sockets) (c) 
Completed microspectrometer, (d) 3D diagram of assembled 2½D MEMS 
parts and off-the-shelf optical components on the spectrometer substrate. 

B. Assemblability criteria 
Assume that a microassembly process ‘P’, carried out to 

assemble a specific microsystem. ‘P’, can be divided into 
individual subtasks P1, P2…, Pn, where ‘n’ is the number of 
continuous operations involving a single robot, a single part 
or a single tool: 

n
i iPP 1== .                        (1) 

Success of the designated assembly process can be 
represented as: 
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where ‘S’ is the success factor of the assembly/bonding 
process (a Boolean value). From equation (2) it can be 
inferred that the manufacturing success requires all subtasks 
to succeed. 

In a sequential microassembly process the order of 
subtasks can be configured in many ways. We are interested 
in finding a set of ways in which the success of entire 
assembly is guaranteed i.e. 
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where ‘Ok’ is the order of subtasks in the sequence, k = 1..n. 
If at least one solution for ‘Ok’ is not found to satisfy the 

condition in equation (3), then the assembly will fail, and 
thus a change of design will be necessary, including new 
values for tolerances and substrate layout. 

Parts die 

Device die 
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C. Categorization of microassembly task uncertainties 
and high yield assembly condition (HYAC) 
In this paper we treat subtasks ‘Pi’ as a combination of two 

types of positioning operations at the microscale: 
controllable and uncontrollable. Controllable operations 
‘Pi

m’ refer to spatial manipulation of components using 
robots. This type of manipulation will be considered to be 
actively controllable within certain tolerance bounds with 
Gaussian statistics. 

On the other hand, uncontrollable operations ‘Pi
b’ refer to 

change in component position based on the material 
properties, and interaction forces at the microscale. Friction 
based interference fitting, pneumatic grasping, surface 
tension, capillary stiction, adhesive bonding, etc., are some 
of the examples of “uncontrollable” operations. They depend 
on surface properties of the microparts and can act both in 
favor and against the assembly. We assume such operations 
to be uncontrollable in the sense that the assembly system 
may not actively correct their errors. However the effects can 
be predicted through appropriate models, or from experiment 
statistics. 
 Success of subtask ‘Pi’ requires that the sum of the errors 
from ‘Pi

m’ and ‘Pi
b’ must be less than the design tolerance 

for the assembly. In this paper we assume that all errors are 
random Gaussian, independent distributions. This is not an 
unreasonable assumption in many practical instances, for 
example, when we combine uncertainties in fabrication, 
motion, sensing, and process. Moreover, in order to more 
easily add uniform distributions (such as tolerances) into the 
framework, we approximate them by a Gaussian using a 3σ 
spread. For instance, if we consider the design layout 
tolerance ‘μlayout’ be the result of a random Gaussian process 
with a 99% confidence interval, ‘3σlayout’,  then, for 
successful assembly of the subtask ‘Pi’, we must ensure that: 
 ( ) ( )b

i
m

ilayout PP 222 σσσ +> .                   (4) 
The uncertainty should also include fabrication process 

variances, such as patterning, photolithography, DRIE, etc, 
that alter the tolerance of the microparts. If we assume this 
error distribution to be ‘σ2

fabricaton’, then the overall assembly 
tolerance can be represented as follows: 
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In equation (5) the square term defines the assembly 
tolerance as a Gaussian distribution. The term μlayout specifies 
the mean tolerance given to a specific assembly during 
design. In [15] we described detailed design criteria for the 
MEMS snap-fasteners used by the microspectrometer, 
including quantitative descriptions of the variance σ1

2.  
The variance due to uncontrolled operations ‘σ2(Pi

b)’ can 
be represented as a sum of error distributions from individual 
behaviors as observed from models, such as finite element 
analysis, or from experimenta data: 
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Let’s now consider the controllable operations ‘Pi
m’. 

Assembly motion can be executed using different types of 
control schemes, such as: 

a. Feed-forward (open loop) control, using die layout 
and direct robot commands without any calibration. 

b. Feed-forward (open loop) control, using calibrated 
models of the micromanipulation robot. 

c. Feedback or closed loop control, using active sensing 
based servoing and calibration. 

For cases (a) and (b) it is necessary that the components in 
the assembly layout must closely match their positions in the 
design layout. However, in reality, the layouts do not exactly 
match for reasons such as tether design for fixturing the 
parts, fabrication uncertainties, environmental disturbances 
etc. Such uncertainty, assumed to be Gaussian, is denoted by 
its variance ‘σ2

part’. In addition, the end-effector 
manufacturing imperfections, which are driven by fabrication 
errors, will have an uncertainty ‘σ2

endeffector. (for instance, 2-
3μm tolerances are common for the standard SOI DRIE 
process),. Alternatively, in case (c), where the parts and the 
end-effector are localized using sensors, their positional 
accuracy will dependent on the sensor precision. Therefore, 
the total part-end-effector position error distribution can be 
represented as follows: 
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In equation (7), ‘σs
2’ represents sensor precision which 

depends on both sensor position and sensor measurement.  
Next, we introduce the robot uncertainty ‘σ3

2’, or the 
variance of the positional error distribution of the end-
effector. Thus equation (4) can be rewritten using equations 
(5) - (7) as: 
 2

4
2
3

2
2

2
1 σσσσ ++> .                       (8) 

If the errors due to uncontrollable operations are 
insignificant then the ‘σ4

2’ term in equation (8) can be 
neglected and we obtain: 
 2

3
2
2

2
1 σσσ +> .                      (9) 

The inequality in equation (9) is defined as the “High 
Yield Assembly Condition (HYAC)”, stating that: 
 “Under Gaussian uncertainty assumptions, a 99% (3σ) 
assembly yield can be guaranteed if the combined 
uncertainty of locating and positioning of microparts and 
end-effector is smaller than the assembly tolerance”. 

The HYAC is therefore a quantitative way to predict the 
individual success factor ‘S’ of assembly. Therefore, in 
equation (3) S = 1 if HYAC is true, and S = 0 if HYAC is 
false for a specific assembly subtask.  Furthermore, note that 
in the inequality for HYAC: 

i. ‘σ1
2’ is “measurable” but not “correctable”.  

ii. ‘σ2
2’ is “measurable” and “correctable” in some cases, 

but this requires additional processes and resources. 
iii. ‘σ3

2’ is both “measurable” and “correctable”; 
assuming the robot precision can be improved. 

In the next sections, the goal will be to satisfy the HYAC 
and consequently make S = 1. Our controller will be chosen 
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such that ‘σ3
2’ is minimized, depending on the complexity of 

the assembly task. 

D. Complexity index 
 The complexity index (CI) of a subtask, denoted as ‘Ω’, 
and related to ‘S’, is a binary value used to classify an 
assembly subtask as high-yield or low-yield, based on 
associated robot and sensor precisions as well as allowed 
assembly tolerance budget. The idea is that a high-yield 
subtask is executed with faster open loop control, while a 
low-yield subtask is carried out with more accurate active 
feedback closed. Mathematically the complexity index is  
represented as: 
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From the above definition we can see that: 
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Figure 3: Process flow for microassembly automation. 

Figure 3 shows a flow chart that will be used to automate 
the microassembly process.  

III. PRECISION METRICS AND HYBRID CONTROLLER 

A. Precision metrics in microassembly 
Generally, the precision of a robotic system is represented 

by three metrics: accuracy, repeatability and resolution. We 
redefine these metrics to include the sensor precision which, 
unlike in macro-scale, is significant to the tolerance 
requirements of micro domain assembly. A more detailed 
discussion on the formulation of these definitions can be 
found in our previous publication [16]. The mathematical 
representations for the RRA (repeatability-resolution-
accuracy) metrics are given below. 
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  (14) 
In equations (12-14), ‘n’ is the number of measurements, 

‘P(j)’ is the robot path, ‘qj’ is the actual joint variable, ‘qref’  
is the desired joint value, and ‘σs

2’ is the sensor precision. 
Clearly, the error distribution in robot positioning is affected 
by the assembly sequence, choice of motion path, and 
precision metrics RRA:  

( ) ( )22 , sjPfRRA σσ = .                  (15) 

B. Planning for the hybrid controller 
We select the robot control among open control, feed 

forward control (calibration-based), and feedback control. A 
comparison among these schemes is shown in Table 1.  

Table 1: Comparison among different control schemes 
 

Parameters 
Open loop 
control, No 
calibration 

Calibration 
based open 
loop control 

Closed loop 
control (visual 

servoing) 
Precision attained Low Moderate High 
Execution time Low Moderate High 
Requirement High 

accuracy 
High 
repeatability 

High 
resolution 

Sensor needs None Minimal Extensive 
Cost of control Low Medium High 
A precision-adjusted hybrid controller is proposed to 

automate the microassembly process. Based on the RRA 
metrics the complexity index Ω can be calculated as Ω(σ3

2) 
where σ3

2є{σacc
2, σrep

2, σres
2}, and thus Ω can be represented 

through either Ωacc, Ωrep, Ωres. Table 2 shows the possible 
configurations of control schemes.  

Table 2: Control scheme based on complexity index 
Ωres Ωrep Ωacc Control Scheme 

0 0 0 Open loop, no calibration 
0 0 1 Open loop, with calibration 
0 1 1 Closed loop, with calibration 
1 1 1 Not possible with given hardware 

The remaining combinations are inefficient, and hence we 
omitted them from table 2. The hybrid control diagram is 
shown in figure 4. 

In this model ‘u’ is the desired input vector in the form of 
issued commands to the robot joints, and ‘y’ is the output 
vector in the form of robot poses. In this model the feedback 
‘K’, which is the visual servoing as given by equation (19), is 
multiplied by the binary complexity index ‘Ω’ in order to 
select or deselect the closed loop mode. ‘Ω’ for a specific 
task is determined from the logic model, as shown in figure 
4, using the RRA (resolution-repeatability-accuracy) rules 
given in table 2. 

So the input to the system has two parts; the robot 
commands ‘u(t)’ and the binary control loop selector ‘Ω(t)’. 

A simplified control model can be described by: 
[ ] [ ] ( )( )( )nyKnnuyRny ⋅⋅Ω−=+ ][,(1 ,        (16) 
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where R(y,u) is the robot transfer model, u is the control 
input,  Ω=0open loop and Ω = 1closed loop control. 

 
Figure 4: Plant model with the hybrid controller.  

C. Open loop control – un-calibrated and calibrated 
There are two cases corresponding to open loop control, 

un-calibrated and calibrated. In un-calibrated mode, we use 
the information from the MEMS die layout, and direct robot 
commands with nominal positional information. 

In calibrated mode, we use a simple, but very effective 
calibration scheme based on linear interpolation of a set of 
taught fiducial points [14]. The calibration of our robotic cell 
is a one-time operation in which a die with micro features is 
placed on the robot and moved to a set of random locations 
within the sensor field (in this case, microscope cameras). 
The corresponding joint axis positions are noted and this 
data is used to relate the MEMS die coordinate system to 
robot coordinate system. The more calibration points we use, 
the better that calibration accuracy will be (bounded from 
below by the robot repeatability). However a large number 
of calibration points will make the process slower. 

D. Closed loop control using active visual servoing 
In closed loop control, the micro components are aligned 

to the desired position in the reference frame by using a 
Jacobian dynamic visual servoing scheme. The Image 
Jacobian ‘J’  maps the change in 2D image coordinates x, y 
and orientation β (measured using feature detection in Figure 
5)  to robot joint angles θ1, θ1…, θα where ‘α’ is the number 
of robot joints: 

[ ]TT Jyx αθθθβ
~~~]~~~[ 21 ∆⋅⋅∆∆≅∆∆∆ .    (17) 

Using the pseudo-inverse of the Jacobian matrix, we can 
servo the robots to desired alignment position in the sensor 
image coordinate frame through servoing command: 

[ ] TT yxcJ ]~~~[21 βθθθ α
+−=⋅⋅  ,         (18) 

where ‘c’ is a positive constant which acts as the gain for 

servoing. [ ]Tyx β
~~~ gives the separation vector for the 

tracked feature in current sensed image data and desired 
image data.  A PD controller is then used for the feedback 
control to stabilize this separation vector to zero: 

 ( ) ( ) ( )te
dt
dKteKtu DP += ,                         (19) 

where ‘e(t)’ is the tracking error given by: 
TyxJte ]~~~[)( β+= .                 (20) 

More details on how the visual servoing control is 
implemented can be found in [13, 16]. 

IV. SIMULATION AND EXPERIMENTS 

A. Programming environments 
Fabrication and assembly of microparts can be a time 

consuming and expensive process, but simulation can 
provide useful statistical data without experiments. In order 
to gather realistic simulation yield statistics, we developed a 
virtual 3D simulation environment called Microsim 1.0 
which allows the user to evaluate both the assembly system 
and task scenario. This application can test any specific 
assembly task for cases such as robot kinematic link 
misalignment, length tolerance, vibration, poor lighting 
conditions, etc. Once high yield assembly plans are 
successfully simulated, they are ported and executed on the 
µ3 assembly cell via another custom built interface - Neptune 
3.0. Both software tools were written using National 
Instruments® Labview® (figure 5).  

  
(a)            (b) 

Figure 5: Snapshots of custom made applications written using Labview® 
(a) Neptune automation interface, (b) Microsim simulation interface. 

B. Uncertainty evaluation 
To check for the HYAC inequality in equation (9), we first 

determine the uncertainties i.e. σ1
2, σ2

2, σ3
2 as well as the 

sensor precision σs
2. Actual experimental results and 

simulation in virtual 3D were used in conjunction to estimate 
the precision metrics and predict the control switching logic. 

i. Sensor precision evaluation (σs
2) 

A stationary microscope with a frame rate of 10 Hz has 
been used for this test. The field of view of the image 
captured is 1280x960 pixels at 5X magnification. For these 
parameters 1pixel on image corresponds to 1μm on the 
feature. For better resolution, sub-pixel accuracy has been 
used in measurements. To measure the sensor precision 1000 
measurements were taken at 100ms intervals for a stationary 
target under the camera. The raw data was collected and the 
probability density function (pdf) was calculated using an 
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averaging histogram. A Gaussian curve is fitted to the pdf to 
find out the variance (figure 6). 

 
(a) Raw data of difference between successive readings. 

 
(b) 3σ variation estimation by Gaussian curve fitting. 

Figure 6: Sensor precision evaluation. 
From the above experiment, we can determine that the 

precision of the vision system in idle condition is 129nm 
along x, 124nm along y, and 20 arcsecs in θ rotation. 

ii. Fabrication uncertainty and design tolerance (σ1
2) 

Chemical processes used for micromachining  depend on 
several factors such as gas flow, exposure area, etch time and 
so on. For example the DRIE process generally yields an 
aspect ratio of 20 to 60. Thus dimensional errors in a typical 
DRIE micromachining process are generally less than 2 - 3 
µm, while sidewall profiles are accurate within 1°. 

iii. Fixturing uncertainty (σ2
2) 

To estimate σ2
2, we conducted simulation of 1100 die 

placement and 1100 detethering tasks in the Microsim 1.0 
virtual 3D environment. Using the method discussed in (i) 
we repeatedly placed microparts in their bounding “well” 
fixtures to find that die placement has an accuracy of 2.4μm 
and a repeatability of 0.6μm. Moreover, the precision in 
locating a feature for part misalignment detection, turns out 
to have an accuracy of 0.9μm and a repeatability of 0.3μm. 

iv. Robot uncertainty (σ3
2) 

After determining the precision of the vision system, we 
continue to estimate the precision of the robot system along 
individual degrees of freedom based on the path travelled by 
the robot. The robot used for this test case is a Cartesian 
robot with kinematic links configured in the order of x-
translation  y-translation  θ-rotation. In this experiment, 
the robot is moved to several distances such as 1mm, 2mm, 
5mm and 10mm etc along x, y, θ and xy directions. 250 
measurement data points were collected for each case and 
the precision is estimated (Table 3).  

From the data, it can be seen that the robot precision 
worsens as the distance travelled increases. Also, the 
precision attained along different degrees of freedom is 
different, even if the robot has been moved equal distances 
along those degrees of freedoms. 

 
 

Table 3: Robot system precision test 
Move 
case 

X Precision 
in μm 

Y Precision 
in μm 

θ Precision 
in arcsec 

idle 0.129 0.124 19.645 
1mm x 0.444 0.166 15.637 
2mm x 0.519 0.940 26.389 
5mm x 0.632 1.203 33.083 
1mm y 0.150 0.325 19.765 
2mm y 0.280 0.455 35.709 
5mm y 2.687 3.721 72.410 
1mm xy 0.468 0.269 31.335 
2mm xy 0.521 0.324 30.478 
5mm xy 0.494 1.481 32.882 

C. Hybrid controller implementation 
Part 1: Offline planning based on HYAC: 
Using the HYAC condition, a nominal plan for 

microspectrometer parts assembly was derived (table 4). 
Table 4: Assembly automation sequence 

Step  Operation Control 
1 Move the robots M1, M2, and M3 to 

assembly ready positions. 
calibrated 
open loop 

2 Using active visual servoing move robot M3 
to bring the part feature to the pickup 
location. 

calibrated 
closed loop  

3 Bring the needle on M1 to break the tether to 
release the micro part. 

calibrated 
open loop  

4 Break the tether by ramming the needle to it. uncalibrated 
open loop 

5 Retract the needle on M1 back to its home 
position. 

uncalibrated 
open loop 

6 Using active visual servoing move robot M3 
to realign the part feature back to the pickup 
location. 

calibrated 
closed loop 

7 Pick up the part using the micro jammer on 
M2 robot. 

uncalibrated 
open loop 

8* Correct the error in pick up, if any, by active 
servoing. 

calibrated 
closed loop 

9 Move the M3 robot to bring the socket 
feature into sensor field. 

calibrated 
open loop 

10 Using active visual servoing move robot M3 
to bring the socket feature to the placement 
location. 

calibrated 
closed loop 

11 Place the part into the socket by moving the 
jammer on robot M2. 

uncalibrated 
open loop 

Part 2: Online Control Execution: 
If HYAC is not satisfied prior to steps (7) & (11) 

respectively then we discard the subsequent steps and restart 
from step (1).  Moreover, if the feature patterns cannot be 
detected due to unavailability of parts, or ambient lighting 
variation during steps (2), (6), (8) or (10) in the previous 
case then we: 

a. Go back to the previous step by reversing position. 
b. Update the uncertainty information in estimator. 
c. Re-evaluate a new path and/or control structure. 
d. Execute the new plan. 

The above steps are repeated four times to complete the 
microspectrometer assembly. We examined the efficiency of 
the hybrid controller through simulation as well as 
experimentally. In case of simulation, we carried out 1200 
simulated microspectrometer microassemblies using pure 
open loop control, closed loop control and proposed hybrid 
controller. The comparison results are given in table 5. 
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Table 5: Cost function comparison for 1200 simulated micro 
spectrometer assemblies in virtual 3D 

Parameters Open Loop Closed Loop Hybrid Control 
Overall yield 20% 99.9% 92.5% 

Estimated time 6 to 10 min 50 to 80 min 20 to 35 min 
Sensor count 0 4 2 

 Actual experimental implementation was carried out for 
10 assemblies of microspectrometers on the μ3 setup. As 
seen in Table 6, for the 10 actual assembly attempts using 
each of the three control structures, the hybrid controller 
gives 35% better accuracy than the open loop controller, 
while its throughput is 60% faster than a closed-loop 
controller. Typical value for the assembly tolerance ‘σ1

2’ was 
3.3μm. Almost all 10 assembly attempts failed in the open 
loop case, where as the hybrid control managed to achieve a 
higher accuracy and thus succeeded in assembling 8 out of 
10 microspectrometers. Closed loop control also succeeded 
in assembling 9 out of 10 microsystems however it took a 
long time (90 minutes per system), whereas the hybrid 
controller managed to do the same with an average time of 
40 minutes. 

Table 6: Cost function comparison for 30 actual micro 
spectrometer assemblies with 10 each using open loop, 

closed loop and the proposed hybrid control scheme 
Parameters Open Loop Closed Loop Hybrid Control 

Overall yield <1% 90% 85% 
Average time 6 min 90 min 40 min 
Sensor count 0 4 2 

V. CONCLUSION AND FUTURE WORK 
Manufacturing of microsystems can be approached either 

through monolithic fabrication methods or through 
microassembly. Although stochastic microassembly can 
theoretically achieve much larger throughputs within a small 
time in comparison to serial deterministic assembly, it is 
difficult to use it to construct complex, 3D devices. On the 
other hand, serial microassembly requires careful tuning to 
simultaneously achieve high assembly yield and throughput. 
In this paper, we proposed a precision adjusted hybrid 
controller in order to guarantee a high yield and improve the 
speed of microassembly. In contrast to conventional 
methods, the assembly complexity is predicted, and used to 
select an open or closed loop control mode based on a 
complexity index Ω that depends on off -line or on-line 
variances related to the assembly process. Preliminary 
experimental results show significant improvements in 
assembly time with high yield guarantees.  

Future work includes further characterization and 
refinement of the planner and controller, including formal 
performance guarantees,a study of tradeoffs between real-
time change in tolerances, cycle time and yield, and dynamic 
reconfiguration of the system for other microassembly tasks.  
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