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Abstract— This paper presents a strategy for planning robot
motions in dynamic, cluttered, and uncertain environments.
Successful and efficient operation in such environments re-
quires reasoning about the future system evolution and the
uncertainty associated with obstacles and moving agents in
the environment. This paper presents a novel procedure to
account for future information gathering (and the quality of
that information) in the planning process. After first presenting
a formal Dynamic Programming (DP) formulation, we present
a Partially Closed-loop Receding Horizon Control algorithm
whose approximation to the DP solution integrates prediction,
estimation, and planning while also accounting for chance
constraints that arise from the uncertain location of the robot
and other moving agents. Simulation results in simple static
and dynamic scenarios illustrate the benefit of the algorithm
over classical approaches.

I. INTRODUCTION

This paper is concerned with motion planning in Dy-
namic, Cluttered, and Uncertain Environments (DCUEs). In
such environments, robots must work in close proximity
with many other moving agents whose future actions and
reactions are possibly not well known or characterizable.
The robot is plagued by uncertainty or noise in its own
state measurements and in the sensing of obstacles and
moving agents. Moreover, the large number of moving agents
may offer many distractors to the robot’s sensor processing
systems. An example of a DCUE application is a service
robot which must move through a swarm of moving humans
in a cafeteria during a busy lunch hour in order to deliver
food items. Clearly, the future human trajectories cannot be
predicted with any certainty, and the motion planning and
social interaction rules used by each of the humans may be
different, thereby complicating the planning problem. The
clutter provided by so many humans is also likely to severely
strain the robot’s visual, ladar, and sonar sensor processing
systems. In this paper we present a framework and some
initial algorithms and simulation results that we hope will
provide a foundation for future DCUE motion planners.

Robot motion planning in dynamic environments has
recently received substantial attention due to the DARPA
Urban Challenge [1] and growing interest in service and
assistive robots (e.g., [2], [3]). In urban environments, traffic
rules influence the expected behaviors of the dynamic agents,
and this information can be used to partially constrain ex-
pected future locations. In other applications, agent behaviors
are less well defined, and the prediction of their future
trajectories is more uncertain.
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To date, various proposed motion planning algorithms
and frameworks handle only specific subsets of the DCUE
problem. Of course, classical motion planning algorithms
[4] mostly ignore uncertainty when planning in static or
dynamic environments. When the future locations of moving
agents are known, the two common approaches are to add a
time-dimension to the configuration space, or velocity tuning
(the spatial and temporal planning problems are separated)
[4]. When the future locations are unknown, the planning
problem is either solved locally [5]–[7] (reactive planners in
an assumed static environment), or a global planner guides
the robot towards the goal and a local planner reacts to the
dynamic component of the environment [4], [7], [8]. One
attempt to extend the local planner to uncertain environments
is the Probabilistic Velocity Obstacle approach [9].

Planning algorithms for stochastic systems have been
developed, but largely for static environments. Two types
of stochastic systems are distinguished: non-deterministic
(where the uncertainties lie in a bounded set, e.g., [10], [11]),
and probabilistic [4]. Probabilistic systems are the main
focus of this work. The first stochastic planning approach
was pre-image back-chaining [12]. Discrete search strategies
have also been extended to probabilistic systems where
the problem is solved in an extended state space (pose ×
covariance) (e.g., [13]–[15]). Alternatively, the problem can
be posed as a stochastic dynamic program (SDP) [16]. When
the system’s dynamic equation is time-invariant and the stage
cost is constant, the stochastic problem can be solved using
POMDP (Partially Observable Markov Decision Process)
methods [16], [17]. Otherwise, the SDP problem can be
approximately solved with a Rollout algorithm (a limited
lookahead policy) or a restricted information approach [16].
Finally, the Receding Horizon Control (RHC) framework
for deterministic systems has been extended to a stochastic
RHC formulation in the particular case of robot localization
uncertainty (e.g., [18]–[20]).

The problem of predicting future dynamic agent states
has received some attention. Short term predictors evolve
the future state of the dynamic agents using a simple model
such as a constant velocity model, (e.g., [21], [22]). Longer
term predictions can be constrained by learning the dynamic
agents’ preferred paths and using these paths to predict
future states (e.g., [23], [24]), or by inferring structure in the
environment which can inform the prediction process (e.g.,
[25], [26]).

While individual components of the DCUE problem have
been previously considered, a comprehensive framework that
integrates planning, prediction, and estimation as needed
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to solve the DCUE planning problem has been missing.
This paper represents the first formal effort to incorporate
the effect of anticipated future measurements in the motion
planning process. As shown by example, the proper inclusion
of these effects can improve robot performance in the pres-
ence of uncertain agent behavior. We also introduce a novel
analysis of the chance constraints that model the probability
of collisions between moving objects whose positions are
uncertain (Section V-B). Because the exact DCUE solution is
rather intractable, we introduce a stochastic RHC framework
and present the Partially Closed-loop RHC solution approach
in Section IV. This approach is motivated from a dynamic
programming point of view in Section III. Results for a
robot navigating in a static (Section VI-A) and a dynamic
environment (Section VI-B) are presented to illustrate some
of the characteristics of this method. For implementation
simplicity, examples of linear systems with Gaussian noise
terms are considered, even though the approach is more
general.

II. PROBLEM STATEMENT

This section develops an abstract constrained stochastic
optimal control problem statement which encompasses all of
the aspects of the DCUE problem developed in the remainder
of the paper. The formulation presented here is standard. Our
subsequent analysis of this problem represents our technical
contribution.

Let the system state, which could represent the robot
state as well as the states of other moving agents, be a
member of a state space X: xi ∈ X ⊆ Rnx . The control
ui(xi) (i.e., the input commands to the robot) is an element
of the action space U(xi): ui(xi) ∈ U(xi) ⊆ Rnu . The
disturbance, ωi(xi, ui) ∈ W(xi, ui) ⊆ Rnω , models the
uncertainty in the robot’s and agents’ governing dynamic
models and is described by the conditional distribution
ωi(xi, ui) ∼ p(ωi|xi, ui). The disturbance is assumed to be
independent of previous disturbances, ω0:i−1. The system
state is governed by the following discrete-time dynamic
system:

xi+1 = f (xi, ui, ωi) (1)

where the state transition function f : X × U ×W → X is
is assumed to be C2 (continuously twice differentiable).

In general, the system state is not directly measurable, but
must be inferred from noisy measurements. The measure-
ment, yi, is an element of the measurement space Y(xi):
yi ∈ Y(xi) ⊆ Rny . The measurement is corrupted by
measurement noise, νi(xi) ∈ V(xi) ⊆ Rnν , which is
described by the conditional distribution νi(xi) ∼ p(νi|xi).
The C2 sensor mapping, h : X × V → Y maps every state
into a measurement:

yi = h(xi, νi). (2)

The information state1, Ii, captures all the information
available to controller at some stage i, and is discussed in

1For brevity, information state and space will be abbreviated as I-state
and I-space, respectively.

Section III. Consider a class of N -stage control policies from
the current stage, k, Π = {πk(Ik), . . . , πN−1(IN−1)}, that
maps the I-state to a control, ui = πi(Ii). A stage-additive
cost function that captures the essence of the robot task is
assumed:

L(xk:N ,Π, ωk:N−1) = lN (xN )+
N−1∑
i=k

li(xi, πi(Ii), ωi). (3)

The expected cost incurred by the robot as it carries out its
control policy is thus:

CΠ = E

[
lN (xN ) +

N−1∑
i=k

li(xi, πi(Ii), ωi)

]
(4)

where the expectation is taken with respect to the joint
distribution of the random variables: p(xk, ωk:N−1, νk:N ).

Additionally, the controls may be constrained by nonlinear
inequality functions c(uk:N−1) ≤ 0 and the system states are
chance constrained: P (x /∈ Xfree) ≤ δ. This latter constraint
will model obstacle avoidance under uncertainty.

The optimal policy, Π(∗) = {π(∗)
k (Ik),. . . ,π(∗)

N−1(IN−1)},
minimizes the expected cost over the set of admissible
policies, Π̃, while satisfying the constraints:

Π(∗) = arg min
Π∈eΠCΠ

s.t. xi+1 = f (xi, ui, ωi)
yi = h(xi, νi)
c(uk:N−1) ≤ 0
P (x /∈ Xfree) ≤ δ.

This problem is very difficult to solve in general. To gain
insight, we will first consider the unconstrained version of
this problem, which can be reformulated as a stochastic
dynamic programming problem. The constraints will be
incorporated in a later section.

III. STOCHASTIC DYNAMIC PROGRAMMING
The problem of Section II, without the state and control

constraints, can be solved using the stochastic dynamic pro-
gramming (SDP) formulation. The SDP approach constructs
the optimal feedback control: for every reachable future state,
the optimal control action is defined. In the perfect state in-
formation problem, the system state is known or measurable.
The SDP problem is an imperfect state information problem
since the state is not directly measurable. Two features of the
SDP approach are of interest here: converting the problem
into the belief space, and approximating this problem by
restricting the information available to the planner.

A. Converting to Belief Space

I-states summarize the information available to the planner
or controller. Two I-states of interest here are the history I-
state, and the belief state. Let the history of measurements at
the ith stage to be y0:i , {y0, y1, . . . , yi} and the history of
controls be u0:i , {u0, u1, . . . , ui}. The history information
state, ηi, is defined as:

ηi = {η0, u0:i−1, y0:i}. (5)
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where η0 is the initial history I-state. I-states evolve accord-
ing to a dynamic transition functions. The I-state at the next
stage is unpredictable because the next measurement yi+1

is unknown. This measurement, yi+1, plays the role of a
process noise in the history I-space [16].

The history I-state summarizes all of the information that
can be known about the stochastic system up to the current
time. However, because the history I-state can be unwieldy
in practice, it is often useful to work with the simpler belief
state. The belief state is derived from the history I-state
with a sufficient information mapping [4]. We assume that a
Markov probabilistic model governs the system’s evolution:
the current system state is only a function of the state at
the previous time step and the controls and disturbances
experienced by the system at the lat time step. Thus, the
current state is the best predictor of the future states [17].
The belief state is defined as:

ζi , p(xi|ηi). (6)

and the belief state transition function, fζ(ηi−1, ui−1, yi) is
obtained from Bayes’ rule [16], [17].

To proceed with the analysis of this problem, the cost
function, (3), must be converted into an equivalent cost
function in terms of the belief states. The cost at each stage
is the expected value of li(xi, πi, ωi), conditioned on all the
information available at that stage:

l̄i(ζi, πi, yi+1) = E [li(xi, πi, ωi)|ηi] = l̄i(ζi, πi).

The expectation is taken with respect to p(xi, ωi|ηi). The
terminal cost is:

l̄N (ζN ) = E [lN (xN )|ηN ] .

The expectation is taken with respect to p(xN |ηN ). The cost
function becomes:

L̄(ζk:N , πk:N−1, y1:N ) = l̄N (ζN ) +
N−1∑
i=k

l̄i(ζi, πi). (7)

The expected cost in the belief space is written in terms of
the ‘disturbances’ (measurements):

C̄(ζk) = Ey1:N

[
l̄N (ζN ) +

N−1∑
i=k

l̄i(ζi, πi)

]
. (8)

The dynamic programming algorithm is used to solve this
optimization problem by using the backwards recursion [16]:

JN (ζN ) = l̄N (ζN ) (9)
Ji(ζi) = min

πi
l̄i(ζi, πi)

+Eyi+1 [Ji+1(fζ(ζi, πi, yi+1))|ηi] . (10)

The SDP algorithm is a feedback algorithm on belief
space: the optimal control action is defined for every possible
combination of control and measurement sequences. But the
set of possible measurements that can be obtained is infinite.
Only a few SDP problems allow for closed form solution
(e.g., linear systems with quadratic cost, Gaussian noise

terms, and no constraints) [16]. Instead, one must resort to
approximate solutions.

B. Approximations to the SDP

The SDP problem is approximated by either (i) recursively
solving a simplified problem for a control sequence instead of
a control policy (e.g., the Certainty Equivalent Control strat-
egy and the Open-loop Control strategy), or (ii) solving for a
control policy over a limited horizon and then approximating
the cost-to-go function beyond this horizon (e.g., Limited
Lookahead Policies) [16]. The Open-loop Control strategy
is of interest here. This control strategy uses a restricted
information set2 [16] when approximately solving the prob-
lem: measurements beyond the current stage are ignored. The
restricted information set is: η̄i = (y1, . . . , yk, u0, . . . , ui−1),
i ≥ k. The belief states associated with this restricted
information set, ζ̄i = p(xi|η̄i) are the open-loop predicted
distributions, and are used in the SDP algorithm. The effect
of using the restricted information set is that these future
belief states are completely defined for a given control
sequence. Thus, the problem becomes deterministic and (10)
becomes:

Ji(ζ̄i) = min
ui

l̄i(ζ̄i, ui) + Ji+1(fζ(ζ̄i, ui, yi+1)). (11)

This result can now be used to formulate the stochastic reced-
ing horizon control problem to incorporate the constraints.

IV. PARTIALLY CLOSED-LOOP RECEDING
HORIZON CONTROL

While the best approach to extend the RHC formulation
to stochastic systems is still up for debate, it is convenient
to convert the problem into the belief space and then use a
restricted information set to make the problem deterministic
in terms of the belief states. A sequence of control actions
over a finite horizon, M ≤ N , is obtained instead of a
feedback control law for all reachable belief states. The feed-
back mechanism is moved outside of the planning loop: the
control sequence is executed over a short interval (typically
one stage), and the planning process is repeated with new
measurements obtained after executing the control sequence.
by recursively solving the problem, new information is
incorporated:

min
uk:M

l̄M (ζ̄M ) +
M−1∑
i=k

l̄i(ζ̄i, ui) (12)

s.t. ζi+1 = fζ(ηi, ui, yi+1)
P (xk:M /∈ Xfree) ≤ δ
c(uk:M−1) ≤ 0.

Planning and control approaches proposed to date have
used a restricted information set corresponding to the Open-
loop Control approximation to the SDP problem: measure-
ments beyond the current stage are ignored during the plan-
ning process (since the future measurements are obviously

2A restricted information set is a subset of the history I-state or belief
state that is used constuct a more tractable approximating solution.
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unknown at present). This restriction results in the Open-
loop Receding Horizon Control (OLRHC) approach [18],
[20], [27]–[29]. Since no future measurements are consid-
ered, the resulting belief states are the open-loop predicted
distributions for the robot and agents. Yan and Bitmead [18]
noted that the covariances of the future belief states grow
when using the open-loop RHC formulation. They introduced
a ‘closed-loop covariance’ where the covariance for all
future belief states are fixed at the one-step ahead open-loop
prediction value. This crudely accounts for the anticipated
future information during the planning problem. One of our
main technical contributions is the formal inclusion of the
future anticipated measurements into the stochastic RHC
framework.

In an attempt to better account for anticipated future
information, we define an alternative restricted information
set which is the basis for the Partially Closed-loop Receding
Horizon (PCLRHC) control approach that we now introduce.
The key observation is that the future measurements have
two effects on the future belief states (for linear systems
with Gaussian noise terms): the value of the measurement
changes only the center of the belief state (not the spread)
and the measurement reduces the uncertainty in the belief
state. The PCLRHC strategy assumes that the most probable
future measurement will occur, instead of considering the set
of all possible measurements. Since a single measurement
is assumed at every future stage, the future belief states
are predictable for a given control sequence. The restricted
information set used is η̃i = (y1, . . . , yk, ỹk+1, . . . , ỹi,
uk, . . . , ui−1), where ỹj = E[yj |η̃j−1] is the most probable
measurement. The belief state associated with this restricted
information set is ζ̃i = p(xi|η̃i) = p(xi|u0:i−1, y1:k, ỹk+1:i).
The problem of (12) is solved in terms of this new belief
state.

By assuming the most probable measurement, the fact that
a future measurement is going to occur is used to reduce the
uncertainty of the predicted belief state, but the center of the
belief state is not updated. It can be shown, using the relative
information entropy, that this assumption does not introduce
artificial information into the problem (at least for a linear
system with Gaussian noise terms) [30]. Additionally, the
most-likely measurement assumption is the least informative
assumption about the value of the measurement possible:
any other value will introduce information and bias is the
problem.

As we shall see in the ensuing examples, by taking into
account the fact that the robot will take future measurements,
the robot can make more aggressive plans in the presence of
chance constraints that define collisions between uncertain
moving objects.

V. CHANCE CONSTRAINTS

To ensure collision avoidance between objects whose
position is uncertain, it is necessary to introduce chance
constraints: P (x /∈ Xfree) ≤ δ. The positive scalar δ is the
level of confidence and Xfree denotes the free space where
the constraints are not violated (when uncertainty effects

are not considered). Often, the free space can be defined
by Xfree = {x : c(x) ≤ 0}. In the stochastic setting,
the constraints are specified as limits on the probability of
constraint violation.

From the SDP algorithm, when the control at stage i is
selected, the only unknown quantity is the next measurement,
yi+1. When selecting the control, ui, the chance constraint
must hold for all possible values of yi+1 and the chance
constraint to be imposed is P (xi+1 /∈ Xfree|ηi) ≤ δi.

Two types of chance constraints are considered: linear
constraints of the form: P (Ax > b) ≤ δ (e.g., velocity
constraints) and collision constraints, P (C) ≤ δ, (e.g.,
between the robot and other agents). For the former, the only
unknown parameter is the state, and standard results exist.
For the latter, the robot and object states are unknown. We
present a novel analysis of this problem below.

A. Linear Chance Constraints with Gaussian Variables

For Gaussian state variables, linear chance constraints are
simple to evaluate. Let the linear chance constraint be of the
form P (aTxi+1 > b|ηi) ≤ δ. Let x̂i+1|i , E[xi+1|ηi] and
Σi+1|i , E[(xi+1 − x̂i+1|i)(xi+1 − x̂i+1|i)T |ηi].

Lemma 1: The chance constraint P (aTxi+1 > b|ηi) ≤ δ
is satisfied if

aT x̂i+1|i + F (δ)×
√
aTΣi+1|ia ≤ b (13)

where F (δ) is the inverse of the cummulative distribution
function for a standard Gaussian variable.

Proof: Refer to [19], [31].
To enforce the chance constraint with δ = 0.01, the value
for the F (δ) = 2.3263.

B. Collision Chance Constraints

Probabilistic obstacle avoidance can be formulated as a
chance constraint. Blackmore [32] assumed known, static,
non-convex, polyhedral obstacles and a Gaussian distribution
for robot positional uncertainty. With these assumptions,
collision avoidance can be formulated as a set of linear
chance constraints (of the type described by Lemma 1)
for each obstacle. Obstacle uncertainty is ignored in this
framework. We wish to evaluate collision chance constraints
when both the obstacle and robot locations are uncertain. It
is assumed that the geometry of the robot and obstacles are
known.

C. Probability of Collision

For simplicity, assume a disk robot (radius ε) and a point
obstacle3. Let xR be the robot position state, and xA be
the agent position state. The collision condition is defined
as C : xA ∈ B(xR, ε), where B(z, r) is a ball of radius
r centered at z. Let VB be the volume of this ball. The
probability of collision is defined as:

P (C) =
∫
xR

∫
xA
IC(xA, xR)p(xR, xA)dxRdxA (14)

3This analysis can readily be extended to the case where both the robot
and obstacle have disk geometries.
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where IC is the indicator function, defined as:

IC(xA, xR) =
{

1 if xA ∈ B(xR, ε)
0 otherwise.

Using the indicator function and the definition of the joint
distribution, Eq. (14) can be written as:

P (C) =
∫
xR

[∫
xA∈B(xR,ε)

p(xA|xR)dxA
]
p(xR)dxR.

This integral function is difficult to evaluate for general
robot and obstacle geometries. To gain some intuition, as-
sume that the robot radius is small. The inner integral can
be approximated with a constant value of the conditional
distribution of the obstacle evaluated at the robot location,
multiplied by the volume, VB, occupied by the robot:∫

xA∈B(xR,ε)

p(xA|xR)dxA ≈ VB × p(xA = xR|xR)

The approximate probability of collision is therefore:

P (C) ≈ VB ×
∫
xR
p(xA = xR|xR)p(xR)dxR. (15)

D. Collision Chance Constraints for Systems with Gaussian
Variables

If it is now assumed that the robot and the obstacle (ob-
jects) position uncertainties can be described by independent
Gaussian distributions, then the integral in Eq. (15) can be
evaluated in closed form [30]. Let xR ∼ N(xR; x̂R,ΣR) and
xA ∼ N(xA; x̂A,ΣA), then∫

xR
p(xA = xR|xR)p(xR)dxR

= 1√
det(2πΣC)

exp
[
− 1

2

(
x̂R − x̂A

)T Σ−1
C

(
x̂R − x̂A

)]
where ΣC , ΣR + ΣA is the combined position covariance.
The constraint P (C) ≤ δ is converted into a constraint on
the mean states of the robot and obstacle:

(x̂R − x̂A)TΣ−1
C (x̂R − x̂A) ≥ κ (16)

where κ is a function of the level of certainty, the size of the
robot (and obstacle), and the combined covariance. A lookup
table was created to capture the dependence of κ on the ΣC .
To simplify the current implementation, the lookup table was
created specifically for disc objects of radius 0.5 m and a
certainty level of α = 0.99. Furthermore, κ, was catalogued
according to the smallest eigenvalue of the combined position
covariance, λ , min(eig(ΣC))4. The true probability of
collision was estimated for different covariances at different
locations using a Monte Carlo simulation and κ was chosen
to enforce the constraint. Refer to Figure 1. The resulting
values for κ are documented in Table I.

4This is a reasonable parameterization in this work since most of the
position distributions had very similar eigenvalues (the uncertainty ellipses
were roughly circular) and using the smaller eigenvalue results in a slightly
conservative collision constraint.

Fig. 1. Lookup table generation: approximate the probability of collision
between objects of radius 0.5 m using a Monte Carlo simulation for λ = 1.
The robot location is fixed at the origin and the obstacle location is varied.
Evaluate and plot the collision condition (contour plot) and find the ellipse
that encloses the constraint violation area (red ellipse). The robot is plotted
in blue.

TABLE I
COLLISION CONSTRAINT PARAMETER, κ, FOR DIFFERENT VALUES OF λ

WITH α = 0.99 AND DISK OBJECTS OF RADIUS 0.5m

λ 0.005 0.01 0.05 0.1 0.5 1 5 10
κ(λ) 195 105 34.0 21.5 10.5 7.70 3.60 2.00

VI. RESULTS

The OLRHC (which is representative of current stochastic
RHC practice) and the PCLRHC approaches are compared
in static and dynamic scenarios. Even these trivial examples
show how anticipated future measurements and chance con-
straints (which are fundamental to the DCUE problem) can
affect the motion planning outcome. Linear models for the
robot and agents (objects) with Gaussian noise terms were
used for simplicity, but the approach presented in this paper
is more generally applicable.

In the examples, consider planar disk objects (robot and
agents) of radius 0.5 m whose dynamics are governed by:

xi = Axi−1 +Bui−1 + Fωi−1 (17)

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

B =


0 0
0 0
1 0
0 1

F =


0 0
0 0
1 0
0 1


where ∆t = 0.5 s. The system state consists of the planar
positions and velocities. The process noise is independent
and normally distributed with zero mean and Σω = 0.01×I2
(I2 is the identity matrix in 2 dimensions).

A linear position measurement model is assumed with
normally distributed measurement noise (zero mean and
Σν = 0.01× I2). The measurement equation is:

yi = Cxi +Hνi (18)

where

C =
[

1 0 0 0
0 1 0 0

]
H =

[
1 0
0 1

]
.
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Fig. 2. Planned trajectories with the OLRHC (green, dashed) and PCLRHC
(blue, dashed) approaches, with the associated 1-σ uncertainty ellipses. The
static obstacle is plotted in red.

A. Static Environment Example

The robot must navigate in a static environment with
a single rectangular static obstacle (known geometry and
position). The robot’s initial position and goal location are
chosen so that the robot must skirt the obstacle. The system
is initialized with: x0 ∼ N (x̂0|0,Σ0|0), where x̂k|k =
[0 0.75 1 0]T and Σk|k = 0.01 × I4. The goal state is
xG = [10 0.75 0 0] and the objective is to minimize the
expected value of the stage-additive cost function:

L(x0) = (xM − xG)T QM (xM − xG) +
M−1∑
i=0

{
(xi − xG)T Qi (xi − xG) + uTi Riui

}
(19)

where QM = diag(10, 10, 0, 0), Qi = diag(1, 1, 0, 0), and
Ri = diag(1, 1, 0, 0), for all i = 0, . . . ,M − 1.

In order to fully test the framework, each control input is
constrained to be less than unity at each stage: u(1)

i ≤ 1 and
u

(2)
i ≤ 1, i = 0, . . . ,M − 1. The collision chance constraint

takes the form: P (x(2)
i < 0|ηi−1) ≤ δp,i where δp,i = 0.01.

Furthermore, each velocity component is constrained to the
range of [−2, 2]:

P (x(3)
i > 2|ηi−1) ≤ δv,i and P (x(3)

i < −2|ηi−1) ≤ δv,i
P (x(4)

i > 2|ηi−1) ≤ δv,i and P (x(4)
i < −2|ηi−1) ≤ δv,i

where δv,i = 0.01 for i = 0, . . . ,M .
The planned paths at the initial stage for the OLRHC

(green, dashed) and PCLRHC (blue, dashed) approaches are
shown in Figure 2. The static obstacle is illustrated in red.
The 1-σ error ellipses along the trajectories represent the
uncertainty associated with the robot position. The optimal
solution to this problem is trivial: the robot should travel in
a straight line from the initial location to the goal location.
However, the planned OL path diverges from the straight line
due to the chance constraints that are being enforced. Since
future measurements are not considered during this plan,
the robot’s uncertainty grows into the future, and therefore
the robot must ‘back-off’ from the position constraint. The
obtained solution is very conservative, and the goal is not
reached. For the PCLRHC approach, the growth in uncer-
tainty is bounded since the effects of the anticipated future

Fig. 3. Comparison of the planned and executed paths produced by the
OLRHC and PCLRHC approaches

measurements are incorporated in the plan. The initially
planned solution from the PCLRHC approach drives the
robot straight to the goal.

Fig. 3 shows that the executed paths are similar due
to the Receding Horizon Control “outer loop feedback”
mechanism (the problem is re-solved as new measurements
are taken at each planning cycle). However, the planned
and executed trajectories for the OLRHC approach differ
substantially, as the planner relies almost exclusively on
the outer-loop feedback mechanism to execute a reasonable
trajectory. For the PCLRHC approach on the other hand,
the planned and executed trajectories are very similar, and
the outer loop feedback mechanism is used to correct for
the actual measurements and noise encountered along the
trajectory. This implies that the planner is efficiently using
the anticipated future information when solving the planning
problem.

B. Dynamic Environment: Oncoming Agents

Consider again the same robotic system of Section VI-A,
with the same dynamic and measurement models, and the
same cost function. Two dynamic obstacles move towards
the robot. We assume that the agent models are independent
of the robot state (i.e., the agent doesn’t “react” to the
presence of the robot). However, the agent states enter the
problem through the collision chance constraints. The goal
state is xG = [10 0 0 0]. The robot initial state is x0 ∼
N (x̂R0|0,Σ

R
0|0), where x̂Rk|k = [0 0 1 0]T and ΣRk|k = 0.01 ×

I4. The first agent’s initial state is xA1
0 ∼ N (x̂A1

0|0,Σ
A1
0|0),

where x̂A1
k|k = [12 2 1 0]T and ΣA1

k|k = 0.01 × I4. The
second agent’s initial state is xA2

0 ∼ N (x̂A2
0|0,Σ

A2
0|0), where

x̂A2
k|k = [12 − 2 1 0]T and ΣA2

k|k = 0.01 × I4. Finally, the
collision chance constraints are imposed for each agent and
at each stage with δc = 0.01.

Fig. 4 shows the first stage planned and predicted trajec-
tories for the OLRHC (green, dashed) and PCLRHC (blue,
dashed) approaches and the agents (red, dashed). The 1-σ
uncertainty ellipses are plotted along these trajectories. In
this example, the PCLRHC approach obtains a significantly
improved planned and executed trajectory. The OLRHC
approach is unable to plan between the agents, and must
instead move around both agents. This is due to the growth in
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Fig. 4. Planned trajectories with the OLRHC (green, dashed) and PCLRHC
(blue, dashed) approaches and the predicted agent trajectories (red, dashed)
with the 1-σ uncertainty ellipses

uncertainty. The PCLRHC approach is able to make progress
directly towards the goal. It is clear that the PCLRHC
approach is significantly better than the OLRHC approach. A
Monte Carlo simulation is used to quantify this improvement
for this specific scenario. To quantify this improvement more
generally, a Monte-Carlo simulation is used in the following
example.

C. Monte-Carlo Simulation: Crossing Agents

Two dynamic obstacles cross the space between the robot
and the goal. The same models, cost function, and constraints
are used as in Section VI-B. The goal state is xG =
[12 0 0 0]. The robot initial state is xR0 ∼ N (x̂R0|0,Σ

A
0|0),

where x̂R0|0 is defined below and ΣR0|0 = 0.01 × I4. The
first agent initial state is xA1

0 ∼ N (x̂A1
0|0,Σ

A1
0|0), where x̂A1

0|0
is defined below and ΣA1

0|0 = 0.01 × I4, and the second
agent initial state is xA2

0 ∼ N (x̂A2
0|0,Σ

A2
0|0), where x̂A2

0|0 is
defined below and ΣA2

0|0 = 0.01 × I4. Finally, the collision
chance constraint for each agent is imposed at each stage
with δc = 0.01.

TABLE II
MONTE-CARLO SIMULATION INITIAL CONDITION RANGES

x y Heading
Robot 0 [−2, 2] [−22.5◦, 22.5◦]

Agent 1 [4, 8] 6 [−120◦, −75◦]
Agent 2 [4, 8] −6 [75◦, 120◦]

The simulation is repeated 200 times with randomized
initial conditions. The ranges of the variable are given in
Table II. The robot initial velocity is 1.2 m/s and the initial
velocity is fixed at 1 m/s for both agents. The robot moves
from left to right, agent 1 moves from north to south, and
agent 2 from south to north (crossing).

The executed trajectories from the PCLRHC approach
are compared to the OLRHC approach results. From the
histograms of the executed path lengths for the OLRHC (Fig-
ure 5) and PCLRHC (Figure 6) approaches, the PCLRHC

Fig. 5. Histogram of executed path lengths for the OLRHC approach. The
first peak (centered around 12.5) corresponds to cases where the robot is
able to move directly to the goal. The second peak (centered around 15)
corresponds to the cases where the robot has to maneuver around the agents.

Fig. 6. Histogram of executed path lengths for the PCLRHC approach.
The first peak (centered around 12.5) corresponds to cases where the robot
is able to move directly to the goal. The second peak (centered around 15)
corresponds to the cases where the robot has to maneuver around the agents.

approach is more often able to find direct paths to the goal
(from the height of the peak centered around 12.5 m) than
the OLRHC approach. A larger second peak (at 15 m) for the
OLRHC approach indicates that the approach must react to
the agents more often, resulting in longer paths. On average,
the PCLRHC approach obtains shorter executed paths. On
a case-by-case comparison, the PCLRHC approach finds
shorter paths in 72.0% of the cases, with at least a 10%
improvement in 37.5% and at least a 20% improvement in
17.5% of the cases.

VII. CONCLUSIONS AND FUTURE WORK

A complete strategy for solving motion planning prob-
lems in Dynamic, Cluttered, and Uncertain Environments
(DCUEs) has been lacking. In this paper we took some
initial steps toward building such a framework. These en-
vironments are characterized by uncertainty in the positions
of the robot and moving agents, as well as uncertainty
about the future trajectories of the agents. Because stochastic
dynamic programming (SDP) does not readily incorporate
collision constraints, and because exact SDP solutions are
often intractable, this paper developed the Partially Closed-
Loop Receding Horizon Control (PCLRHC) strategy for
this problem. Our approach was motivated by the desire to
account for anticipated future information in the planning
process. In this way, we are better able to manage the
growth of system uncertainty in the prediction component
of the DCUE solution, as the anticipated future information
reduces the uncertainty associated with future belief states.
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Previous planning approaches were hampered by the growth
in uncertainty associated with future belief states, leading to
highly constrained and conservative plans. The planned and
executed paths are much closer for the PCLRHC approach,
indicating that the planner effectively uses the anticipated
future information during the planning process. These plans
are more aggressive because they take into account the fact
that updates of the world’s state will be available. Simulation
results for a robot navigating in a static and dynamic envi-
ronments highlighted the improvement in plan quality for the
partially closed-loop approach, compared to the open-loop
approach where all future information is ignored.

Collision constraints in the case of uncertain robot and
agent position are naturally formulated in terms of chance
constraints. We developed a new analysis of collision chance
constraints. Previous results assumed perfect knowledge of
the obstacle states and geometries.

The partially closed-loop approach effectively manages
the uncertainty growth during belief state propagation. This
potentially allows for more complicated agent behaviors to
be modeled and included in the planning process. E.g.,
one could model agents as “cooperative,” “neutral,” or
“combative.” Open-loop approaches are unable to plan in
these scenarios since the complicated agent behaviors result
in more uncertainty, and the problem becomes even more
constrained. Future work will focus on planning among
agents with more complicated behaviors. For example, agents
with multi-modal behavior models (such as different possible
destinations), and agents with multiple possible models are
of interest. Furthermore, agent models that are dependent on
the robot states are of interest, since these models will allow
the robot to actively gather information about the agents (i.e.,
adjust the plan to improve the quality of the information).
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