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Abstract— Bipedal walking could be implemented into a
robot by mimicking spring-like leg behaviour. The fundamental
model, describing human-like leg function in walking is the
bipedal spring-mass model which was investigated in this study.
We identified several types of walking patterns, e.g. symmetric
and asymmetric walking, that accounts for high variability of
gait. The aim of this study is the identification of a stiffness
range which allows for stable walking with comparatively
large robustness against perturbations. Walking with compliant
legs was tested with the bipedal PogoWalker, demonstrating
advantages of the underlying leg mechanics, i.e. walking without
the necessity of precise leg adjustments, and acceptable impact
forces.

I. INTRODUCTION

The most common gait of humans is walking on two legs.
Whereas human walking seems to be naturally internalized,
it appears to be complicated to implement bipedal gaits
into artificial systems (e.g. walking robots, prostheses). A
class of artificial bipeds emulating human-like walking are
the passive dynamic walkers, having straight legs during
stance phase [1]. The straight leg mechanism provides a
remarkable energy efficiency in locomotion but minor ro-
bustness against perturbations [2]. In contrast, human legs
are never completely straight in walking, although the body
is clearly lifted during midstance [3]. Investigations on leg
dynamics revealed a spring-like leg mechanism. This was
demonstrated with the bipedal spring-mass model, providing
patterns of ground reaction forces similar to those found
in human walking [4]. A key requirement for successful
walking is stability, which is also predicted by the bipedal
spring-mass model. Another important feature of spring-like
leg mechanics is the reduction of impact forces, preventing
the system from damage. Leg compliance not necessarily
has to be generated by physical springs. It could also be
actively simulated as it was demonstrated in a robot hopping
vertically [5].

While compliant leg mechanisms have already been im-
plemented in walking robots [6], [7], [8], [9], performance
and limitations of spring-like legs in walking are still rather
unknown. The first purpose of this study is to analyze the
capabilities of spring-like legs to generate walking patterns,
represented by the size and structure of the parameter space
and the range of possible walking speeds. As the periodicity
of gait establishes a basis for stabilizing swing-leg strategies
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Fig. 1. The bipedal spring-mass model for walking. The simulation starts
at the instant of vertical leg orientation (VLO) during single support phase
and one step is completed at VLO of the counter leg.

[10], we begin with the investigation of periodic walking
patterns. In order to identify periodic gaits we introduce a
Poincaré section at the instant of Vertical Leg Orientation
(VLO) during single support (Fig. 1), that allows for the
investigation of both, walking and running, with the same
method. Here, we focus on human-like walking characterized
by double support phases and two humps in the vertical
ground reaction force.

To guarantee stable walking with compliant legs, leg
stiffness is a crucial parameter in the robot design. Here,
we ask which stiffness value would be a good choice for
bipedal systems. Therefore, the second purpose of this study
is to identify a leg stiffness that provides stable and robust
walking.

While this paper is focusing on a simulation study, we
also present data of preliminary walking experiments on a
bipedal robot with compliant telescoping legs (PogoWalker)
and compare them with the bipedal spring-mass model.

II. METHODS

For investigating walking the bipedal spring-mass model
[4] is used (Fig. 1). It describes the action of the spring-like
stance legs supporting the body (represented as a point mass
m) against gravity. The legs are massless telescopic springs
of stiffness k and rest length L0. During ground contact for
leg 1, it exerts a force F1 on the point mass directed from
the foot point rFP1 to the center of mass r = [x, y]T. During
swing phase, the force F1 is zero and the leg has no influence
on system dynamics.
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The bipedal spring-mass model is acting in the sagittal
plane. The equation of motion is

mr̈ = F1 + F2 −m g (1)

where g = [0, g]T is the gravitational acceleration with g =
9.81 m s−2. The force of leg 1 during stance is defined as

F1 = k

(
L0

|r − rFP1|
− 1
)

(r − rFP1) . (2)

When the force decreases to zero the leg’s state changes
from stance to swing phase. The transition from swing to
stance occurs when the landing condition yTD = L0 sin(α0)
is fulfilled while the vertical velocity ẏ is negative. The
parameter α0 is the constant angle of attack.

The bipedal spring-mass model has a total number of five
system parameters: body mass m, leg length L0, stiffness k,
angle of attack α0, and the total system energy E. In order
to compare the model with other legged systems of different
size, dimensional analysis can be applied. Herewith, the
number of parameters can be reduced to three fundamental
parameters [4], i.e. the dimensionless leg stiffness k̃ =
k L0/(mg), the angle of attack α0, and the dimensionless
system energy Ẽ = E/(L0mg). In the simulations pre-
sented here the individual parameters are based on human
dimensions, i.e. body mass m = 80 kg and leg length
L0 = 1 m.

The bipedal spring-mass model is capable of periodically
repeated gait patterns like walking and running. A gait
pattern is fully described by the system parameters and the
initial conditions r0 = [x0, y0]T, and ṙ0 = [ẋ0, ẏ0]T. The
initial conditions are chosen such that one leg has ground
contact and is orientated vertically (x = xFP1). This event
is called Vertical Leg Orientation (VLO). A single step is
completed when the second leg has ground contact and the
hip respectively the center of mass is perpendicular to the
foot point (x = xFP2). With these definitions, the number
of independent initial conditions can be reduced. At the
instant of VLO the horizontal position is zero with respect
to the actual foot point. Due to energy conservation of
the model, the initial velocity’s magnitude |ṙ0| depends on
system parameters and on the initial height y0:

|ṙ0|2 =
2
m

(
E −mg y0 −

k

2
(L0 − y0)2

)
. (3)

The direction of motion can be represented by the velocity
angle θ0 = arctan (ẏ0/ẋ0) and therefore, the velocity
components ẋ0 and ẏ0 can be expressed using trigonometric
relations. Hence, the two independent initial conditions are
the height y0 and the velocity angle θ0 at VLO.

A legged system can be investigated by analyses of single-
step Poincaré maps of the state vector S with VLO as
Poincaré section. The mapping function is Si+1 = F (Si)
where i is the number of the individual step. Si denotes the
system’s state at the instant of VLO with Si = [yi, θi]

T. A
periodic gait pattern (limit-cycle trajectory) corresponds to a
fixed point in the Poincaré map S∗ = F (S∗). Stability of
a periodic solution is estimated by calculating the effect of

small perturbations in the neighborhood of the fixed point.
Therefore, a linear approximation is applied [Si+1 − S∗] =
J (S∗) [Si − S∗] where J (S∗) is the Jacobian matrix,
with its eigenvalues λj called Floquet multipliers. Dynamic
stability of the periodic gait is indicated if the magnitude of
all eigenvalues is smaller than one [11].

If stability of a periodic gait pattern is identified, a corre-
sponding basin of attraction within the state space exists. For
calculating the boundary of the basin of attraction two meth-
ods were applied. The first method requires an additional
fixed point, namely a saddle-node which is characterized by
having one eigenvalue |λ1| greater than one and the other
|λ2| less than one. The boundary of the basin of attraction is
defined by the stable manifold of this saddle node [11], [12]
which can be calculated by iterating this manifold backwards
in time.

If there exists no saddle-node or the stable manifold cannot
be calculated completely, an intuitive steps-to-fall method
is applied for estimating the basin. Here, the number of
steps is calculated for every rasterized combination of initial
conditions. If the trial was successful, i.e. a minimum number
of 50 walking steps was reached, and the system’s state
variables converge towards the stable fixed point, the initial
conditions are located within the basin of attraction. The
boundary of the basin of attraction is estimated with a
higher precision by refining the underlying grid. The area
of the enclosed basin of attraction characterizes the amount
of robustness of the stable gait pattern.

The model is implemented in MATLAB/SIMULINK
(R2007b, The MathWorks Inc., Natick, MA, USA) using a
Runge-Kutta variable step integrator (ode45) with absolute
and relative error tolerance of 10−11. Periodic gait patterns
were computed using a Newton-Raphson algorithm and a
pattern is identified when the deviation between initial con-
ditions and state space after one step

∑2
j=1 |Si+1,j − Si,j |

is less than 10−9.

III. RESULTS

The bipedal spring-mass model reveals several kinds of
periodic walking patterns which can be characterized by
the number of peaks in the shape of the ground reaction
force. In this paper we focus on human-like walking, where
two peaks can be observed in the normal walking patterns.
First, we describe such periodic walking patterns based on
a fixed representative leg stiffness of k̃ = 20 identical to
PogoWalker’s leg stiffness (section IV).

Fig. 2 shows the independent initial conditions of periodic
walking solutions for given angles of attack and selected
system energies. There exist symmetric walking patterns (e.g.
A and B) shown in Fig. 2(a) with zero velocity angle θ0.
Here, the center of mass trajectory is mirror-symmetric about
midstance [13] and the instant of VLO equals midstance.
Asymmetric walking patterns are shown in Fig. 2(b) with
the corresponding velocity angle in Fig. 2(c). Whereas each
single step is equal to the previous step, in asymmetric
patterns the center of mass trajectory cannot be mirrored
through VLO or other events (patterns C and D in Fig. 3).
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Fig. 2. Initial conditions (y0, θ0) with respect to angle of attack α0 of
(a) symmetric (θ0 = 0), and (b) and (c) asymmetric walking patterns for
selected dimensionless system energies Ẽ and one leg stiffness k̃ = 20.
Each point represents a periodic walking solution and the circles indicate
transcritical bifurcations where asymmetric patterns cross the symmetric
ones. The cross in (a) indicates a two-parameter bifurcation. Gray shaded
areas represent regions of stable walking solutions. The dotted line is the
touch down height yTD(α0). The examples A-E are shown in Fig. 3.

Asymmetric patterns exist for both, positive and negative
velocity angles, and transcritical bifurcations (i.e. intersec-
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Fig. 3. Stick figures (left) of representative walking patterns related to the
selections in Fig. 2. The emphasized events in the left column are touch
down (TD), the instant of vertical leg orientation (VLO), and lift off (LO) of
the second leg. The right column shows normalized ground reaction forces
of a complete gait cycle.

tions with symmetric walking patterns) arise (circles in Fig.
2(a) and 2(b)). The asymmetric walking patterns are point
symmetric regarding the transcritical bifurcation. Pattern C
and D are selected to show this feature. The lift off angle in
C is equal to the angle of attack in D, and vice versa.

In general, for a given system energy the average velocity
decreases with increasing angle of attack. For example, the
velocity of pattern A (α0 = 69 deg, Ẽ = 1.05) decreases
from 1.20 m/s to 1.07 m/s for α0 = 73 deg and constant
energy. In the majority of cases, for a given angle of attack
the height at VLO increases with increasing system energy.
This indicates that the system transfers comparatively much
of the additional energy into potential energy, i.e. the center
of mass bounces more. Therefore, for a given angle of attack
the average velocity increases slightly due to the added
energy. For example, at pattern A (see above) the average
velocity increases from 1.20 m/s to 1.24 m/s when system
energy increases about ∆Ẽ = 0.02. A total transfer into
kinetic energy would imply a velocity gain of 0.63 m/s. In
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Fig. 4. Stable (thick solid lines) and unstable (dotted lines) fixed points
in the VLO return map and two examples of the basin of attraction (white
transparent areas) that are spanned in the state space (VLO height y0, and
velocity angle θ0). The circle ◦ represents the stable fixed point and the
diamond � indicates the saddle node required for calculating the boundary of
the basin of attraction. The constant parameters are k̃ = 20, and Ẽ = 1.05.

contrast, the walking solutions pattern B belongs to, consti-
tute an exception: Here, with increasing energy the vertical
oscillation of the bipedal spring-mass model decreases and
more energy is transfered into kinetic energy. For example,
the average velocity of pattern B (α0 = 73 deg, Ẽ = 1.05)
increases from 1.23 m/s to 1.38 m/s by increasing system
energy about ∆Ẽ = 0.02. The walking solutions were
calculated for a maximum energy of Ẽ = 2.5, where a
speed of 5.47 m/s was found for a walking pattern similar
to pattern B. Minimum and maximum average velocity for
patterns of type A are 0.10 m/s (Ẽ = 1.00, α0 = 88.3 deg)
and 1.41 m/s (Ẽ = 1.083, α0 = 62.2 deg), respectively.

In cases of pattern B, we observe a morphing from two-
peak ground reaction forces (Fig. 3) to single-peak forces
when energy is increased or when the angle of attack gets
flatter. However, these patterns require a very short time for
swinging the leg forward, e.g. 0.13 s in pattern B.

The symmetric walking solutions belonging to pattern B
are disconnected from those of other patterns by a bifurcation
at Ẽ = 1.0392 and α0 = 72.4 deg in a two-parameter space
(Ẽ, α0) shown as a cross in Fig. 2(a). This bifurcation is not
related to the previously mentioned transcritical bifurcations
where asymmetric solutions intersect symmetric ones which
occur at α0 ≈ 71.6 deg.

Stability is an important aspect for legged locomotion.
The bipedal spring-mass model shows self-stable walking
patterns as indicated by the gray areas in Fig 2. For energies
Ẽ > 1.0392 there exist two parameter regions of self-
stable walking solutions. The first stable region contains
symmetric walking patterns and is limited on the left side
by the minimum VLO heights and on the right side by
the transcritical bifurcations (Fig. 2(a)). The second region
contains asymmetric walking patterns and starts at the men-
tioned transcritical bifurcations. Another small region of self-
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Fig. 5. Stability and robustness of stable walking solutions. The maximum
Floquet multiplier in (a) illustrates compensation of small perturbations
while max |λ| = 0 would indicate dead-beat behavior. A detailed example
is displayed for k̃ = 25. The area of the basin of attraction in (b) is an
estimation for robustness to larger perturbations. It was calculated with a
coarser grid due to the enormous computational effort. The dashed line
in (b) indicates transcritical bifurcations separating stable symmetric and
asymmetric walking. System energy depends on leg stiffness using equation
4. The icons in (b) show examples of basins of attraction with the stable
fixed point (black dots), and the touch down heights yTD (horizontal lines)
within the ranges θ0 = [−40, 40] deg, and y0 = [0.9, 1]m.

stable symmetric walking patterns is identified for energies
smaller than Ẽ = 1.0392. All walking solutions related
to pattern B are unstable, indicated by maximum Floquet
multipliers larger than one. To give an example, at a speed of
2 m/s the best respectively lowest value of maximum Floquet
multipliers is max |λ| = 10.2. Moreover, with increasing
speed the maximum Floquet multipliers rise too.

So far, the description of walking gaits was done for a
constant leg stiffness. Within the explored range of stiffness
k̃ = [5, 35], the general structure shown in Fig. 2 does
not change. However, the distribution in angle of attack
of periodic walking solutions decreases with increasing leg
stiffness. Symmetric walking patterns exist in the range
of α0 = [38.0, 85.7] and [65.0, 86.8] for a stiffness of
k̃ = 6 and 30, respectively. Furthermore, there is a shift
in system energy which can be explained using asymmetric
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walking patterns. For example, asymmetric walking is found
in the range of Ẽ = [0.954, 1.041] and [1.047, 1.065] for
a stiffness of k̃ = 6 and 30, respectively. The energy
range decreases with increasing leg stiffness. Due to the fact
that there is no overlap in energy between low and high
stiffness, a comparison with a constant system energy would
not make sense. Therefore, the comparison was done by
taking the energy shift into account. For each leg stiffness
a representative energy, i.e. the energy where the α0-range
of asymmetric patterns is maximal, was chosen. This energy
can be best approximated with

Ẽ(k̃) = −0.054 log10(k̃)2 + 0.189 log10(k̃) + 0.898. (4)

Self-stable walking can be found for leg stiffness higher
than k̃ = 5.5 as shown in Fig. 5(a). The α0-range of stable
solutions increases with increasing stiffness until k̃ = 15 and
then slightly decreases.

As a criterion for selecting system parameters, more
important than stability, is the robustness of already stable
walking solutions. For this purpose, the area of the basin
of attraction was calculated, exemplarily illustrated for two
selected walking patterns in Fig. 4. The basin of attraction at
α0 = 69 deg is completely enclosed by the stable manifolds
of the saddle node. In the second example (α0 = 73 deg)
the basin of attraction is limited by the touch down height
y0 = yTD for negative velocity angles θ0. Below this
limit further steps are impossible because the touch down
condition cannot be fulfilled. Here, the boundary of the
basin of attraction was determined by a combination of both
methods, the calculation of the manifold and the steps-to-fall
method.

The area of the basin of attraction as a measure for
robustness is shown in Fig. 5(b). Two maxima of the area
can be found: the first maximum at k̃ ≈ 15 for symmetric
walking patterns, and the second at k̃ ≈ 11 for asymmetric
walking. With increasing leg stiffness the area decreases.
This is due to the fact that with increasing leg stiffness the
angle of attack is shifted toward larger angles. Hence, the
touch down height yTD(α0) increases and limits the basin
of attraction. Furthermore, at higher stiffness the basin of
attraction is more limited with respect to initial velocity
angles θ0 compared to lower leg stiffness. At the transcritical
bifurcation the area is minimal. In the majority of cases
in symmetric walking, with increasing area of the basin of
attraction, the corresponding Floquet multiplier converges
towards one.

IV. ROBOT EXPERIMENT

So far, walking was investigated using the bipedal spring-
mass model. In this section we will present preliminary walk-
ing experiments done with the bipedal robot PogoWalker
(Fig. 6(a)), which has prismatic legs with a rest length
of 0.58 m. The leg force is generated by springs with an
overall leg stiffness of k̃ ≈ 20. The PogoWalker weighs
4.1 kg and its mass is concentrated at the upper body.
During the experiments about 10% of the robots weight was
suspended by elastic cords to prevent from falling. In each
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Fig. 6. The bipedal PogoWalker in (a) with compliant telescoping legs
walking on the instrumented treadmill. The schematic in (b) illustrates the
motor configuration for one leg.
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Fig. 7. Vertical ground reaction forces (GRF) of PogoWalker measured
with treadmill sensors. The forces are separated for both legs and were
recorded with 200Hz.

leg two motors are implemented: one motor actuates the hip,
elastically coupled with belts and another shortens the legs
during swing phase using a flexible cable.

The control is separated into three phases. During stance
phase, the leg is retracted with a speed matching the tread-
mill speed. After lift off, the leg is actively shortened and
protracted until a leg angle of α0 ≈ 70 deg is reached.
The elastic coupling of the hip motor generates a slightly
underdamped system. Small deviations of the leg angle α0

from the desired value occur within small fractions of the
step time. In the last phase, the leg waits in the mentioned
leg position until touch down occurs, which is detected by
foot force sensors.

The PogoWalker moved on an instrumented treadmill
that is purpose-built for robot experiments (Tecmachine,
Andrezieux Boutheon, France). The treadmill has integrated
force sensors (Kistler, Winterthur, Switzerland) to measure
three dimensional ground reaction forces of both legs sepa-
rately. Fig. 7 shows vertical forces of a walking experiment at
a treadmill speed of 0.46 m/s. After a few seconds the robot
mechanically adapts to the motion and shows first double
humped ground reaction forces. The selected force pattern is
related in shape to the asymmetric pattern E in Fig. 3.

At initial stance phase the forces have a peak that is in
most cases not larger than the active peak during single sup-
port. Both legs generate noticeably different ground reaction
forces, caused by an asymmetry in the robot construction.
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V. DISCUSSION

The objectives of this study were (1) the identification of
periodic walking patterns, (2) the extraction of a leg stiffness
that provides stable and robust walking, and (3) a verification
of the advantages of compliant legs on a robot experiment.
In this section we discuss primary findings, starting with the
leg stiffness for stable and robust bipedal walking.

There exists a range of k̃ = [10, 20] where the model
shows both, self-stability and comparatively large robustness
against perturbations. Moreover, as the range of angles of
attack providing stable walking is large, there is no need
for precise leg adjustment in preparation for touch down.
This enables a relaxed leg placement control for continuing
walking as demonstrated with PogoWalker.

The PogoWalker’s leg stiffness is located at the upper limit
of the indicated stiffness range. However, this stiffness might
be a compromise between robustness and energy efficiency.
The lower the stiffness, the more the leg will be compressed
and more energy might be dissipated [14]. The extreme case
of bipedal walking are passive dynamic walkers with almost
infinite leg stiffness, showing high energy efficiency but low
robustness. This can be approximated from Fig. 5(b), as the
basin of attraction clearly decreases with increasing stiffness.

The size of the basin of attraction is not directly related
to the orbital stability, expressed by the maximum Floquet
multiplier [15]. A stable walking pattern with a large basin
of attraction is often less orbitally stable. Although, it takes
many walking steps to reduce a small perturbation, even large
perturbations are manageable as it was shown for passive
dynamic walking on irregular surfaces [15].

The bipedal spring-mass model predicts that walking
with compliant legs can be much faster than the speed at
which humans naturally change from walking to running
(≈ 2 m/s) [16]. In these fast walking patterns (related
to pattern B in Fig. 3) Floquet multipliers indicate highly
unstable behavior with values clearly exceeding the stability
limitation of max |λ| = 1. We assume that such gaits can
be stabilized by combinations of swing-leg strategies, i.e.
swing-leg retraction, and adaptation of leg stiffness and leg
length [10].

Another drawback of fast walking patterns are very short
swing durations, as can be estimated from pattern B in Fig.
3. This seems not feasible for robots with heavy legs. The
velocity limit of more natural walking (related to pattern A)
is found at 1.4 m/s, which is a medium walking speed for
humans. We assume that the linear force-length relationship
of the investigated legs limits this speed and that this speed
range could be enhanced by non-linear leg functions. A
decreasing force-length relationship owing to leg segmen-
tation improves stability in running at moderate speeds [17]
and it remains for further investigations to prove whether it
enhances walking too.

The walking patterns identified in the low dimensional
bipedal spring-mass model are a basis for legged systems
with more parameters and state space variables. For example,
the symmetric walking patterns are completely inherited

in a simulation model with a distributed upper body, that
was established for testing a novel hip control to stabilize
the trunk [18]. In a forthcoming study, we will prove the
technical feasibility of this hip control in the PogoWalker.

In contrast to the PogoWalker, our model doesn’t have
leg mass. However, this simplified model is a good template
for describing complex walking systems [4]. Extending the
model with leg masses would require further model exten-
sions, namely energy recovery mechanisms to compensate
impact losses, and a distributed body to counteract the
hip torques during swing phase. We expect that the most
prominent system properties are the representation of impacts
and the limitation of the solution space to walking patterns
with reasonable swing times. The bipedal spring-mass model
may help to reveal new system features.
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