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Abstract— Reinforcement learning algorithms have been suc-
cessfully applied in robotics to learn how to solve tasks based on
reward signals obtained during task execution. These reward
signals are usually modeled by the programmer or provided by
supervision. However, there are situations in which this reward
is hard to encode, and so would require a supervised approach
of reinforcement learning, where a user directly types the
reward on each trial. This paper proposes to use brain activity
recorded by an EEG-based BCI system as reward signals. The
idea is to obtain the reward from the activity generated while
observing the robot solving the task. This process does not
require an explicit model of the reward signal. Moreover, it is
possible to capture subjective aspects which are specific to each
user. To achieve this, we designed a new protocol to use brain
activity related to the correct or wrong execution of the task.
We showed that it is possible to detect and classify different
levels of error in single trials. We also showed that it is possible
to apply reinforcement learning algorithms to learn new similar
tasks using the rewards obtained from brain activity.

I. INTRODUCTION

Robot learning covers a field of robotics where robots

learn new abilities or improve their performance based on

data related to the task. Examples of these techniques include

imitation learning [1], where the robot learns from a demon-

stration, or learning through experience. In the latter case, the

robot learns by acting and using the information provided by

its actions to improve its knowledge about the environment.

In this context, reinforcement learning methods (RL) [2]

have been successfully applied to learn motor behaviors and

motion primitives from reward signals obtained while acting.

Furthermore, recent developments have made possible to

apply reinforcement learning in real robot problems, where

one has to cope with continuous states and spaces and many

degrees of freedom e.g., [3].

The key ingredient of any RL method is to compute a

policy that maximizes a reward signal (or minimize a cost).

While acting, the robot receives samples of this reward and

uses them to improve its own policy in the future. In practice,

this reward signal is defined by the robot programmer for

each specific task. To compute the particular reward, one has

to develop some ad-hoc engineered system (e.g. a tracking

system) or, alternatively, supervise the task and manually

provide a reward signal.

This paper addresses a novel approach to compute the

rewards for the learning task directly from brain activity
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recorded using a non-invasive Brain-Computer Interface. The

long term vision is to develop robotic systems such as

prostheses that operate close to the human and can adapt

themselves to new tasks. By extracting the reward directly

from brain activity, this adaptation process has several ad-

vantages. It occurs in a transparent manner even in situations

where it would be difficult to model the reward. Furthermore,

this process captures task subjective aspects that depend on

each user, which is a firm step towards the individualized

operation.

Brain-Computer Interfaces (BCI) are systems that record

and process the brain activity to perform useful actions in the

logic or physical world. The recording technique used in this

paper is the electroencephalogram (EEG), which is a non-

invasive method (it registers electrical activity on the surface

of the scalp). Despite its low spatial resolution, the EEG is

portable and has a very high temporal resolution. Therefore,

it turns to be interesting for real-time applications and in

particular for the field of robotics. EEG-based BCI systems

have been used to move an arm prosthesis [4], drive a robotic

wheelchair [5], [6], or teleoperate a robot via internet [7].

Broadly speaking, there are two types of brain activ-

ity: spontaneous brain rhythms and event-related potentials

(ERPs). The difference is that the ERPs are evoked by stimuli

or events (as opposed to the spontaneous EEG rhythms) and

display stable time relationships to a determined reference

event [8]. Due to these properties, the ERPs turn to be the

natural choice for a robot learning setting in which the robot

executes actions observed by the human that will elicit the

ERP activity.

The important question is whether this ERP activity,

originated while observing the robot executing a task, ac-

tually encodes useful information to evaluate the task, i.e to

compute a reward. In this direction, in cognitive neuroscience

and neurophysiopsychology it is well known the usage of

the ERP to study the underlying mechanisms of the human

error processing (recently aglutinated as ErrPs, see [9] and

references therein). Different ErrPs have been described, for

instance, when a subject performs a choice reaction task un-

der time pressure and realizes that he has committed an error

[10] (response ErrPs); when the subject is given feedback

indicating that he has committed an error [11] (feedback or

reinforcement ErrPs); when the subject perceives an error

committed by another person (observation ErrPs) [12]; or

when the subject delivers an order and the machine executes

another one [9] (interaction ErrP). In addition to this, several

works have shown that it is possible to use signal processing

and machine learning techniques to perform automatic single

trial classification of these ErrPs [9], [13].
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All the previous research forms the basis for the automatic

computation of rewards for learning tasks based on EEG

brain activity. To our knowledge, there is only a recent

paper addressing a similar problem where brain activity is

used during a learning process [14]. This rather preliminary

study directly modified the probabilities of a policy in a

task with two actions and two states i.e., a two parameter

policy. Whenever an error was detected, the probability of the

corresponding action was decreased using the entropy of the

policy. The contribution of this paper is to push forward the

understanding of how ERPs can be used in RL algorithms for

robot learning. A new protocol to elicit event-related brain

activity associated to the observation of a robot performing a

task has been developed. The design of the protocol does not

make any assumptions about the type of ERP response (i.e.

the underlying nature of the components of the response).

Based on the analysis of the signals, we show that we can

automatically distinguish, not only human perceived errors,

but also different types of errors (magnitude and laterality).

Finally, we show how this detection can be used to learn

a different but related task, using classical reinforcement

learning.

II. METHODOLOGY

A. Protocol Design and Experimentation

The general setting of the experiments was a subject

observing a virtual robot on a screen performing a reaching

task while the EEG was recorded (Figure 1 (a)). The robot

had two degrees of freedom: a revolute joint located at the

base of the arm that rotated the full arm and a prismatic joint

that made the arm longer. Five different actions moved the

robot gripper to each of the five predefined areas (marked

as baskets). The subject was instructed to judge the robot

motion as follows: (a) a motion towards the central basket

is interpreted as a correct operation, (b) a motion towards the

baskets placed just on the side (left or right) of the central

one is a small operation error, and (c) a motion towards the

outside baskets is a large operation error. Figures 1 (b) and

(c) show two snapshots of the experiment. Notice that this

protocol includes error vs. no errors, plus different levels

of operation error and different error locations. The use of a

simulated environment allows us to isolate problems (such as

robot synchronization, time delays, etc), ensures repeatability

among subjects, speeds up the experimentation phase and

facilitates the evaluation and characterization of the ERP

activity. Two participants participated in the experiments.

The recording session consists of several sequences of

actions observed by the subject. Each sequence starts with

a five seconds countdown preparing the subject for the

operation. A sequence is composed of 10 movements. Each

movement starts with the robot at the initial position for one

second (Figure 1 (b)), and then switches the arm to one of

the five final positions (Figure 1 (c)). After another second,

it returns to the initial position and repeats the process. The

instantaneous motion between the initial and final positions

eliminates the effect of continuous operation and provides a

clear trigger on the ERP. A trial consists of five sequences

(a)

(b) (c)

Fig. 1. (a) Experiment setup during the EEG recordings. (b) The initial
position of the robot. The task goal is to move the robot gripper to the
central basket. (c) Example of an incorrect operation.

with the five seconds countdown between sequences. The

experiment was carried out 12 times (with a relax time of

at least 2 minutes after each trial). This process leads on

average to 120 ERP responses of each basket, which is the

typical amount of samples used in ERP literature to have a

good signal to noise ratio using grand averages techniques

to study the responses [15].

The instrumentation used to record the EEG was a gTec

system (an EEG cap, 32 electrodes, and a gUSBamp am-

plifier) connected via USB to the computer. The location of

the electrodes was selected following previous ERP studies

[16] at FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7, P8,

P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5,

CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz (according to

the international 10/20 system). The ground electrode was

positioned on the forehead (position FPz) and the reference

electrode was placed on the left earlobe.

The EEG was amplified, digitized with a sampling

frequency of 256 Hz, and power-line notch-filtered and

bandpass-filtered between 0.5 and 10 Hz. As usually done

in this type of recordings, a Common Average Reference

(CAR) Filter was applied to remove any offset component

detected on the signal. The signal recording and processing,

the visual application, and the synchronization between the

visual stimuli and the EEG were developed under BCI2000

platform [17].

B. Analysis of Artifacts

Artifacts come in many different forms and may have

diverse causes. In general, they are non-cerebral potentials

(e.g. vigorous motion or eye blinking) that are amplified and
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(a) (b)

Fig. 2. (a) Left eye movement artifact (shadowed) recorded in the bipolar
channels (from up to down) Fp1-F3, F3-C3, C3-P3, and Cz-CPz. (b) Scalp
topoplot in the moment the artifact was maximum (∼260ms after the action
performed), showing positive and negative activity in left and right eyes
respectively.

may render the EEG uninterpretable. In the present work, it

is important to address this issue to: (i) extract conclusions

of the underlying mechanisms of human error processing

under the present protocol, and (ii) to assure that machine

learning algorithms are trained with brain activity samples

and not with muscles or other sources of artifacts.

The most common artifacts in these experiments are the

eye blink artifacts, muscle action, and chewing and tongue

movements. To avoid them, the user was comfortably sat in

a chair and instructed not to chew, move the tongue or blink

within a sequence of motions of the robot (there was a time

between sequences for the user to relax). However, all the

experimentation had an artifact that was difficult to avoid

given the experimental settings: the lateral eye movement

artifact [18]. This artifact is generated by the lateral motion

of the eyes, which appeared in many recordings since the

subjects tracked the robot motion with the eyes. In general,

this artifact is recognizable in the fronto-temporal deviations

as sharply contoured potentials that are out phase measured

in the frontal electrodes mainly Fp1, Fp2, F3, F4, F7, F8 and

temporal T7 and T8. EEG recordings of the central, parietal

and occipital lobes are free of this artifact and we confirmed

this by visual inspection of the raw EEG.

To address this artifact, all the posterior analyses use

only the electrodes over the medial and posterior regions

(except channels T7 and T8). Furthermore, we used bipolar

recordings as suggested in the ERP literature in order to

minimize the effect of the artifacts [19], [15]. Figure 2

shows the EEG in bipolar montage from the anterior to

the posterior regions of the brain in one of the participants.

Notice how the bipolar montage C3-P3 is already free of

this artifact. Furthermore, in the current protocol, the artifact

appears on average between 0.2 and 0.3 seconds after the

stimulus presentation (time required to saccade to the new

robot position) and lasts a maximum of 0.4 seconds.

C. Neurophysiological Response

The objective of this section is to show that the neurophys-

iological response is coherent for both participants and to

characterize the response in terms of the experimental setup.

Notice that the objective here is not to characterize the ERP

as this would require a much larger number of participants

and a complete different type of analysis, as it is usually

done in neuropsychology.

To study the responses, we build the averaged ERP

waveforms, which is the averaged sum of the individual

responses for each condition at each sensor (to improve the

signal-to-noise ratio and, as a consequence, filter background

noise and occasional artifacts). The averaged ERP waveforms

consist of a sequence of components, which are traditionally

used to indicate positive-going or negative-going peaks. The

sequence of the ERP peaks reflects the flow of information

through the brain [19]. Different subjects or conditions

usually modify the time and shape of the peaks. In our case,

the resulting distribution of the components on the averaged

ERP waveforms in Cz (the vertex) of the error vs non-error

are coherent in both subjects (Figure 3). This also holds for

the ERP waveforms of the left and right error vs non-error

and large and small error vs non error.

This coherence also appears in the localization of the main

brain cortex areas involved in the neural response. For the

analysis, we used sLORETA [20], which is an EEG Source

Localization technique that estimates the neural generators

given the EEG at the surface of the scalp. Note that to

solve the inverse problem one needs the 32 electrodes. Since

some of them are affected by the artifact, they will affect

the solution for earlier components. Thus, since the first 400

ms of the signal are noised with artifacts, the study was

performed at the time of the third negativity in Cz (∼510ms

and ∼460ms for the first and second participant respectively).

With both participants, the main areas active at the negativity

studied were Brodmann1 Areas 5 and 7, which indicates that

the same areas are involved in generation of the waveform

in both participants (Figure 3).

To characterize the response in terms of the robot actions,

a statistical analysis was performed for all the ERPs for

each condition. We performed an ANalysis Of Variance

(ANOVA) test, since it has been widely used when analyzing

differences in ERPs [19], [15], with a significance level of

95% (p < 0.05). In the three cases: (i) error versus correct

responses, (ii) left errors versus right errors, and (iii) large

errors versus small errors, signals are significantly different

for the different electrodes at several points in time. For the

sake of simplicity, we only display in Figure 3 the ANOVA

results in Cz, however other areas have larger statistical

differences in other time instants.

The combination of the previous results allows us to

hypothesize about the involvement of the human error mon-

itoring process in our results. Firstly, there is a statistical

difference between the human response to the robot correct

and incorrect operations. Secondly, the shape of the response

in Cz elicited in the incorrect operations is similar to the re-

sponse of other protocols that involve the human monitoring

of errors (see [9] for some examples): all of them have a

1The brain cortex can be divided in areas or regions defined according to
its cytoarchitecture (the neurons’ organization in the cortex). These zones
are called Brodmann Areas (BA) [21], and are numerated from 1 to 52.
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Fig. 3. Source localization, average waveforms and ANOVA analysis of each participant (P1 and P2) in channel Cz. For the ANOVA figure, the vertical
axis corresponds to the p-values at each instant of time for the same time window as before. The horizontal red line shows the p-value of 0.05.
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sharp positive potential at around 0.3 seconds, followed by

a prominent negativity around 0.4 second. Thirdly, in the

negativity studied, the activated Brodmann areas are 5 and

7, which are also activated in the interaction error [9] in the

late components. Their hypothesis is that these associative

areas (somatosensory association cortex) could be related to

the fact that the subject becomes aware of the error. This

also agrees with findings using other types of errors such

as reaction errors [22]2. All these results push forward the

hypothesis that we detect an ERP that is related with the

human error monitoring of the robot operation.

D. Pattern recognition

The analysis of the EEG signals of the previous section

revealed that there are statistically significant differences in

the brain activity when observing correct or wrong actions

and for the different conditions of error. In order to provide

the reward signal to a RL algorithm, it is necessary to classify

single trials of these error conditions online.

The pattern recognition is a supervised learning module

that is trained to recognize the ERP responses. It requires

two steps. The first one is the feature extraction. Firstly, the

ANOVA analysis was performed over all the bipolar channels

in the medial and posterior regions. The channels with more

statistical difference were selected: C3-P3, C4-P4, P3-O1,

P4-O2, CP5-P3, CP6-P4, CP5-P7, CP6-P8, CP1-Pz, CP2-

Pz, Fz-FCz, FCz-Cz, Cz-CPz, CPz-Pz, and Pz-Oz. We used

as features the RAW signal within the time window 0.15-0.7

seconds, filtered with a CAR filter and a bandpass filter of

0.5-10Hz (as mentioned previously), and then subsampled to

64Hz. Thus, the feature vector was the concatenation of all

the selected channels within the window previously defined,

giving a feature vector length of 540.

The second step is the classification algorithm. We chose

AdaBoost classification algorithm [23]. This classifier has

the advantage of being a meta-classifier, i.e, it makes use of

several weak classifiers and assigns weights to them. This

technique has been successfully used in several applications

[24]. As weak classifier, we chose the Functional Decision

Tree [25], which allows to use linear combinations of at-

tributes, due to the multi-variate nature of the EEG data. We

experimentally verified that this combination achieves good

classification performances.

E. Reinforcement Learning

The final step of this work is to show how error related

potentials detected online from EEG can be used for a robot

learning task within a reinforcement learning context. The

main idea of RL is that an agent (a robot in our case) learns

by interacting with the environment from a signal r that

rewards or penalizes its behavior. The standard framework

for RL problems is a Markov Decision Process defined by

the tuple {S, A, P, r, γ} where S represents the state-space,

2We cannot provide results for the activation of the Anterior Cingulate
Cortex (ACC) which is involved in the error processing [9]. Unfortunately,
this area is relevant in the early components of the response and, therefore,
the EEG signals are contaminated by artifacts.

A represents the action-space and P : S × A → S are the

transition probabilities from state s to state s′ when executing

a particular action a. The function r : S × A → R defines

the reward obtained by the agent when executing an action

at a particular state. Finally, γ ∈ [0..1] is a discount factor.

The goal of RL is to obtain a policy π : S → A that

maps each state to the action that maximizes the accumulated

reward Rk =
∑

∞

k=0
γtrk+1. This is done by maximizing the

expected reward, called value function, conditioned in the

state s and policy π,

V π(s) = Eπ

{

∞
∑

k=0

γkrk+1 | π, s0 = s

}

.

The optimal function V ∗ satisfies the Bellman equation,

V ∗(s) = maxa∈A

[

r(s, a) +
∑

s′∈S

P (s, a, s′)V ∗(s′)

]

.

It has been proved that at least an optimal policy π∗ exists

for any finite MDP. There are several algorithms to compute

the optimal policy. For the type of discrete tasks described

in Section II-A, we used the standard Q-Learning algorithm

[2] which uses the Q-function

Q∗(s, a) = r(s, a) + γ
∑

s′∈S

P (s, a, s′)maxa′∈AQ∗(s′, a′).

Q-learning estimates the optimal Q∗ function from empirical

data. It does not require to know the transition probabilities

P . At each point in time, the agent is at a particular state

sk, executes an action ak that results in a new state sk+1

and obtains reward rk+1(sk, ak). Based on this observed

transition and reward the Q-function is updated using

Qk+1(sk, ak) = Qk(sk, ak)+

αk [rk+1(sk, ak) + γ maxa′∈A Qk(sk+1, a
′) − Qk(sk, ak)] ,

where Qk(·, ·) is the current estimate of the Q-function, and

α is the learning rate.

During learning, it is necessary to choose the next action to

execute. We will use an ε-greedy policy. This type of policies

choose the best action (obtained from the current policy)

(100−ε)% of the times and will select an exploration strategy

by choosing a random action ε% of the times, normally a low

value (around 10%) to take more into account the acquired

knowledge.

It is worth noting that in real settings one cannot train

a classifier for each task and compute the reward from its

output, since this would require to label the data and will

make the EEG signal redundant. In practice, the classifier has

to be trained on a set of related examples and this knowledge

has to be transferred to the new task. Although transfer

learning is an emergent research area [26], in our experiments

we will simply vary the task goal (i.e the reward values) and

keep the same Markov Process to study the invariance of

brain activity in this context.
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III. RESULTS

In this section we present the results for the single trial

automatic classification of errors following Section II-D.

The results focus directly on the classification between the

correct and all the different incorrect operations, including

magnitude and laterality of the error (5 classes). This is

because this information is very valuable for a reinforcement

learning task, since the rewards could be set according to the

error. In a second step, we show how it is possible to use the

previous classifier to learn, using the RL method described

in Section II-E, the correct action arbitrary selected by the

user. The main difficulty here is that this task is related but

different from the previous one, and thus the classifier has

to transfer prior knowledge (i.e generalize) from the training

examples to the new task.

A. Pattern Recognition performance

In this section, we analyze the results of single trial auto-

matic classification of the EEG signal. In order to determine

the accuracy of the classifier and make use of all the data, we

used a ten-fold cross-validation strategy. The classification

was made using five different classes corresponding to the

grasping areas (baskets) of the experiment. These classes are

labeled as (from left to right baskets): Left-2 (large left error),

Left-1 (small left error), Correct (correct responses), Right-1

(small right error), and Right-2 (large right error). The results

for each participant (P1 and P2) are shown in tables I and

II. Each column represents the real class, whereas each row

show the actual classification percentages for each class, thus

having the correct classification always on the diagonal.

TABLE I

PATTERN RECOGNITION PERFORMANCE, P1

Left- Left-2 Left-1 Correct Right-1 Right-2

Left-2 74.17% 20.83% 3.33% 0.83% 0.83%
Left-1 20.00% 68.33% 9.17% 2.50% 0.00%
Correct 2.50% 7.50% 79.17% 8.33% 2.50%
Right-1 0.83% 6.67% 5.00% 68.33% 19.17%
Right-2 1.67% 0.83% 5.83% 21.67% 70.00%

TABLE II

PATTERN RECOGNITION PERFORMANCE, P2

Left-2 Left-1 Correct Right-1 Right-2

Left-2 62.50% 25.83% 2.50% 2.50% 6.67%
Left-1 23.33% 61.67% 10.00% 4.17% 0.83%
Correct 2.50% 5.00% 78.33% 5.83% 8.33%
Right-1 1.67% 5.83% 7.50% 60.00% 25.00%
Right-2 5.83% 8.33% 4.17% 23.33% 58.33%

The results vary slightly depending on the subject. The

recognition rate for participant 1 is always around 70%
and almost reaches 80% for the correct case. Results for

participant 2 achieve the same result for correct actions,

but are closer to 60% when recognizing different levels of

error. An interesting result is that the misclassifications tend

to be grouped around similar errors for both participants.

For instance, the largest error percentages, around 20% for

participant 1 and 25% for participant 2, occur between the

detection of Left-2 and Left-1 and the detection of Right-2

and Right-1. In other words, detecting left and right errors

achieved an accuracy over 90%. Regarding the differences

between small and large errors, the classifier performance

degrades a little. The percentages vary again for each subject.

Results for participant 1 were 72.08% for large errors and

68.33% for small errors while for participant 2 they were

60.42% and 60.83%, respectively. The results of the Ad-

aBoost classifier suggest that it is possible to differentiate

between correct and wrong actions. The misclassification

rate, being still non negligible, is low enough to produce

reward signals that can be exploited by a reinforcement

learning algorithm. Interestingly, despite we are in a discrete

setup, there are also strong indications that it is possible to

recover additional information related to the type of error.

It seems that magnitude and directionality information are

present in the signal and could be potentially exploited for

the learning task in continuous-state spaces. However, other

classifiers may be needed when distinguishing between small

and large errors due to the degradation in performance for

the selected classifier.

B. RL application

In order to analyze the practical potential of this approach,

we have applied it to a simple Reinforcement Learning task.

This new task is based on the experimental setup described

in Section II-A. However, in this case, the participant is

instructed to freely select one grasping area to set the correct

operation of the robot. The objective was to allow the robot

to learn the correct action (motion towards the selected area

or basket) using a RL algorithm.

The first participant selected the basket 1, whereas the

second participant selected the basket 4. We repeated the

experimental protocol for each subject as described in sub-

section II-A obtaining 120 ERPs of each basket. Since each

subject selected the basket freely, we needed to relabel the

classes according to their selection. Labels for participant

1 were (from left to right baskets): Left-3, Left-2, Left-

1, Correct, and Right-1. Notice that in this case we have

larger errors (Left-3) than in the first experiment. Labels for

participant 2 were (from left to right baskets): Correct, Right-

1, Right-2, Right-3, and Right-4. Again, we have larger errors

(Right-3 and Right-4) than in the first experiment.

Despite we changed the experiment, we will still use

the classifier from the experiment with marked baskets to

classify the signals obtained in the new experiment. Tables III

and IV show the results for participant 1 (P1) and participant

2 (P2). Since we have different experiments, the labels do not

perfectly match. The rows contain the actual errors according

to each participant choice of correct basket, whereas the

columns still show the same classes of Section III-A. The key

issue here is that, to apply an RL algorithm and learn a new

task, we need to classify signals based on a classifier trained

on a different task, but that can transfer some invariant

information, in our particular case, the correct basket and
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the spatial relations to the others. In other words, we expect

that a Left-1 error will still be a Left-1 error. In addition to

this, new classes appear (Left-3, Right-3 and Right-4), and

we also expect that the classifier will select classes that keep

some relations. For instance, Left-3 errors should be matched

to Left-2 errors (due to directionality).

TABLE III

PATTERN RECOGNITION PERFORMANCE EXPERIMENT 2, P1

Left-2 Left-1 Correct Right-1 Right-2

Left-3 62.50% 27.50% 5.00% 4.17% 0.83%
Left-2 28.33% 55.83% 9.17% 5.00% 1.67%
Left-1 4.17% 45.83% 35.00% 13.33% 1.67%
Correct 0.00% 3.33% 52.50% 31.67% 12.50%
Right-1 0.00% 0.00% 8.33% 31.67% 60.00%

TABLE IV

PATTERN RECOGNITION PERFORMANCE EXPERIMENT 2, P2

Left-2 Left-1 Correct Right-1 Right-2

Correct 14.17% 25.00% 48.33% 4.17% 8.33%
Right-1 12.50% 15.83% 45.83% 20.00% 5.83%
Right-2 7.50% 3.33% 23.33% 40.83% 25.00%
Right-3 6.67% 1.67% 8.33% 41.67% 41.67%
Right-4 12.50% 4.17% 15.00% 24.17% 44.17%

The classification results of Tables III and IV show that

the correct action was detected with a performance of 52.5%

and 48.33% respectively for each participant. Notice that the

diagonal does no longer contain correct associations, but one

has to look for the same label for rows and columns. As in the

previous case, the performance of the classifier was better for

the first participant. This effect was also amplified by the fact

that participant 2 chose the leftmost basket. Further analysis

of the data show that confusion among classes still keeps

some coherent structure and usually wrong classifications

occur among similar classes. Considering small errors (Left-

1 and Right-1) of participant 1, we obtain accuracies of

45.83% and 31.67% respectively. For the Right-1 case, it

was detected more frequently (60%) as a Right-2 error.

Another example for this participant is Left-3 errors, which

are frequently detected as Left-2 errors (62.5%), which is

a good result for a previously unknown class. These results

also extend for participant 2, detecting Right-3 and Right-

4 errors usually as Right-2 errors (41.67% and 44.17%

respectively).

Finally, we have used the Q-Learning algorithm to deter-

mine the correct action (basket) selected by the user from

the EEG recorded activity. The system started with the

same Q-functions values. Actions were selected according to

the ε-greedy policy described in Section II-E. The rewards

associated to each executed action were computed based on

the class assigned by the classifier: −1 for large errors, −0.5
for small errors, and +1 for correct actions.

Due to the low detection ratios, Q-learning did not always

converge to the correct basket. We executed 20 times the

Q-learning algorithm with the previously classified data.
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Fig. 4. Q-Learning results of executing each action for participant 1 using
bipolar channels.
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Fig. 5. Q-Learning results of executing each action for participant 2 using
bipolar channels.

For participant 1, 92% of the executions discovered the

correct basket. Convergence usually took around 70 steps.

For participant 2, Q-learning converged in 75% of the cases

and required around 100 steps on average. Figures 4 and 5

show examples where it converged for each participant.

In summary, we have shown that it is possible to apply

RL using EEG based reward signals. Although the current

setup is very simple, it illustrates some of the main issues to

be considered in this type of applications. In particular, we

would like to stress that the results show an implicit transfer

of knowledge between two different tasks. The ability of

the classifier to (still poorly) generalize between signals

corresponding to different tasks is a very encouraging and

promising result and an indication of the feasibility of EEG-

based reinforcement learning.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the use of brain activity

to create reward signals for reinforcement learning. We
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have introduced a new protocol to study the ERP activity

associated to the evaluation of a task. The results show that

there exist statistically significant differences in the grand

averages of the signal, not only between error and correct

actions, but also among different degrees of errors. Using

boosting techniques, we have been able to detect single trials

of different types of errors automatically. Finally, the system

was able to learn the correct action (i.e. basket) selected

freely by the user using the classifier trained on a different

one.

There are plenty of opportunities for future work. First,

we need to better characterize the components of the brain

activity associated to the proposed protocol. Despite this

paper has presented a proof-of-concept experiment with

two participants, a component characterization will require

to conduct further experiments with a larger number of

participants to verify the hypotheses about the ERP nature

of the recorded brain activity. Second, the results suggest

that it is possible to obtain information about the correct

execution of the task that goes beyond simple error vs. non

error classification. This information would be extremely

useful to perform reinforcement learning in more realistic

and complex robot scenarios.
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