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Abstract— The inclusion of robotic systems in physiotherapy
allows developing new solutions for the rehabilitation and
support of disabled people. Our research addresses the core
problem for the advancement of such applications: the availabil-
ity of a human machine interface offering intuitive control of
robotic devices. In this paper we present an EMG-driven model
of the human lower limb based on that previously developed
by Lloyd et al [1]. We then introduce a set of enhancements
that allow reducing time and memory requirements and provide
real-time performances for the control of a lower limb powered
orthosis.

I. INTRODUCTION

The role of technology in the health sector has been grow-
ing increasingly in the past years as well as the capability
and the power of the systems involved. People suffering
from a debilitating disease can now benefit from the recent
progresses in healthcare technologies but many issues are
still open. Current motor rehabilitation therapies still cannot
give back the patients their lost motor capabilities within
a short timeframe or at an affordable cost. The possibility
of integrating robot-assisted treatments in the physiotherapy
could help decrease the length of the recovery process
as well as the cost involved. Researchers are currently
developing models of the human body that can simulate
the motion of the human limbs and help design better
assistive robotic devices for people with disabilities. Indeed,
the availability of accurate and comprehensive human limbs
models is required for the development of effective human-
robot interfaces (HRI) and control systems for rehabilitation
robotic devices such as powered orthoses. Biomechanists
have developed complex models of the human limbs that
combine together kinematic and kinetic data with neural
signals to study human motor control strategies [1], [2], [3],
[4]. These models implements several complex functions into
separate computing blocks. Due to their complexity, these
blocks are not integrated into a single framework and do not
execute simultaneously. Rather, they execute separately at
different times. Only at a second stage, results from different
computing blocks are combined together and analyzed. This
considerably slows down the data investigation process and
bounds researchers to perform offline analysis only. While
this does not represent a problem when using biomechanical
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models for pure analysis purposes, it clearly does when
applied in the field of robotics. The high complexity of each
computing block and their asynchronous operations would
prevent the biomechanical model real-time execution. Only
recently, robotics researchers have developed models that are
suitable for real-time applications [5], [6], [7], [8], [9]. In [5],
the authors present a model of the human upper limb that is
able to predict elbow joint torque as a function of the joint
kinematics and muscle neural activation level. The controlled
device is an arm exoskeleton in which the user straps into and
performs exercises imparted by the machine. Another effec-
tive research is presented in [6]. Muscles electromyographic
(EMG) signals are used as input for a simplified EMG-driven
model of the human lower extremity that is able to derive
the knee flexion-extension (FE) torque produced by the user.
The estimated torque is used to control a powered orthosis
that can provide extra support to the operator when needed.
These works utilize simplified models of the human limbs
that allow achieving real-time performances. However, it is
not clear the accuracy of these models and how the applied
simplifications affect their accuracy with respect to complete
original models developed by biomechanists. In general,
the degree of simplification often makes them unsuitable
for being integrated into the control system of assistive
devices that are to support a wide range of movements.
The availability of accurate and comprehensive human limbs
models, combining high reliability and real-time operation,
is therefore needed for the development of effective human-
robot interfaces (HRI) and control systems for rehabilitation
robotic devices. In this paper we discuss the developmental
work that has been done towards the design of an EMG-
driven model of the human lower extremity that combines to-
gether comprehensiveness, accuracy, and simultaneous real-
time operation of all its computing blocks. Our model
processes EMG signals to estimate muscle force and knee
joint FE torque. The model is initially derived from the well-
established one developed by Lloyd et al. [1], [2], [10] which,
however, requires large memory space and high computation
time. Our goal is twofold. First, we want to reduce the
model computation time and memory requirements while
preserving high estimation accuracy. Second, we want to
combine together the individual model’s computing blocks to
execute simultaneously in a common framework. To achieve
the first goal we have investigated the impact of modeling
the tendon as an infinitely stiff body. This avoided the
integration of the musculotendon force differential equations,
greatly reducing computation time. We directly compared
the behavior of the modified model to that of the original
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Fig. 1. (A) High-level representation of the EMG-driven model computing
blocks. (B) Classification of the computing blocks relative to the way
they execute. Green boxes represent the computing blocks that have been
enhanced. Orange boxes refer to those that have not been modified.

one to quantitatively evaluate the effects of this change. We
also designed a novel approach for computing and storing
musculotendon estimates that greatly reduced the required
memory space. To achieve the second goal we designed a
new anatomical model that allowed integrating all EMG-
driven model’s computing blocks into a common framework
and executing them in real-time. In the previous version
the anatomical model was executed offline through external
programs breaking the EMG-driven model’s execution into
different steps. The paper is organized as follows. Section II
briefly overviews Lloyd’s EMG-driven model as a baseline
for our research. In section III we discuss the changes
we applied to the model to achieve our goals. Section IV
presents the experimental procedure adopted in this research
while in V and VI, results about accuracy and real-time
performances are analyzed. Section VII suggests how our
enhanced EMG-driven model can be used to control a lower
limb powered orthosis whereas Section VIII concludes the
paper and sketches future research directions.

II. EMG-DRIVEN MODEL STRUCTURE

Our EMG-driven model includes several computing blocks
(Fig. 1-A) that can be grouped in offline, real-time and tuning
computing blocks, depending on the way they execute (Fig 1-
B). The original model by Lloyd et al. has a greater number
of computing blocks working offline (Fig.2-A) [1], [2], [10],
[11] and is briefly reviewed in the following of this section.

A. Offline Computing Blocks

1) Subject Scaling Model: This block scales the mass and
the dimension of muscles and bones in the model to those of
the subject being studied. The scaling procedure is based on
data obtained from static poses. In this process some muscle-
specific parameters are also tuned.

2) Anatomical Model: The anatomical model (AM) de-
scribes the organization of the muscular and skeletal systems
and defines the way muscles and bones interact towards
the generation of joint motions. The anatomical model is
fed with joint angular positions and generates instantaneous
estimation of musculotendon lengths lmt, velocities vmt,
and moment arms r. These estimates are the input for the

Fig. 2. (A) View of the modified EMG-driven model in which the
entire neuromusculoscheletal model can now be executed in real-time. (B)
Schematic view of the blocks of the original version of the model and the
way they are executed. The neuromusculosckeletal model is not entirely
executed in real-time as the anatomical model has to be run offline in a
separate step.

subsequent blocks (Fig. 2). The AM is implemented using
the SIMM Biomechanics Software Suite (Musculographics
Inc., US) based on the results presented in [12], [11]. The
anatomical model consists of line segment representations of
the following 13 musculotendon units (MTUs) spanning the
knee joint: semimembranosus (semimem), semitendinosus
(semiten), biceps femoris long head (bifemlh), biceps femoris
short head (bifemsh), sartorius (sar), tensor fascia latae
(tfl), gracilis (gra), vastus lateralis (vaslat), vastus medialis
(vasmed), vastus intermedius (vasint), rectus femoris (rf),
medial gastrocnemius (medgas), and lateral gastrocnemius
(latgas). The lengths of the modeled MTUs are linearly
scaled to the actual subject’s size according to the scaling
factors computed by the subject scaling model. The AM
also defines 7 degrees of freedom (DOF). The hip has
3 DOFs: flexion-extension (θh,1 ∈ [−20; 95]), abduction-
adduction (θh,2 ∈ [−50; 30]), and internal-external rotation
(θh,3 ∈ [−30; 20]). The knee is modeled with only 1 DOF:
flexion-extension (θk,1 ∈ [−10; 120]). The final 3 DOFs are
at the ankle joint: plantar-dorsi flexion (θa,1 ∈ [−80; 33]),
abduction-adduction (θa,2 ∈ [−20; 20]), and internal-external
rotation (θa,3 ∈ [−20; 20]). The DOF are expressed in
degrees and it is important to account for all of them as
lmt, vmt, and r highly vary with respect to the angular joint
position.
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B. Real-Time Computing Blocks

Real-time computing blocks include the neuromuscular
and the torque computation models. As shown in Fig. 2-A the
neuromuscular model is composed of the EMG-to-activation
and the Hill-type muscle (EHM) models.

1) EMG-to-activation Model: Raw EMG signals are input
to this model and are converted into muscle activation. This
is a percentage value that expresses how much a specific
muscle is activated toward the generation of force. The
transformation from EMG to activation accounts for the non-
linear relationship between EMG and muscle force [2].

2) Hill-type Muscle Model: It calculates the tension de-
veloped by each musculotendon unit in the model [2]. The
model assumes that each muscle consists of an active force
generating component in series with a passive elastic one.
The force generating component models the muscle fiber
behavior. It is widely accepted that the muscle fiber force
depends on three factors: fA(l̃m), fP (l̃m) , and fV (v

m).
The first one, fA(l̃m), is the active force-length function that
expresses the ability of muscle fibers to produce tension at
different lengths. The second factor, fP (l̃m), is the passive
force-length function that represents the passive element of
the fiber producing resistive force when stretched. It relates
the instantaneous amount of fiber length (lm) to the force
produced in the muscle. The final factor, fV (vm), is the
force-velocity function that expresses the influence of the
fiber contraction velocity (vm) on the muscle fiber force
production. Fiber length (lm) and velocity (vm) are derived
from the musculotendon length (lmt) and velocity (vmt)
output of the AM block. The elastic component of the
musculotendon unit refers to the tendon. This is modeled
to act like a rubber band. As the muscle fiber force grows,
the tendon gets stretched. When the tendon resting length is
exceeded, the tendon produces a resistive force that is non-
linearly related to the amount of tendon strain. Muscle fiber
force and elastic tendon force are then combined together
with muscle activation level computed by the EMG-to-
activation model to estimate the total force produced by the
musculotendon unit. Section III provides additional details
about this component.

3) Torque Computation: The net knee joint flexion-
extension moment is finally computed as the sum of the
product of each muscle’s force by its flexion-extension
moment arm (r).

C. Tuning Components

Methodological difficulties in measuring individual muscle
force prevent any direct validation of the NM model on hu-
man. Therefore, an indirect validation process was designed
to both validate the model’s prediction ability and to support
its calibration.

1) Validation Model: To validate the EMG-driven model,
the estimated knee joint flexion-extension (FE) moment, that
is the output of the torque computation model, is compared
to the net FE moment experimentally measured through an
inverse dynamic model. Indeed, when the model is able to
accurately estimate the muscle forces, the computed knee FE

moment should be equal to the measured one in the whole
range of joint values [1], [2].

2) Calibration Model: The aim of the calibration is to
define the values of a set of EMG-driven model parameters
w.r.t. the subject’s characteristics for a proper estimation of
the FE knee moment. Starting from a set of calibration trials,
a simulated annealing process alters the selected parameters
to minimize the sum of squared differences between the
net knee FE moment approximated by the model and that
experimentally measured [1].

III. REAL-TIME NEUROMUSCULOSKELETAL MODEL

To achieve real-time execution of the EMG-driven model
we designed more efficient algorithms that allowed integrat-
ing all computing blocks into a common framework and
decreasing the required memory capacity.

A. Real-Time Neuromuscular Model

To reduce the computation time required to estimate the
tension developed by each musculotendon unit, we replaced
the elastic tendon in the Hill-type muscle model with a stiff
one (Fig. 2). The force produced by the musculotendon unit
only depends now on the action of the muscle fibers. We
introduced this simplification under the hypothesis it does not
affect the model prediction ability. Indeed, according to [4]
the tendon is rather stiff. The strain, i.e. the percentage of
length variation w.r.t. the resting length, is only the 3.3% of
the tendon length when the muscle generates the maximum
isometric force. In the following of this section we will refer
to this model as to the Stiff tendon Hill-type Muscle (SHM)
model and to the previous one as to the Elastic tendon Hill-
type Muscle (EHM) model (Sec. II-B.2).

The force produced by the muscle fibers alone, is ex-
pressed in the SHM model in the same way it is expressed
in the EHM. This can be written as follows:

Fm = (fA(l̃
m)·fV (vm)·a(u)+fP (l̃m)+dm·ṽm)·Fm

0 ·δ (1)

where dm represents a passive parallel damping element that
was added to the force-velocity relationship to account for
the muscles damping characteristics as suggested in [3]. The
term a(u) is the muscle activation as a function of the post
processed EMG signal u. The term Fm

0 expresses the force
generated by the muscle when fibers are at their optimal
length, while the term δ is the muscle strength coefficients.
The force produced by the musculotendon unit, Fmt can
then be derived by projecting the fiber force Fm onto the
tendon line of action as follows: Fmt = Fm · cos(ϕ), where
the term ϕ is the pennation angle. This is the angle at which
fibers are oriented with respect to the tendon (Fig. 2-B). The
computation of Fm and Fmt can then be done when the
instant values of lm and vm are known at all times. The
method used to calculate these values is the main difference
between the SHM and the EHM model. The SHM model is
designed so that the tendon does not produce any resistive
force to stretch. This means the projection of Fm onto the
tendon line of action does not affect its length in any way.
The tendon length (lt) is therefore constant regardless of

2230



Fig. 3. θh,2 and θh,3 range from 0◦ to 30◦ and −30◦ respec-
tively, while θh,1 = 70◦. The curves expressed by lmt(θk,1, 70, 0, 0),
lmt(θk,1, 70, 30, 0) and lmt(θk,1, 70, 30,−30) differ just by a con-
stant value ∀θk,1. ∀θh,2, θh,3 the curves lmt(0, 70, θh,2, 0) and
lmt(0, 70, 0, θh,3) define the amount of shift applied to lmt(θk,1, 70, 0, 0)
according to (3) and (4).

the force projected onto the tendon and is always equal to
the resting tendon length lts. The assumption that lt = lts,
provides a closed-form expression that allows for a very fast
computation of the muscle fiber length lm:

lm =

√
(lm0 · sin(ϕ0))

2
+ (lmt − lt)2 (2)

where ϕ0 is the pennation angle at optimal fiber length. The
fiber contraction velocity vm can then found by differentia-
tion. The calculations involved in the EHM model are more
complex. Since both lm and lt are unknown, (2) cannot
be solved. When the tendon is defined as an elastic body,
the musculotendon unit dynamics is well described by an
ordinary differential equation (ODE) that has to be solved at
every time step to estimate both lm and lt. This involves the
execution of several computation steps including: the esti-
mation of the current musculotendon velocity, the apportion
of it to the the muscle fibers and tendon (based on their
relative stiffness), and the integration of the derived fiber
and tendon contraction velocities. When several samples of
lm need to be estimated, the numerical integration of the
ODE considerably increases the computation time involved.
As shown in Sec. VI, SHM has better time performances
with respect to the EHM.

B. Real-Time Anatomical Model

The AM is a complex system as it requires 7 DOFs and 13
MTUs to correctly estimate the musculotendon lengths (lmt),
velocities (vmt), and moment arms (r). When so many DOFs
and muscles are involved, a direct implementation of the
musculoskeletal organization and interaction between bones
and muscles would result in complex algorithms that would
be costly in terms of time. To overcome this difficulty, we
adopted the following strategy. Using SIMM, it is possible
to precompute subject-specific values of lmt at discrete joint
configuration steps and store them in a multidimensional
table for each muscle. A multidimensional cubic spline

can then be used to interpolate the values within discrete
intervals. At run time, the tables are indexed based on the
current joint positions. The dimension of the tables and
interpolating splines depend on the number of the muscle’s
DOFs. Uniarticular muscles crossing the knee have one DOF
only. Therefore a simple 1-dimensional table (i.e. an array)
can store the required data. Biarticular thigh and shank
muscles cross the knee as well as the hip or the ankle
respectively. Such muscles have therefore 4 DOF. In this
specific case a 4-dimensional table is required per muscle
as well as a 4-dimensional cubic spline to interpolate the
data. If the range of motion of the limb about each DOF is
sampled with intervals of 2 degrees, the length of a MTU
crossing the hip and the knee joint could assume up to
n = 4.080.648 different values. Furthermore, in order to
evaluate the spline function several time on the interpolation
data, one has to calculate 4 · n coefficients and store them
permanently [13]. With 13 muscles, one would therefore
need to store 13 ·n data in tables and compute 13 ·4 ·n spline
coefficients which may be costly in terms of time and space.
An analogous analysis can be made about muscles crossing
both knee and ankle. In order to relax these space and time
constraints we separately considered the variation of three
DOFs with respect the forth. In oder words, we created three
different 2-dimensional tables per muscle instead of a single
4-dimensional table. The first table stores the data relative
to the variation of (θx,1, θx,4), the second stores the data
relative to (θx,2, θx,4) and the third stores the data relative
to (θx,3, θx,4), where θx,i is the ith DOF about the x joint.
In the case of biarticular thigh muscles for instance, the
size of the data that have to be stored in all three tables
per muscles, is m = 7.714 and the total number of spline
coefficient is 4m which is nearly 530 time smaller than the
data stored in the 4-D table. The reason why three 2-D tables
per muscle are enough to properly estimate musculotendon
length and moment arms without loss of accuracy w.r.t. the
complete 4-D table, is here illustrated. Let us fix two arbitrary
DOF to constant values, e.g. θh,1 = h1 and θh,2 = h2.
Let us then compute the values assumed by lmt first when
θh,3 = θa and then θh,3 = θb, with θa 6= θb and ∀θh,1. We
then obtain two functions lmt

a (θk,1) and lmt
b (θk,1) for which

it holds that lmt
a (θk,1) − lmt

b (θk,1) ≈ K, ∀θk,1. The term
K represents a constant value. In other words, lmt(θk,1) is
linearly shifted when θh,3 changes from θa to θb and θh,1
and θh,2 are fixed. The same transformations apply to any
choice of constant DOFs (Fig. 3). The following elementary
relationship therefore holds:

lmt(k1, h1, h2, 0) = lmt(k1, h1, 0, 0) + s(h2). (3)

where s(h2) = lmt(k1, h1, h2, 0) − lmt(k1, h1, 0, 0). Fur-
thermore, from our previous discussion, the following re-
lation also holds: lmt(θk,1, h1, a, 0) − lmt(θk,1, h1, b, 0) ≈
K,∀θk,1. This implies that s(h2) in (3) can be replaced by:

s(h2) = lmt(0, h1, h2, 0)− lmt(0, h1, 0, 0). (4)

An analogous transformation can be applied to compute
lmt(k1, h1, h2, h3) where lmt(k1, h1, h2, 0) is shifted by:

2231



Fig. 4. The ensemble average of the reference FE knee moment is compared
to the that estimated by the SHM and to tthat estimated by the EHM.

s(h3) = lmt(0, h1, h3, 0) − lmt(0, h1, 0, 0). The terms
lmt(k1, h1, 0, 0), lmt(0, h1, h2, 0) and lmt(0, h1, h3, 0)
needed to compute lmt(k1, h1, h2, h3) can be easily stored
in a 2-dimensional tables including the values of MTU length
relative to the combined variation of (θk,1, θh,1), (θh,1, θh,2)
and (θh,1, θh,3) respectively. The transformations previously
described can be applied to the muscles crossing the knee
and the ankle therefore the actual formalization is omitted.
The moment arms along all DOF don’t need to be stored
in tables but can be directly derived by differentiating the
interpolated musculotendon length with respect to each DOF
angular position thus saving further memory space.

IV. EXPERIMENTAL PROCEDURE

Experiments were performed at the Gait Laboratory of
the School of Sport Science Exercise and Health of the
University of Western Australia. Tests involved capturing
anatomical static poses of 6 male subjects (mass = 81.73±
16.4Kg, height = 175.75±6.39cm, age= 30.67±7.84years).
A 7 camera motion capture system (Vicon, Oxford, UK) was
used.

EMG signals were collected from the selected muscles
using double-differential surface electrodes. A telemetered
system (Noraxon, Scottsdale, USA) was used to transfer the
EMG signals to a 16 channel amplifier (Delsys, Boston,
USA) with sampling frequency at 2kHz. EMG were col-
lected during isometric and gait trials. Isometric trials were
performed using a dynamometer (Biodex, New York, USA).
Gait trials included the acquisition of ground reaction forces
and joints kinematics, as well. Different sets of data were
then created. The first was used to calibrate the EMG-
driven model (Sec. II-C) and it included isometric and gait
trials. The second data set comprised gait trials used for
model validation purposes only (Sec. V). For each subject a
minimum of 10 trials were recorded. The dataset comprised
a total of 75 trials.

V. ACCURACY ANALYSIS

A. Neuromusculoskeletal Model

The model’s prediction ability is evaluated through a direct
comparison of the estimated joint torque with the reference
data measured with the inverse dynamic model. Additionally,
to quantify the impact on the model’s behavior when the
tendon is assumed infinitely stiff, the SHM’s predicted torque
was compared to that predicted by the EHM. All trials
from all subjects were time normalized using a natural
cubic spline. This allowed comparing in-between trials. A
statistical analysis on the normalized dataset resulting from
the entire population was then applied. A brief description
of the procedure follows. The SHM was used to predict FE
knee moments during stance. The stance is defined as the
period of time between the heel-strike and toe-off events
and it represents the interval during which the foot is in
contact with the ground floor. The average of the FE knee
torque estimated by the SHM over all subjects’ trials was first
computed. This curve expresses how good the model is at
estimating the overall FE knee torque. Similarly, the average
of the FE knee torque for all subject’s trials measured by the
inverse dynamic system was calculated. Fig. 4 shows that
the average of the estimated FE knee torque very closely
replicates the behavior of the average of the reference knee
torque. The joint moment’s peaks for both curves occur at
the same time during the stance phase. A small discrepancy
is noticeable at the edges of the graph. This is due to filtering
issues. For each time step, filter algorithms need to process
some data over a predefined time window. At the edges of
the data time series the window is not full and therefore
approximation errors are introduced. This, however, is not
an SHM issue. The Pearson correlation coefficient R is
0.932. This means that the model generates estimates that
are highly correlated to reference values over all subjects’
trials. The root mean squared error RMSE is 7.898Nm.
This means the model introduces an error that, on average,
is less than the 10% of the range of variation observed in the
reference values (i.e. 86.673Nm). The maximum absolute
error (emax) is equal to 21.494Nm. It occurs at 73% of
the stand phase and is located in the edge region where
the observed data is least significant. The minimum absolute
error (emin) is equal to 0.114Nm and occurs at 47%. It
is located in the peak region. This proves that the model
is capable of providing high performances within the most
significant part of the observed data. Fig. 4 also shows the
predictive ability of the EHM that is found to be slightly
lower on average than that provided by the SHM. Statistical
coefficients assume poorer values with respect to the SHM
ones: R = 0.893, RMSE = 9.714Nm. Minimum and
maximum absolute errors provide, however, slightly better
results: emax = 19.031Nm and emin = 0.012Nm. The
analyzed data shows the SHM improved the estimation
ability of the whole EMG-driven model. The lower EHM
performances can be related to the fact that the model does
not always correctly estimates the amount of stiffness in the
musculotendon unit. This leads to incorrect estimations of
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Fig. 5. (A) Instantaneous absolute error between the FE knee moments
obtained by using MTU estimates computed with SIMM and with the
RTAM. Range of variation of the instantaneous absolute errors between
MTU lengths (B) and moment arms (C) computed by SIMM and RTAM.

the muscle fiber length that results in inaccurate muscle force
and joint torque predictions. On the contrary, the SHM does
not rely on the tendon stiffness to compute the muscle fiber
length. Furthermore, although the tendon length is constant
in the SHM, its actual variation in the human MTU is small
anyway. The SHM is therefore more robust during gate as
it is shown in Fig. 4. Further studies have to be carried out
to assess the prediction ability of both SHM and EHM on
a wider range of movements including squats in which the
EHM may provide better results.

B. Real-Time Anatomical Model

As described in III-B, the real-time anatomical model
(RTAM) uses a set of subject-specific tables to compute
MTU estimates. The RTAM accuracy fully depends on how
descriptive the numbers in the 2-D tables are. Since the
tables are generated by using SIMM, the same level of
descriptiveness is assured for each subject and therefore the
accuracy analysis can be made on one individual only. For
the selected subject, the reported experimental results were
relative to 20 gait trials. To assess the accuracy of the real-
time anatomical model (RTAM), estimates of MTU moment
arms and lengths computed by the RTAM were compared to
those computed with SIMM (Fig. 5-B and C). Furthermore,
the FE knee joint torque computed using MTU estimates
produced by SIMM was compared to the FE knee joint
torque computed using MTU estimates produced by the

RTAM (Fig. 5-A). The data were first time normalized to
allow an in-between trial analysis. Then, the instantaneous
absolute error between values computed by SIMM and by
the RTAM were calculated. For each muscle, the absolute
errors were then averaged over all trials. Fig. 5-A shows how
the estimation of FE knee joint torque changes when using
RTAM rather than SIMM. The joint torque estimated using
RTAM differs from that estimated using SIMM of 0.119Nm,
on average. The maximum and the minimum discrepancy
between the two curves are 0.657Nm and 0.001Nm, re-
spectively. Therefore RTAM does not have negative impact
on the EMG-driven model’s capability of producing FE knee
torque estimates. Fig. 5-B and C show how the estimation
of musculotendon moment arm and length change when
using RTAM rather than SIMM. Uniarticular muscles have
no errors at all since the anatomical model tables directly
store all MTU values computed by SIMM for the whole
range of motion. Biarticular muscles, on the other hand, have
higher errors due to the approximations introduced by (3)
and (4). However, these errors are extremely small as their
range of variation is within a millimeter for all muscles. The
RTAM therefore generates estimations that are quantitatively
identical to the ones generated by SIMM.

VI. PERFORMANCE ANALYSIS

To verify whether the enhanced EMG-driven model can be
used to control powered orthoses with low computation re-
sources, we tested the model performances on an embedded
system (Digital Logic, Switzerland) equipped with a 1.6Ghz
Atom CPU with 512MB RAM.

A. Stiff Tendon Hill-type Muscle Model

Both the SHM and EHM models were run on each
trial for each subject. Trial execution time was averaged
yielding to an average execution time per subject. Data
are summarized in table I. A significant improvement in
computation time is achieved when using the SHM. While
EHM average execution time is longer than the trial duration
the SHM takes just a little fraction of the trial time. This
leaves enough time to execute the other blocks of the whole
neuromusculoskeletal model at runtime.

B. Real-Time Anatomical Model

The same subject in V-B was used to assess the execution
time of the RTAM. The average time required to estimate
MTU lengths and moment arms over all trials is 0.1185s
while the average trial duration is 1.3324s. The RTAM, only
needs to access the 2-D tables, read the MTU estimates and
perform the linear shift described in (3) and (4). All tables
and interpolating spline coefficients are precomputed offline.
The memory space required to store all tables and spline
coefficients is 1.44MB. This allows using the RTAM even
on systems with very limited hardware resources.

C. EMG-driven Model Real-Time Analysis

The average time needed by the EMG-driven model to
execute each computing block follows: 1) Input data reading:

2233



TABLE I
COMPARISON PERFORMANCES BETWEEN SHM AND LHM

Subject 1 2 3 4 5 6
SHM(s) 0.002 0.001 0.002 0.001 0.002 0.002
LHM(s) 1.232 0.897 1.268 0.604 1.068 1.306

Duration(s) 1.015 0.803 1.161 0.403 1.224 1.332

0.17697s, 2) RTAM: 0.1185s 3) EMG-to-activation model:
0.0028s, 4) SHM and torque computation model: 0.00199s.
The total EMG-driven model’s execution time was therefore
0.3003s while the actual average trial duration was 1.3324.
The total number of torque samples computed within the
trial was 67. To assure real-time execution, the EMG-
driven model has to compute the torque samples within a
reasonable amount of time, which varies depending on the
application. The control of a torque-driven powered orthosis
improves its performance as the torque sample computation
rate increases. To provide a comfortable control interface to
the user, the orthosis needs to actuate itself by the time the
operator’s muscles contract. To achieve this, the EMG-driven
model has to compute each torque sample within the muscle
electromechanical delay (EMD). This is the interval between
the moment the neural system generates EMG signals in
the muscles and the moment when the muscles contract
mechanically and generate moments around the joints. In
lower limb muscles, EMD is about 15ms [5]. From the
data above reported, our EMG-driven model took 4.58ms to
compute each torque sample. This makes the model suitable
to cope with the real-time control of powered orthoses. We
also assessed the time needed to calibrate the model (Sec. II-
C) and compared it with that needed by the original model.
While SHM was calibrated in 158.84s it took 4 hours and
48 minutes for EHM calibration.

VII. CONTROL OF A POWERED ORTHOSIS

As shown in [5], [6], [8], [9], an EMG-driven model can
be effectively used to control a lower limb powered orthosis
to enhance disabled people’s mobility. An orthosis control
system can use our EMG-driven model to estimate the force
the user’s muscles can produce and the resulting user’s
torque produced at the knee joint. When muscles forces are
not strong enough to allow a proper joint movement, they can
be amplified to produce the target torque at the knee. This
is the torque the subject should produce to properly execute
the desired movement. The powered orthosis controller can
then be fed with the difference between the target torque
and the current torque produced by the user wearing the
powered orthosis. This difference defines the amount of extra
torque the orthosis actuation system should add to obtain
the target motion. The muscle amplification factor that leads
to the target torque can be initially defined by a medical
doctor who had previously analyzed the patient. However,
automated procedures for the calibration of this parameter
can be implemented.

VIII. CONCLUSIONS AND FUTURE WORK

The objective of this research was to demonstrate to
which extent accuracy had to be sacrificed in EMG-driven
modeling to cope with real-time requirements. We found out
that assuming the tendon infinitely stiff does not affect the
ability of the model to predict muscle force and joint moment
during gait but significantly reduce processing time. We then
presented a new method for interpolating 4-dimensional mus-
culotendon estimates by using 2-dimensional cubic splines.
This allowed significantly relaxing the memory requirements
and processing the musculotendon estimates at runtime.
Our experimental results proved our enhanced EMG-driven
model can generate control signal at an adequate rate for
the control of a lower limb orthosis and can be used on
embedded systems with limited power capabilities. More
importantly, the use of a well-established biomechanical
model as a baseline for our research [1], [2], [10], will allow
designing more effective and safety man-in-the-loop control
strategies for robot-assisted applications. Future research will
focus on the integration and testing of our enhanced EMG-
driven model on an lower limb powered orthosis control unit.
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