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Abstract— Autonomous vehicle navigation in dynamic urban
environments requires localization accuracy exceeding that
available from GPS-based inertial guidance systems. We have
shown previously that GPS, IMU, and LIDAR data can be
used to generate a high-resolution infrared remittance ground
map that can be subsequently used for localization [4]. We
now propose an extension to this approach that yields substan-
tial improvements over previous work in vehicle localization,
including higher precision, the ability to learn and improve
maps over time, and increased robustness to environment
changes and dynamic obstacles. Specifically, we model the
environment, instead of as a spatial grid of fixed infrared
remittance values, as a probabilistic grid whereby every cell
is represented as its own gaussian distribution over remittance
values. Subsequently, Bayesian inference is able to preferentially
weight parts of the map most likely to be stationary and
of consistent angular reflectivity, thereby reducing uncertainty
and catastrophic errors. Furthermore, by using offline SLAM
to align multiple passes of the same environment, possibly
separated in time by days or even months, it is possible to
build an increasingly robust understanding of the world that
can be then exploited for localization.

We validate the effectiveness of our approach by using these
algorithms to localize our vehicle against probabilistic maps
in various dynamic environments, achieving RMS accuracy
in the 10cm-range and thus outperforming previous work.
Importantly, this approach has enabled us to autonomously
drive our vehicle for hundreds of miles in dense traffic on
narrow urban roads which were formerly unnavigable with
previous localization methods.

I. INTRODUCTION

Interest in autonomous vehicles and advanced driver as-

sistance systems continues to increase rapidly. In particular,

the DARPA Grand Challenges of 2004 and 2005, in which

vehicles competed to autonomously navigate through desert

terrain, and the DARPA Urban Challenge of 2007, in which

vehicles competed to autonomously navigate through a mock

urban environment amidst other traffic, have generated con-

siderable enthusiasm and research interest in the field of

autonomous driving [15], [16].

The 2007 Urban Challenge was the first significant demon-

stration of vehicles driving themselves through a city-like

environment. As important as this result was, many simpli-

fications were made for the purposes of the competition,

and the course itself, while more difficult in many ways

than previous challenges, featured roads wide enough to

accomodate even military-sized vehicles.

Research into autonomous driving in real environments

has been ongoing for many years, but much of it has focused

Fig. 1. Our autonomous vehicle. Velodyne HD-LIDAR 64-beam scanner
is circled in red.

on specific environments (e.g. highways with obvious lane

markers) [3]. Some positive results have been achieved for

map-based driving, though significant limitations remained.

In order for a vehicle to handle a variety of environments,

including ones with dense traffic, it must be able to localize

itself in such situations without relying on particular patterns

or features. In fact, in order to enable autonomous driving, a

localization system should be able to handle situations where

the environment has changed since the map was created.

In this paper we present a new method of map-based

driving that extends previous work by considering maps as

probability distributions over environment properties rather

than as fixed representations of the environment at a snapshot

in time. As in [4], we build infrared reflectivity maps of the

environment and align overlapping portions of the same or

disparate trajectories with GraphSLAM, using similar offline

relaxation techniques to recent SLAM methods [2], [1],

[5], [6], [8]. However, by extending the format of the map

to encapsulate the probabilistic nature of the environment,

we are able to represent the world more accurately and

localize with fewer errors. In particular, previous methods

often use a binary classification for deciding whether or not

to incorporate a piece of evidence into a map. That is, a

sensor reading such as a laser scan is either assumed to be a

legitimate part of the map, or it is assumed to be spurious and

therefore ignored. In [4], exactly this approach was used;

any scans that were thought to be vertical according to a

binary classification were thrown out.

However, instead of having to explicitly decide whether

each measurement either is or is not part of the static envi-
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ronment, we propose as an alternative considering the sum

of all observed data and modeling the variances observed

in each part of the map. This new approach has several

advantages compared to the non-probabilistic alternative.

First, while much research incorporating laser remission data

has assumed surfaces to be equally reflective at any angle of

incidence, this approximation is often quite poor [10], [11],

[12]. Whereas Lambertian and retroreflective surfaces have

the fortuitous property that remissions are relatively invariant

to angle of incidence, angular-reflective surfaces such as

shiny objects yield vastly different returns from different

positions. Instead of ignoring these differences, which can

lead to localization errors, we now implicitly account for

them.

A further advantage of our proposed method is an in-

creased robustness to dynamic obstacles; by modeling dis-

tributions of reflectivity observations in the map, dynamic

obstacles are automatically discounted in localization via

their trails in the map. Finally, in addition to capturing more

information about the environment, our approach enables a

remarkably straightforward probabilistic interpretation of the

measurement model used in localization.

Our vehicle is equipped with an Applanix LV-420 tightly

coupled GPS/IMU system that provides both intertial updates

and global position estimates at 200 Hz. The environment is

sensed by a Velodyne HD-LIDAR laser rangefinder with 64

separate beams; the entire unit spins at 10 Hz and provides

approximately one million 3-D points and associated infrared

intensity values per second. This vast quantity of data ensures

that most map cells are hit multiple times, thereby enabling

the computation of intensity variances on a per-cell basis.

We first present the details of our mapping algorithm,

including a novel unsupervised laser calibration routine, and

then explain how the localizer uses incoming data and a prob-

abilistic map to localize the vehicle. Finally, we show results

from several experiments that demonstrate the accuracy and

robustness of our approach.

II. PROBABILISTIC MAPS

Our ultimate goal in building a map is to obtain a grid-cell

representation of the observed environment in which each

cell stores both the average infrared reflectivity observed at

that location as well as the variance of those values. We

generate such a map in three steps: first, we post-process

all trajectories so that areas of overlap are brought into

alignment; second, we calibrate the intensity returns of each

laser beam so that the beams have similar response curves;

and finally, we project the calibrated laser returns from the

aligned trajectories into a high-resolution probabilistic map.

Each of these steps is described in detail below.

A. Map alignment using GraphSLAM

Given one or more logfiles containing GPS, inertial, and

laser data, we wish to refine the trajectories in order to

bring areas of overlap into alignment. Specifically, when

there exist sections of the logfiles that are spatially near but

temporally separated, the vehicle’s pose in these sections

Fig. 2. An infrared refectivity map of a large urban block showing the
average reflectivity of each 15x15cm cell. Many features are visible in this
spectrum.

must be corrected so that the two sections align properly.

This task has been successfully accomplished in previous

work [4]. Briefly, GraphSLAM is used to optimize an ob-

jective function in which adjacent vehicle poses are linked

by inertial and odometry data, vehicle poses are linked to

their estimated global position, and matched sections from

the logfile (e.g. for loop closure) are linked by their computed

alignment offsets.

In this implementation, alignment offsets between matched

poses are computed using iterative closest point on a cluster

of 5 adjacent 360-degree laser scans from each of the two

sections; the x, y, z, yaw, pitch, and roll are all optimized.

Once a list of matches has been computed, the GraphSLAM

objective function is minimized and the vehicle trajectories

are updated accordingly.

B. Laser calibration

Before we generate our map, it is important to calibrate

the separate laser beams so that they respond similarly to

the objects with the same brightness. With a well calibrated

laser, this step can be skipped without effect, but creating a

probabilistic map from a poorly calibrated laser suffers from

two disadvantages: first, the intensity averages for each cell

will depend heavily on which beams happened to hit it; and

second, the computed intensity variances will significantly

overstate the reality. In practice, we find that it is not neces-

sary to recalibrate our laser every time we use it, but using

the factory calibration is unquestionably detrimental. Thus in

our implementation the following calibration procedure can

be performed only once and the resulting calibration table

can be used for all further mapping and localization.

A single 360-degree scan from the uncalibrated laser can

be seen in Fig. 3(a). As is readily apparent, some beams

are generally too bright and others are generally too dark.

Rather than compute a single parameter for each beam

(which would still an improvement over the uncalibrated

data), we instead compute an entire response curve for every
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beam, so that we have a complete mapping function for

each beam from observed intensity to output intensity. This

more sophisticated approach is superior because, due to the

particularities associated with the hardware of the laser, each

beam has its own unique nonlinear response function.

Rather than using a fixed calibration target, we present an

unsupervised calibration method that can be performed by

driving once through an arbitrary environment. To compute

the calibrated response functions for each beam, we project

laser measurements from a logfile as the vehicle proceeds

through a series of poses and, for every map cell, store the

intensity values and associated beam ID for every laser hit

to the cell. Then, for every 8-bit intensity value a observed

by each of the beams j, the response value for beam j with

observed intensity a is simply the average intensity of all

hits from other beams to cells for which beam j returned

intensity a.

Specifically, let T be the set of observations {z1, . . . ,zn}
where zi is a four-tuple 〈bi,ri,ai,ci〉 containing the beam ID,

range measurement, intensity measurement, and map cell ID

of the observation, respectively. Then we have:

T = {z1, . . . ,zn}

zi = 〈bi,ri,ai,ci〉

bi ∈ [0, . . . ,63]

ri ∈ R+

ai ∈ [0, . . . ,255]

ci ∈ [0, . . . ,N ·M−1]

where N and M are the dimensions of the map. Then the

calibrated output c(a, j) of beam j with observed intensity a

is computed in a single pass as:

c( j,a) := Ezi∈T [ai | ((∃k : ci = ck,bk = j,ak = a),bi 6= j)] (1)

That is, the calibrated output when beam j observes

intensity a is the conditional expectation of all other beams’

intensity readings for map cells where beam j observed

intensity a.

This equation is computed for all 64x256 combinations

of j and a. Thus a calibration file is a 64-by-256 intensity

mapping function; values which are not observed directly

can be interpolated from those which are. These calibrated

response functions need only be computed once and their

results can be stored compactly in a lookup table. The

result of calibration can be seen in Fig. 3(b). In contrast to

many calibration algorithms, our unsupervised approach has

the desirable property that it does not require a particular

calibration environment, but instead adapts automatically

to any environment. Due to the abundance of laser data

and the averaging over many values, even the presence of

dynamic objects does not significantly reduce the quality of

the calibration.

C. Map creation

Given a calibrated laser and one or more logfiles with

properly aligned trajectories, it is now possible to generate

(a) Uncalibrated sensor.

(b) After intensity calibration.

Fig. 3. Without calibration (a), each of the 64 beams has a significantly
different response to reflectivity values. After calibration (b), the beams are
much better matched.

a high resolution map.

In order to create a probabilistic map, we store not only the

average laser intensity for each map cell, but also the vari-

ance of those values. Thus, the map has two channels of data:

an intensity, and a variance. Explicitly estimating the actual

reflectance properties as [13] do with multiple photographs

is not necessary for our approach; simply accounting for the

observed variance of infrared remittance values at each map

cell is enough for our mapping and localization goals.

The algorithm for generating a probabilistic map is

straightforward. As the vehicle transitions through its series

of poses, the laser points are projected into an orthographic

x,y representation in which each map cell represents a

15x15cm patch of ground. Every cell maintains the necessary

intermediate values to update its intensity average and vari-

ance with each new measurement. Infrared reflectivity is an

rich source of environmental data, as can be seen in Fig. 4(a).

Unlike camera-based data, this data is immune from shadows

and other artifacts caused by passive lighting. Upon close

inspection, trails from passing cars can be seen; because the

maps are simply averages over time, observations of dynamic

obstacles will taint the map. Rather than attempt to delete

these, which is impossible to do perfectly, we instead take

advantage of the fact that dynamic obstacles tend to leave a

signature by causing large intensity variances for the cells in

which they pass.

Indeed, Fig. 4(b) shows the standard deviations of each

cell, in which the dynamic trails stand out very visibly.

Here, the probabilistic map encodes the fact that its intensity

estimation for those cells is uncertain, so that when the map
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(a) Average infrared reflectivity.

(b) Standard deviation of infrared reflectivity values.

Fig. 4. The two channels of our probabilistic maps. In (a) we see the
average infrared reflectivity, of brightness, of each cell. The innovation of
this paper is to also consider (b), the extent to which the brightness of
each cell varies. Note that the trails of the passing vehicles are much more
prominent in (b).

is later used for localization, intensity values from incoming

sensor data that do not match those in the map will not be

overly punished. It is also interesting to note that, while it

appears at first glance that the lane markings also have high

variances, upon closer inspection it is clear that it is actually

the edges of the markings which have high variance. This

observation is easily explained by the fact that slight sensor

miscalibrations and pose errors will cause the cells near a

large gradient to have larger range of intensity returns.

III. ONLINE LOCALIZATION

Once we have built a map of the environment, we can

use it to localize the vehicle in real time. We represent

the likelihood distribution of possible x and y offsets with

a 2-dimensional histogram filter. 1 As usual, the filter is

comprised of two parts: the motion update, to reduce confi-

dence in our estimate based on motion, and the measurement

update, to increase confidence in our estimate based on

sensor data.

1Although particle filters are a popular alternative method, having GPS
available allows us to constrain our search space to within several meters
of the GPS estimate and thus to calculate directly the probability of all
possible offsets at a 15-cm cell size. This method confers the significant
advantage of not having to worry that a particle is missing near the correct
location. Further, the possibility of achieving accuracy much better than the
size of one grid cell would afford us no additional advantage given the other
sources of error in our system (e.g. sensor miscalibration, controller error,
etc.)

A. Motion update

Our GPS/IMU system reports both inertial updates and a

global position estimate at 200Hz. By integrating the inertial

updates we maintain a ”smooth coordinate” system which is

invariant to jumps in GPS pose but which, necessarily, di-

verges arbitrarily over time. Fortunately, because the smooth

coordinate system is updated by integrating velocities, its

offset from the true global coordinate system can be modeled

very accurately by a random walk with Gaussian noise. Of

course, recovering the offset between the two coordinate

frames is equivalent to knowing our true global position,

so it is this offset that we strive to estimate.

As a result, the motion model for our filter is surprisingly

simple; rather than needing to model the uncertainty of the

motion of the vehicle itself as is typically done, we need only

model the drift between the smooth and global coordinate

systems. We note that the car’s motion model is not actually

being ignored; rather, it is used internally in the tightly-

coupled GPS/IMU system precisely to minimize the rate at

which the smooth and global coordinate systems drift apart.

Vehicle dynamics are discussed in [9].

Because the smooth coordinate system’s drift is modeled

as a Gaussian noise variable with zero-mean, the motion

model updates the probability of each cell as follows:

P(x,y) = η ·∑
i, j

P(i, j) · exp

(

−
1

2
(i− x)2( j− y)2/σ2

)

(2)

where P(x,y) is the posterior probability, after the motion

update, that the vehicle is in cell (x,y), η is the normalizing

constant, and σ is the parameter describing the rate of drift

of the smooth coordinate system.

Although this update is theoretically quadratic in the

number of cells, and thus quartic in the search radius, because

the drift rate is relatively low and the update frequency can

be arbitrarily high, it is in practice perfectly acceptable to

only consider consider neighboring cells with a distance of

two or three from the cell to be updated. For instance, the

probability that the smooth coordinate frame drifts more than

45cm in .1 seconds is vanishingly small, even though such

jumps are relatively common for the global GPS estimate.

We process the motion update at a rate proportional to the

speed of the vehicle, as the expected drift in the smooth

coordinate system is roughly proportional to the magnitude

of the vehicle’s velocity.

B. Measurement update

The second component of the histogram filter is the

measurement update, in which incoming laser scans are used

to refine the vehicle’s position estimate.

The way in which we process incoming laser scans is

identical to the mapping process described in the previous

section. That is, rather than treating every laser return as

its own observation, we instead build a rolling grid from

accumlated sensor data in the exact same form as our map.

This method enables us to directly compare cells from our

sensor data to cells from the map, and avoids overweighting
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cells which have a high number of returns (e.g. trees and

large dynamic obstacles).

If z is our sensor data and m is our map, and x and y are

possible offsets from the GPS pose, then Bayes’ Rule gives:

P(x,y|z,m) = η ·P(z|x,y,m) ·P(x,y) (3)

We may approximate the uncertainty of the GPS/IMU pose

estimate by a Gaussian with variance σ2
GPS, so we may

estimate P(x,y) simply as a product of the GPS Gaussian

and the posterior belief after the motion update:

P(x,y) = η · exp

(

x2 + y2

−2σ2
GPS

)

·P(x,y) (4)

To calculate the probability of sensor data z given an offset

(x,y) and map m, we take the product over all cells of

the probability of observing the sensor data cell’s average

intensity given the map cell’s average intensity and both of

their variances. This value is then raised to an exponent α < 1

to account for the fact that the data are likely not entirely

independent, for example due to systemic calibration errors

or minor structural changes in the environment which are

measured in multiple frames. [7]

Let us call the two-dimensional arrays of the standard

deviations of the intensity values in the map and sensor data

mσ and zσ , respectively. Then, for example, the standard

deviation of the intensity values in the map cell .45m east

and 1.2m north of the GPS estimate would be expressed as

mσ(.45,1.2)
.

We will use the same notation for the average intensity

value, with r denoting the average intensity (reflectivity)

of the cell. Again, to use the same example, the average

intensity seen in the map at the cell .45m east and 1.2 north

of the GPS estimate would be expressed as mr(.45,1.2)
.

Thus, we have:

P(z|x,y,m) = ∏
i, j

exp

(

−(mr(i−x, j−y)
− zr(i, j)

)2

2(mσ(i−x, j−y)
+ zσ(i, j)

)2

)α

(5)

Putting it all together, we obtain:

P(x,y|z,m) = η ·∏
i, j

exp

(

−(mr(i−x, j−y)
− zr(i, j)

)2

2(mσ(i−x, j−y)
+ zσ(i, j)

)2

)α

·exp

(

x2 + y2

−2σ2
GPS

)

·P(x,y) (6)

Towards the end of achieving robustness to partially out-

dated maps, we further impose a minimum on the combined

standard deviation for the intensity values of the map and

sensor data. This implicitly accounts for the not-unlikely

phenomenon that an environment change since the map

acquisition simultaneously enabled a low variance in both

the map and the sensor data, yet with the two showing

significantly different intensity values.

For computational reasons we restrict the computation of

P(x,y|z,m) to cells within several meters of the GPS esti-

mate; however, this search radius could easily be increased

if a less accurate GPS system were used.

(a) GPS localization induces ≥1 meter of error.

(b) No noticeable error after localization.

Fig. 5. Incoming laser scans (grayscale) superimposed on map (gold). (a)
GPS localization is prone to error, even (as shown here) with a high-end
integrated inertial system and differential GPS using a nearby stationary
antenna. (b) With localization there is no noticeable error, even in the
presence of large dynamic obstacles such as this passing bus.

C. Most likely estimate

Given the final posterior distribution, the last step is

to select a single x and y offset that best represents our

estimation. Taking the offset to be maxx,yP(x,y) is, by

definition, probabilistically optimal at any given instant,

but such an approach could add unnecessary danger as

part of the pipeline in an autonomous vehicle. Because

the maximum of a multimodal distribution can easily jump

around discontinuously, using that approach may cause the

vehicle to oscillate under unfortuitous circumstances, even

if the vehicle’s navigation planner performed some variety

of smoothing. An alternative approach would be to choose

the center of mass of the posterior distribution; this would

improve consistency, but would tend to cause the chosen

offset to be biased too much towards the center. As a

compromise, we use the center of mass with the variation

that we raise P(x,y) to some exponent α > 1, as follows:

x =
∑x,y P(x,y)α · x

∑x,y P(x,y)α
y =

∑x,y P(x,y)α · y

∑x,y P(x,y)α
(7)

This (x,y) offset is the final value which is sent to the

vehicle’s navigation planner. While an advanced planning

and decision-making algorithm could take advantage of the

entire posterior distribution over poses rather than requiring a

single, unimodal pose estimate, our vehicle’s planner expects
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a single pose estimate and thus this equation has proven

useful as it constitutes a practical compromize between the

high bias of mean-filtering and the high variance of the mode.

In our vehicle this offset is computed and sent at 10 Hz.

Subsequently, the vehicle is able to plan paths in global

coordinates using the best possible estimate of its global

position. An example of the localizer’s effect is shown in

Fig. 5.

IV. EXPERIMENTAL RESULTS

The above algorithms were implemented in C such that

they are capable of running in real time in a single core

of a modern laptop CPU. Map data requires roughly 10

megabytes of data per mile of road, which enables extremely

large maps to be stored on disk. Maps are stored in a tiled

format so that data grows linearly with terrain covered, and

RAM usage is constant regardless of map size.

We conducted extensive experiments, both manually and

autonomously, with the vehicle shown in Fig. 1. We now

present both quantatative results demonstrating the high

accuracy of our localizer and discuss autonomous results we

were unable to achieve without the present techniques.

A. Quantatative Results

In order to quantatatively evaluate the performance of

our methods in the absense of known ”ground truth,” we

employ the same offline GraphSLAM alignment described

in the mapping section to align a recorded logfile against an

existing map; we then compare the offsets generated in this

alignment to the offsets reported by the localizer. Ideally,

the offline and online methods should yield similar results,

though the offline SLAM approach would likely have higher

accuracy as it uses more than 100 times the amount of

data. In fact, our probabilistic maps can be thought of as

an efficient reduction of the entire set of laser data that,

by virtue of storing the intensity variances, loses much less

information than does a typical map.

For our first test, we drove around a very large urban block

several times in July and used our mapping method to create

a probabilistic map. We then collected a separate logfile

in September of the vehicle driving the same block three

times; this was approximately ten minutes of driving in dense

traffic. At this point, the online localizer was used to align

the September route against the July map. Separately, offline

GraphSLAM was also used to align the two trajectories using

all available data.

The map is shown in Fig. 2. Fig. 6 shows the lateral offsets

applied by the localizer during the ten-minute September

drive compared against the difference in the localizer align-

ment and the offline SLAM alignment. During this drive,

an RMS lateral correction of 66cm was necessary, and the

localizer corrected large errors of up to 1.5 meters. As the

graph illustrates, the resulting error after localization was

extremely low, with an RMS value of 9cm. It should be

noted that this value is quite a bit less than the grid cell size

of 15cm, and also that the GraphSLAM alignment itself is

Fig. 6. Comparing the lateral offset applied by our algorithm (red) to
the residual error after localization (blue) as measured by offline SLAM
alignment. During these ten minutes of driving, RMS lateral error has been
reduced from 66cm to 9cm.

Fig. 7. Comparing the longitudinal offset applied by our algorithm (red)
to the residual error after localization (blue) as measured by offline SLAM
alignment. During these ten minutes of driving, RMS longitudinal error
has been reduced from 87cm to 12cm. Note also the systematic bias in
longitudinal error which is removed after localization.

likely to have minor errors; thus, this result is about as good

as we could hope to achieve with this method of evaluation.

A companion graph for longitudinal corrections of the

same drive is shown in Fig. 7; here, the localizer corrected

an RMS longitudinal error of 87cm and agreed with the

GraphSLAM alignment to within 12cm RMS. Interestingly,

whereas the lateral corrections had roughly a zero mean,

that is not the case for the longitudinal corrects. The fact

that the average longitudinal correction was about 75cm

forwards suggest that there was a systematic bias somewhere;

perhaps the wheel encoder or GPS signal was systematically

off during the mapping or localization run. In any case, the

localizer was clearly able to correct for both the systematic

and non-systematic effects with great success.

B. Autonomous Success

In addition to evaluating our performance quantatatively,

we also ran several autonomous experiments in which the

vehicle navigated autonomously in real urban environments.

Using previously published localization methods, we were

able to drive autonomously on moderately wide roads and

only in low traffic, because turns could not be made with

sufficient accuracy and narrow roads posed too great a risk.

However, using the methods presented here, we are now

able to drive autonomously in several urban environments
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that were previously too challenging. In one example, our

vehicle participated in an autonomous vehicle demonstration

in downtown Manhattan in which several blocks of 11th

Avenue were closed to regular traffic. Our vehicle operated

fully autonomously with other autonomous and human-

driven vehicles and succesfully stayed in the center of its

lane, never hitting a curb or other obstacle, despite that the

environment configuration had changed considerably since

the map had been acquired.

In another example, we mapped a four-mile loop around a

local campus that includes roads as narrow as 10 feet, tight

intersections, and speed limits up to 40 MPH. We were able

on the first attempt to drive the entire loop with the vehicle

completely controlling its own steering; an intervention was

never necessary even amidst heavy rush-hour traffic. This

route is depicted in Fig. 8.

Since performing these localization-specific experiments,

the algorithms presented in this paper have already enabled

our vehicle to drive several hundred miles autonomously in

traffic on urban roads without a single localization-related

failure.

V. CONCLUSION

Localization is a critical enabling component of au-

tonomous vehicle navigation. Although vehicle localization

has been researched extensively, no system to our knowledge

has yet proven itself able to reliably localize a vehicle

in dense and dynamic urban environments with sufficient

accuracy to enable truly autonomous operation. Previous

attempts have successfully improved upon GPS/IMU systems

by taking environment into account, but suffered from an in-

ability to handle changing environments. While our approach

is not infinitely adaptable and can be hindered by sufficiently

severe changes in weather or environmental configuration,

we believe it is a significant step forward towards allowing

vehicles to navigate themselves in even the trickiest of real

life situations.

By storing maps as probability models and not just ex-

pected values, we are able to much better describe any

environment. Consequently, localizing becomes more robust

and more accurate; compared with previous work we suffer

far fewer complete localization failures and our typical

localization error is significantly reduced, especially in the

more challenging longitudinal direction. The fact that we

were able for the first time to autonomously nagivate our

vehicle in our most difficult local streets (with lanes as

narrow as 10 feet), amidst rush-hour traffic, is a testament

to the precision and robustness of our approach. Indeed,

extensive experiments suggest that we are able to reduce

the error of the best GPS/IMU systems available by an

order of magnitude, both laterally and longitudinally, thus

enabling decimeter-level accuracy; as we have shown, this

performance is more than sufficient for autonomous driving

in real urban settings.

There remain promising areas for further research on this

topic. In the interest of efficiency and robustness we project

points to the xy plane in our maps, but height information

Fig. 8. A four-mile loop around which our vehicle nagivated autonomously
in traffic with no localization failures.

is surely useful; while infrared reflectivity is abundantly rich

in information, a more complex approach could also reason

in the space of map elevation. For example, ray tracing

could be used in both the map-making and localization

phases to explicitly process and remove dynamic obstacles,

and vertical static obstacles could be incorporated into the

measurement model.
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