
Remote Teleoperation of an Unmanned Aircraft with a
Brain-Machine Interface: Theory and Preliminary Results

Abdullah Akce, Miles Johnson, and Timothy Bretl

Abstract— This paper presents an interface that allows a
human pilot to remotely teleoperate an unmanned aircraft
flying at a fixed altitude with input only from an electroen-
cephalograph (EEG), which is used in this case to distinguish
between left- and right-hand motor imagery in the brain.
The approach is to construct an ordered symbolic language
for smooth planar curves and to use these curves as desired
paths for the aircraft. The underlying problem is then to
design a communication protocol by which the pilot can, with
vanishing error probability, specify a string in this language
using a sequence of bits sent through a binary symmetric
channel in the presence of noiseless feedback. Such a protocol
is provided by the combination of arithmetic coding as a
method of lossless data compression with posterior matching
as a capacity-achieving channel code. Preliminary hardware
experiments demonstrate the feasibility of this approach.

I. INTRODUCTION
A brain-machine interface is a feedback interconnection

between a human user and a prosthetic device that mimics the
interaction of the central nervous system (including the brain
and the spinal cord) with peripheral biomechanics (including
the musculoskeletal system). Measurements of neural activity
take noisy signals from the user to the prosthetic; sensory
receptors take noisy signals back from the prosthetic to
the user. The measurements may come from non-invasive
methods like an electroencephalograph (EEG) that can ob-
serve the gross electrical activity of many neurons, or they
may come from invasive methods like intracortical sensors
that can observe ensemble spiking of individual neurons.
The feedback may be provided by a graphical display, by
observation of the prosthetic (visual or through physical
coupling), or by direct cortical stimulation.

There has been a sharp increase in work on brain-machine
interfaces over the past decade, leading to incredible results
like enabling primates to move robotic arms and tetraplegic
human patients to move a cursor and read email (e.g., [1], [2],
[3], [4], [5], [6], [7], [8], [9], and many others). Most of this
work has originated within the neuroscience community and
has focused on enriching the measurement and interpretation
of neural activity, in particular on developing a better under-
standing of how ensembles of neurons encode information
and control sensorimotor function. Much less work has
focused on improving the prosthetic device (e.g., the robot
arm or the cursor) and in particular on the importance of its
control architecture. What is the appropriate level for task
specification? What is the optimal dynamic response in the

A. Akce is with the Department of Computer Science and M. John-
son and T. Bretl are with the Department of Aerospace Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
{aakce2,mjohns50,tbretl}@illinois.edu

presence of uncertainty (in this case, largely about the task)?
What type of sensory feedback should be provided to the
user? These choices have a significant impact on the overall
performance of a brain-machine interface, and consequently
present an exciting opportunity for roboticists, since they are
much the same choices we make when engineering other
robotic systems.

We have drawn considerable inspiration from the recent
success of Rebsamen et al. [7] and Iturrate et al. [8] in
developing brain-machine interfaces that enable a human
user with impaired sensorimotor function to drive a robotic
wheelchair indoors on level ground using EEG signals. Both
of these interfaces are based on the P300 evoked potential,
which is an involuntary response to visual stimuli that can be
measured reliably with EEG and that indicate, for example,
preference for a particular item in a menu (e.g., “turn left,”
“turn right”, or “stop”) or for a particular location on a
map. These high-level commands are carried out by a fully
automated navigation system that handles details like local-
ization and mapping, motion planning, obstacle avoidance,
etc. Both systems show impressive levels of performance,
which has been validated by experimental results. However,
both systems are also complex enough that it is difficult to
understand which design choices were most critical to per-
formance, and consequently it seems difficult to generalize
their results. In particular, we are interested in enabling the
control of vehicles and other prosthetic devices that move at
high speed and that have complex dynamics—can the same
interface be used for these systems?

Motivated by this question, we take a different approach
to the design of brain-machine interfaces. We view the
interface as the means by which a user may communicate
their intent (i.e., specify a desired task) to the prosthetic.
Based on this view, we make system design choices that
allow us to formally model the task as a string in an
ordered symbolic language, the neural sensor (e.g., EEG) as
a communication channel, and the prosthetic as a means of
providing feedback to this channel. We do not claim that our
approach necessarily gives better performance than [7], [8];
its appeal is that, given the design choices we have made,
there is a provably optimal communication protocol that can
be derived using tools from information theory. Our approach
also admits a strong link to other interfaces that have been
previously designed for text entry—this link, which we will
make explicit in Section II-A, gives us some hope that our
approach may be more broadly generalizable.

As a case study, in this paper we present a brain-machine
interface that allows a human pilot to remotely teleoperate

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5322

an unmanned aircraft flying at a fixed altitude using EEG
signals. We construct an ordered symbolic language of
smooth planar curves (Section II-B) and use these curves
as desired paths for the aircraft, tracked with an onboard
control system. We use a binary classifier to distinguish
between left- and right-hand motor imagery in the brain
based on the EEG signals, and use a graphical display to
provide visual feedback to the pilot. The underlying problem
is then to design a communication protocol by which the
pilot can, with vanishing error probability, specify a string in
the language of curves using a sequence of bits sent through
a binary symmetric channel in the presence of noiseless
feedback (Section II-C). Such a protocol is provided by the
combination of arithmetic coding as a method of lossless
data compression with posterior matching as a capacity-
achieving channel code (Section III). Preliminary hardware
experiments demonstrate the feasibility of this approach
(Section IV).

It should be emphasized that we do not believe an EEG
is necessarily a practical input device for flying an aircraft,
although we do think it serves as a useful demonstration
of what can be done even with a minimally-invasive neural
sensor. Instead, we hope that the unique challenges presented
by this system will push the state-of-the-art in brain-machine
interface design, possibly opening doors to new and more
practical applications that have yet to be defined.

II. PROBLEM FORMULATION

A. Model Interface for Text Entry

Our approach is inspired by an interface for text entry that
is shown in Fig. 1, in which users drive a cursor to select
characters from a menu [10]. Experienced users can type at
35 words/minute with a mouse, at 25 words/minute with an
eye tracker, at 16 words/minute with a breath mouse (driven
by lung volume), and at 1-2 words/minute with EEG [5].
Our work with this interface has shown similar performance
even with a binary input device driven by EMG [11].

Text has three key properties that make it possible to
implement this interface:

a) An ordered symbolic language: Text is made up
of symbols �i ∈ Σ from the alphabet Σ = {a, b, . . . , z},
perhaps augmented to include punctuation. It has a sequential
structure, in the sense that we write it one symbol at a time. It
also has an intuitive lexicographic ordering, in the sense that
we know the word rambo comes “before” the word robot.
Order is particularly important, because it makes clear which
direction the user should move the cursor.

b) A probabilistic language model: The portion of the
menu occupied by each character is determined by its con-
ditional probability. This probability comes from a language
model, which assigns P (�1�2 ⋅ ⋅ ⋅�n) to each sequence of
symbols in Σ∗.

c) A natural way to display likely words.: The condi-
tional probability of a given character increases the longer
the cursor moves toward it. As the corresponding interval
grows large, it is recursively subdivided into a second

that

the

this

thus

to

Fig. 1. The Dasher text-entry interface. Each colored box represents a
character (alphabetical top to bottom, sequentially nested left to right), with
width proportional to its conditional probability. After driving the cursor
toward the character “t” and then “h”, it becomes easier to select common
words like “the” and “this” as a result of the probabilistic language model.

menu of characters, then a third, etc. In other words, rather
than symbol-by-symbol coding (e.g., Huffman coding), the
interface uses arithmetic coding to place characters in the
menu. Rather than select one character at a time, the user
continuously “zooms in” on the complete sentence that they
want to type.

B. Symbolic Language Model for Smooth Planar Curves

It is possible to construct an ordered symbolic language
that gives smooth planar curves the same three properties
listed above. Any smooth two-dimensional curve
 : [0, L]→
ℝ2 of arbitrary length L can be described by x′ = cos �,
y′ = sin �, �′ = −�, where s is the arc-length, �(s) is the
angle of the tangent to the curve at (x(s), y(s)), and �(s)
is the curvature. The curve is straight when � = 0, turns
left when � < 0, and turns right when � > 0. Our language
models a subset of curves for which � is piecewise constant
on intervals of length d. We further restrict these curves by
choosing each �i ∈ {c1, . . . , cm} from a finite set. We
associate a symbol �i with the arc generated by �i. We
define an alphabet Σ = {�1, . . . , �m} so that curves can be
described concisely as strings of symbols from Σ (see Figs. 2
and 3). It is like a chain code [12], but with curvatures rather
than cardinal directions as symbols.

The sequential structure of our language allows a user
to “spell” curves, one symbol at a time, just like he or
she would spell text. Our language also admits an intuitive
lexicographic ordering. For two arcs �i, �j ∈ Σ, we say
that �i < �j if and only if i < j. This definition corresponds

5323

x(0), y(0), �(0)

d
�1

d
�2

d �3

etc.

d
�11

Fig. 2. An example alphabet used in our language of smooth curves. Each
symbol �i is a circular arc with its length given by d and its curvature given
by �i for a starting configuration x(0), y(0), �(0). �i values were chosen
such that the change in orientations are evenly spaced in [−�/2, �/2].

start

1 = �6�5�11

2 = �6�6�6

3 = �9�1�9

Fig. 3. Three smooth curves composed from the symbols of Fig. 2. These
curves exhibit the ordering
1 <
2 <
3.

to the notion that �i turns left more sharply than �j . For
two curves
i = �i1 ⋅ ⋅ ⋅�iN and
j = �j1 ⋅ ⋅ ⋅�jM we say
that
i <
j if and only if ik < jk, where k is the minimum
index for which �ik ∕= �jk . This definition corresponds to
the notion that
i turns left at the first point at which it
differs from
j (see Fig. 3). This ordering allows a user to
“alphabetize” curves just like he or she would alphabetize
strings of text. It also allows the user to search for curves
with a binary input, just like he or she would search for words
in a dictionary by turning pages forward or back. Finally,
our language allows the interface to perform inference. We
can think of the sequence as being generated by a Markov
process. From offline or online data, we can compute a
Markov model that assigns a conditional probability to each
symbol.

C. Interface Design as a Communication Problem

Our goal is to design a brain-machine interface that allows
a human pilot to remotely teleoperate an unmanned aircraft
flying at a fixed altitude using EEG signals. We may cast this
as a communication problem by making the following three
choices: (1) to use smooth planar curves from our symbolic
language as desired paths for the aircraft, tracked with an
onboard control system; (2) to use a binary classifier to
distinguish between left- and right-hand motor imagery in
the brain based on EEG signals; and (3) to use a graphical
display to provide visual feedback to the pilot. We will say
exactly how these choices are implemented in Section IV,
but these details affect neither our problem formulation nor

∗

desired
path

source
encoder

�∗ channel
encoder

xk

noisy
channel

yk
channel
decoder

�̂ksource
decoder

̂k+1

visual
display

̂k
candidate
path

THE USER

THE PROSTHETIC

Fig. 4. Information-theoretic approach to the design of brain-computer
interfaces. The desired path
∗ from our symbolic language Σ is conveyed
through a noisy discrete memoryless channel (in our case, a binary sym-
metric channel) with noiseless feedback provided by a visual display. At
time step k, the display shows a candidate path
̂k . The user, modeled as
the encoder, attempts to give the input xk to the channel by comparing the
order of
̂k to
∗. xk = 0 or “turn left” if
∗ is to the left of
̂k , otherwise
xk = 1 or “turn right.” The prosthetic, modeled as the decoder, generates
a new candidate path from the noisy channel output yk . The protocol is
designed in two parts, a source code and a channel code.

our solution approach.
Our first choice (use curves as desired paths) allows us

to define the pilot’s objective as specifying a string in an
ordered symbolic language with finite cardinality. Our second
choice (use a binary classifier to interpret EEG signals)
allows us to model the EEG sensor as a noisy discrete mem-
oryless channel, in particular as a binary symmetric channel
(BSC) with some crossover probability �. The input to this
channel is xk ∈ {0, 1}, where we associate xk = 0 with
the command to “turn left” and xk = 1 with the command
to “turn right.” The output of this channel is yk ∈ {0, 1},
where P (yk∣xk) = � if yk ∕= xk and P (yk∣xk) = 1 − �
otherwise. Our third choice (use a graphical display) allows
us to assume that the BSC can provide causal noiseless
feedback, in this case expressed as a candidate path.

With this abstraction, we can reformulate the problem of
interface design as the problem of constructing an optimal
communication protocol (see Fig. 4). We decompose this
protocol into a source code and a channel code in the usual
way [14]. The purpose of the source code is to provide a
compact and canonical representation of the desired sequence

∗ = �1 ⋅ ⋅ ⋅�n. The result is a message point denoted by
�∗ ∈ [0, 1) to be transmitted over the channel. The purpose
of the channel code is to specify the sequence of inputs (in
this case, bits) that the user should generate in order to ensure
a vanishing probability of error in transmitting �∗ ∈ [0, 1).
Because we assume noiseless feedback, the channel code
should be viewed here as a closed-loop feedback policy
rather than a standard error-correcting code. Good choices
for both a source code and a channel code will be derived
in the following section. Keep in mind that “good” in this
context means not only that codes result in high performance
but also that they can actually be implemented by a human.

5324

median path
̂0 = �6�6�6�6

∗

desired path

̂1 = �7�8�6�4

∗

̂2 = �6�9�2

∗

median

P (�)

�5 �6 �7⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 1

P (�∣y1 = 1)

�5 �6 �7⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 1

P (�∣y1 = 1, y2 = 0)

�5 �6 �7⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 1

Fig. 5. The communication protocol between the user and the brain-computer interface. The interface generates smooth planar curves from the alphabet
of circular arcs given in Fig. 2. The user commands binary inputs to specify the desired path
∗. The interface maintains a posterior distribution over
the unit interval. The graphical display shows the path corresponding to the median of this distribution. This correspondence is determined by arithmetic
coding with respect to a statistical model of symbols. In this example, the model is assumed to be a unigram model as depicted in the figures by the size
of the subintervals. In the initial step, shown in the first frame, the posterior is uniform and its median is decoded into straight arcs (see
̂0). Upon an
observation of a “turn right” command, the likelihood of paths to the right of the median are increased. As a result, the displayed path moves to the right
of
̂0, as shown in the second frame. Similarly, the third frame shows the new posterior and the corresponding path after an observation of “turn left.”

III. SOLUTION APPROACH

In the previous section, we formulated the problem of
brain-machine interface design as the problem of construct-
ing an optimal communication protocol consisting of a
source code and a channel code. In this section, we derive
these codes using tools from feedback information theory.

A. Source Code

Our goal here is to construct a mapping from random
sequences s = (�1�2 ⋅ ⋅ ⋅) distributed according to a statisti-
cal language model P (�i∣�1 ⋅ ⋅ ⋅�i−1) to points �(s) ∈ [0, 1]
distributed uniformly. We do this using a method of lossless
data compression called arithmetic coding [13]. This method
is both optimal and has the useful property that it preserves
lexicographic ordering, so that s1 < s2 if and only if
�(s1) < �(s2). Given a string s = (�1 ⋅ ⋅ ⋅�i), we denote the
prefix of s by � = (�1 ⋅ ⋅ ⋅�i−1). An arithmetic code maps
each string s to a subinterval [ls, rs) ∈ [0, 1) that is computed
recursively from the one [l�, r�) ⊃ [ls, rs) associated with
its prefix. If the alphabet Σ is of length m, then [l�, r�) is
divided into m subintervals arranged in the same order as Σ
and with size proportional to P (�i∣�). The recurrence is

ls = l� + (r� − l�)
∑
�<�i

P (�∣�)

rs = l� + (r� − l�)
∑
�≤�i

P (�∣�),

where in the base case we assign the empty prefix � = () to
the entire unit interval. Note that any real number in [l�, r�)
corresponds to a string of infinite length but with prefix �. In
particular, by a similar recursion we may recover the prefix
of length n that corresponds to an estimate �̂k of the message
point after k user inputs. At each step i = 1, . . . , n of this

recursion, we add the symbol �i given by

�i = min

⎧⎨⎩� ∈ Σ

∣∣∣∣∣ ∑
�j≤�

P (�j ∣�) ≥ �̂k − l�
r� − l�

⎫⎬⎭ (1)

to the prefix � decoded so far. The intuition behind arithmetic
coding is that the number of bits required to specify a
point in a particular subinterval decreases with the size of
this subinterval, and that more likely strings are mapped to
larger subintervals. In particular, the average number of bits
matches the entropy of the source (a lower bound), as given
by the statistical language model [14].

B. Channel Code

Our goal here is to ensure a vanishing probability of error
in transmitting a message point �∗ that is assumed to be
drawn uniformly at random from the interval [0, 1) ⊂ ℝ. In
the presence of feedback, it is possible to significantly reduce
the complexity of encoding and decoding and significantly
increase the rate at which error probability decreases (even
though the capacity remains constant). This is achieved
by a posterior matching scheme that admits exponential
decay in the probability of error in transmitting �∗ with
increasing k [15]. For a binary symmetric channel, this
posterior matching scheme has a very simple interpretation.
Assume that after time step k, the decoder has computed the
posterior distribution PΘ∣Y k(�∣y1 . . . yk). First, the median
of this distribution is selected as the estimate �̂k and given
as feedback to the encoder. Then, the encoder selects the
next input xk+1 as 1 if �∗ ≥ �̂k or as 0 otherwise.
Finally, if yk+1 = 1 (the case yk+1 = 0 is analogous),
then the decoder applies Bayes’ rule to update the posterior
distribution as

PΘ∣Y k+1

(
�
∣∣y1 . . . yk+1

)
=

� ⋅

{
(1− �) ⋅ PΘ∣Y k

(
�
∣∣y1 . . . yk

)
if � ∈ [�̂k, 1)

� ⋅ PΘ∣Y k

(
�
∣∣y1 . . . yk

)
otherwise,

(2)

5325

where � is a normalizing constant. The new estimate �̂k+1

is just the median of this distribution. Remarkably, this
scheme is not only optimal but also easy for a human user—
the “encoder”—to implement. Assume a graphical display
shows the user the candidate string
̂k = (�1�2 ⋅ ⋅ ⋅) that
corresponds to the estimate �̂k, manifested as a smooth planar
curve. Then, the user only has to decide if the desired curve
appears lexicographically to the left (“think left”) or to the
right (“think right”) of the candidate (see Fig. 5).

IV. PRELIMINARY HARDWARE EXPERIMENTS

Proof-of-concept experiments show that our approach can
be used to remotely teleoperate a real unmanned aircraft
flying at a fixed altitude using EEG signals. We selected
one able-bodied subject who had several hours of experience
in EEG motor imagery from prior studies. The subject was
connected to the EEG sensor in the Beckman Institute at the
University of Illinois at Urbana-Champaign and the aircraft
was flying over a field approximately five kilometers away.

A. Interface to the Human Pilot

We used an EEG sensor to measure brain activity. Eight
electrodes were positioned on the scalp near the motor
cortex. Output voltages were amplified, low-pass filtered,
and sampled at 400Hz. We used the classification algorithm
described in [16] to distinguish between left- and right- hand
motor imagery. From labelled training data, the classifier uses
common spatial analytic pattern (CSAP) to extract discrim-
inative signals that capture large disparities for each class
by viewing it as a blind-source separation problem. These
signals are processed at 15Hz by a hidden markov model
(HMM) to perform classification by belief propagation. This
classification occurs at a variable rate, happening whenever
the belief probability exceeds a threshold.

The statistical model used by the source code is a fixed
unigram model given by discrete gaussian kernel centered
on the symbol �6 (see Fig. 2), corresponding to the notion
that a straight arc has highest probability. This model could
also have been generated from training data, for example
using prediction by partial matching. The BSC crossover
probability assumed by the channel code was � = 0.1.

The graphical display shows onboard video from the
aircraft as well as an overhead map of the environment. The
map is annotated with the current position and heading of
the aircraft and the candidate path
̂ (see Figs. 6-7). The
pilot modifies the candidate path by modulating the activity
in his or her motor cortex. When the aircraft approaches the
end of its reference path, the interface sends the first path
segment �1 of the current candidate path
̂ to the aircraft.

B. Remotely Teleoperated Unmanned Aircraft

Our flight system consists of a commercially available
glider airframe, the Multiplex Cularis, equipped with a cus-
tom autopilot, GPS-aided inertial sensor, and wireless video
camera (Fig. 8). The aircraft communicates over a wireless
link to a ground station. The ground station communicates
with the pilot over a wired network connection—it receives

Fig. 6. The pilot remotely teleoperating the aircraft with input only from
the EEG sensor. The graphical display shows the state of the system and
the live video streamed from the aircraft.

̂

�

�1

�2

�3

�4

Fig. 7. A zoomed-in snapshot of the graphical display. It shows the map
of the environment, the path communicated by the pilot to the BMI, and
the state of the aircraft. The path is composed of the candidate path
̂ given
by the sequence (�1�2�3�4) and the transferred path � that the aircraft is
tracking using its onboard control system.

desired path segment commands from the pilot, and sends
telemetry and streaming video back to the pilot.

The onboard computer performs two navigation tasks:
low-level stabilization and path following. Low-level stabi-
lization is done using a standard autopilot PID controller.
This autopilot is designed to regulate altitude, airspeed,
and bank angle. For the purposes of path following, we
model the result as a nonholonomic unicycle moving in
a horizontal plane and controlled by specifying a desired
turning rate. An onboard path following controller using
standard “Helmsman Behavior” regulates cross-track and
heading errors to zero [17], [18]. The controller does not
take into account perturbations due to wind.

C. Task Description and Results

The pilot was asked to perform perimeter surveillance in
our preliminary experiments. A large region with a closed
boundary (3km) was defined and annotated on the overhead
map. The pilot’s goal was to fly the aircraft so that the
perimeter of this region was covered by the onboard video.

The pilot continuously provided left- and right- motor
imagery to specify a desired path to be followed by the air-
craft. The task was completed in 5 minutes, and the resulting
commanded and flown trajectories are shown in Fig. 9. Over
the course of the experiment the subject generated an average
of 1.5 binary commands every second. The minimum and

5326

Fig. 8. Aircraft equipped with an autopilot, a GPS device, attitude
stabilization sensors, and a wireless video camera. The inset shows the
ground station computer with telemetry radio and video receiver.

Fig. 9. The results of the perimeter surveillance task. It shows the path
specified by the pilot (thick segmented curve) and the actual trajectory of
the aircraft (thin solid curve). The dashed lines mark the perimeter of the
territory.

maximum times between two consecutive commands were
0.14 and 2.5 seconds respectively. The resulting path was 40
symbols (arc segments) long, specified at a rate of 8 symbols
per minute. The real-time behavior of the subject and aircraft
can be observed in the accompanying video submission.

V. CONCLUSION

In this paper, we presented a brain-machine interface that
has enabled remote teleoperation of an unmanned aircraft
using a physical interface that consists only of an elec-
troencephalograph (EEG) to provide input and a graphical
display with annotated video from an onboard camera to
provide feedback. Our approach was to construct an optimal
communication protocol that says exactly how user inputs
and sensory feedback should be generated in order to convey
intent as quickly and robustly as possible. Despite errors in
path following and a heuristic statistical language model, the
subject was able to accomplish the task without intensive
training. This work provides the foundation for performing

more experiments to characterize inter-subject performance,
including learning a subject-dependent statistical language
model from training data. Future work also includes improv-
ing the onboard control, extending our interface to multiple
inputs and 3D trajectories, and developing an integrated
augmented reality graphical display.

VI. ACKNOWLEDGMENTS
We gratefully acknowledge T. Coleman, E. Maclin,

O. Dantsker, N. Kim, A. Aranake, J. Honcharevich, A. Ortiz,
and R. Ma for their support and contributions. This research
was supported by awards NSF-CNS-0931871 and NSF-
CMMI-0956362-EAGER and by a NASA-ISGC Seed Grant.

REFERENCES

[1] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3d neuroprosthetic devices,” Science, vol. 296, pp. 1829–
1832, 2002.

[2] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M.
Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L.
Nicolelis, “Learning to control a brain–machine interface for reaching
and grasping by primates,” PLoS Biol, vol. 1, pp. 193–208, 2003.

[3] R. A. Andersen, S. Musallam, J. W. Burdick, and J. G. Cham,
“Cognitive based neural prosthetics,” in Int. Conf. Rob. Aut., 2005,
pp. 1908–1913.

[4] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442, pp. 164–171, July 2006.

[5] E. Felton, N. L. Lewis, S. A. Wills, R. G. Radwin, and J. C. Williams,
“Neural signal based control of the Dasher writing system,” IEEE
EMBS Conf. Neural Engr., pp. 366–370, May 2007.

[6] C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. N. Rao, “Control of a
humanoid robot by a noninvasive brain-computer interface in humans,”
Journal of Neural Engineering, vol. 5, no. 2, pp. 214–220, 2008.

[7] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng,
C. Laugier, and M. H. Ang Jr., “Controlling a wheelchair indoors
using thought,” Intelligent Systems, IEEE, vol. 22, pp. 18–24, 2007.

[8] I. Iturrate, J. Antelis, A. Kubler, and J. Minguez, “A noninvasive brain-
actuated wheelchair based on a p300 neurophysiological protocol and
automated navigation,” Robotics, IEEE Transactions on, vol. 25, no. 3,
pp. 614–627, June 2009.

[9] N. G. Hatsopoulos and J. P. Donoghue, “The science of neural
interface systems,” Annu. Rev. of Neurosci., vol. 32, no. 1, pp. 249–
266, 2009.

[10] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay, “Dasher: A gesture-
driven data entry interface for mobile computing.” Human-Computer
Interaction, vol. 17, no. 2/3, pp. 199–228, 2002.

[11] C. Omar, M. Johnson, T. Bretl, and T. P. Coleman, “Policies for
neural prosthetic control: initial experiments with a text interface,”
in American Control Conference, Seattle, WA, Jun. 2008.

[12] H. Freeman, “On the encoding of arbitrary geometric configurations,”
IRE Trans. Electron. Comput., vol. EC-10, pp. 260–268, 1961.

[13] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for
data compression,” Communications of the ACM, vol. 30, no. 6, pp.
520–540, 1987.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. Wiley-Interscience, July 2006.

[15] O. Shayevitz and M. Feder, “Optimal feedback communication via
posterior matching,” Arxiv preprint 0909.4828, 2009, submitted to
IEEE Transactions on Information Theory.

[16] M. McCormick, R. Ma, and T. Coleman, “An Analytic Spatial Filter
and A Hidden Markov Model for Enhanced Information Transfer Rate
in EEG-based Brain Computer Interfaces,” in ICASSP, Dallas, TX,
March 2010, to be presented.

[17] R. Rysdyk, “Unmanned aerial vehicle path following for target obser-
vation in wind,” Journal of Guidance Control and Dynamics, vol. 29,
no. 5, pp. 1092–1100, 2006.

[18] D. Jung and P. Tsiotras, “Bank-to-turn control for a small uav using
backstepping and parameter adaptation,” in International Federation
of Automatic Control (IFAC) World Congress, 2008.

5327

