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Abstract— Autonomous robot navigation in unstructured out-
door environments is a challenging and largely unsolved area of
active research. The navigation task requires identifying safe,
traversable paths that allow the robot to progress towards a
goal while avoiding obstacles. Machine learning techniques are
well adapted to this task, accomplishing near-to-far learning by
training appearance-based models using near-field stereo read-
ings in order to predict safe terrain and obstacles in the far field.
However, these methods are subject to degraded performance
when training data sets exhibit class imbalance, or skew, where
data instances of one class outnumber those in another. In

such scenarios, classifiers can be overwhelmed by the majority
class, and will tend to ignore the minority class. In this paper,
we show that typical outdoor terrain scenarios are associated
with training data imbalance, and examine the impact of using
undersampling, oversampling, SMOTE, and biased penalties
techniques to correct for imbalance in stereo-derived training
data. We conduct a statistically significant, repeated measures
empirical evaluation and demonstrate improved far-field terrain
prediction performance when using such methods for handling
class imbalance versus taking no corrective action at all.

I. INTRODUCTION

Autonomous robot navigation in unstructured outdoor

environments is a challenging and largely unsolved area of

active research. The navigation task requires identifying safe,

traversable paths that allow the robot to progress towards

a goal while avoiding obstacles. Stereo vision allows for

obstacle avoidance in the near field (here, within 10m of

the robot). However, navigating solely on near-field terrain

readings can lead to a common failure mode in outdoor

autonomous navigation where incorrect trajectories are fol-

lowed due to nearsightedness, or inability to distinguish safe

and unsafe terrain the far field [1]. Being able to perceive

safe terrain and obstacles in the far field allows for more

natural (and efficient) paths to be planned and followed by

the robot, while also aiding in the avoidance of cul-de-sacs.

To address near-sighted navigational errors, near-to-far

learning is often used [2], [3], [4]. Framed as a supervised

machine learning problem, the near-to-far approach (Sec. II-

B) uses both appearance and stereo information from the near

field as inputs for training appearance-based models, and

then applies these models in the far field in order to predict

safe terrain and obstacles farther out from the robot where

stereo readings are unavailable (here, greater than 10m).
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(a) LAGR Robot (b) Typical Scenario (c) Stereo Perception

Fig. 1: The LAGR robot (left); sample image from an outdoor

scene (center); stereo obtained from onboard cameras (right).

In the example shown in Fig. 1, this approach could be

used to predict the geometry of the far field, and hence ob-

stacles and traversable terrain, beyond what stereo readings

alone could provide. With such terrain predictions in the far

field, the robot would follow a more natural path towards

the goal, in this case avoiding trajectories towards far-field

obstacles.

In general, supervised machine learning classifier design

assumes when training a model that the distribution of the

class labels in the training data is uniform, i.e., no skew or

class imbalance is present in the training set. Often times,

however, this is not the case, and classifier performance

can degrade significantly as the severity of the imbalance

increases. As a result, coping with imbalanced training data

is the subject of ongoing research. Applications where class

imbalance is a factor are increasingly common. Examples

include detecting oil spills from satellite images [5], text

classification [6], customer churn prediction [7], and so on;

further examples are noted in the literature [8].

The autonomous outdoor robot navigation domain is also

associated with and impacted by class imbalance. We demon-

strate that typical terrain scenarios are associated with skew;

in particular, the number of groundplane near-field stereo

labels outnumbers the number of obstacle labels. In previous

work [9], [10], [11], we observed reduced terrain predic-

tion performance if specific action was not first taken to

address this class imbalance. Moreover, alternative learning

approaches described in related outdoor robot navigation

research [12] are also susceptible to degraded classification

due to class imbalance in the training data.

A. Research Objective and Contribution

This paper characterizes the class imbalance of near-field

stereo labels in typical outdoor robot navigation scenarios,

describes methods of coping with such skew, and reports

empirical results conducted on natural datasets, quantifying

the methods’ performance benefit.
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Towards this end, our research hypothesis is that far-

field terrain prediction performance can be increased by

handling training data skew, either by weighting minority

class instances more heavily, or by creating balanced training

data sets in various ways. To test this hypothesis, we conduct

a statistically significant empirical evaluation using natural

datasets taken from typical outdoor scenarios.

The contribution of this research is three-fold. In this

paper, we:

1) Characterize and quantify the level of class imbalance

present in near-field training data sets from typical

outdoor robot navigation scenarios;

2) Contribute to the autonomous robot navigation liter-

ature by conducting a statistically significant experi-

mental evaluation to determine the benefit of various

methods for coping with class imbalance when doing

near-to-far learning; and

3) Contribute to the class imbalance literature by exam-

ining the impact of skew correction when (a) using the

logistic regression classifier, and (b) when the training

data and test data distributions are different (i.e., near-

field versus far-field terrain).

II. BACKGROUND

A. Related Work in Robotics and Vision

Approaches that use image appearance or color to segment

regions of interest for navigation have existed since the 1980s

[13], [14]. Research in autonomous robot navigation also

has many decades of history and is ongoing [15], [16], [12].

More recently, programs such as DARPA’s Learning Applied

to Ground Robots (LAGR) program [1] have inspired work

on using machine learning approaches to exploit image

color and texture for classification of traversable terrain and

obstacles in the far field [17], [18]. A more in-depth survey

is given in [4].

B. Near-to-Far Learning Overview

Near-to-far learning using stereo is demonstrated in Fig. 2.

For a given RGB image (2a), stereo disparity is computed

using a stereo camera pair (2b). A groundplane model is fit

and subtracted out, resulting in an estimate of groundplane

deviation (2c). Near-field stereo labels from both the ground-

plane and obstacle classes are extracted according to small

and large groundplane deviation values, respectively (2d);

these near-field stereo labels form the training data set. Next,

features are extracted from the image at the pixels in this

stereo-labeled training set (2e); here, color histogram features

are used [4]. A machine learning model is then trained on

the resulting near-field feature data. The resulting model is

evaluated over the remainder of the image, including the far

field, to arrive at final terrain predictions (2f).

The model output is reconstructed to form a cost image,

a pixelwise, image-space labeling of terrain with cost val-

ues, where high cost corresponds to obstacle and low cost

corresponds to safe terrain. The cost image is then projected

into the groundplane [19] creating a cost map used for robot

navigation. The cost map is in turn sent to the planner [20],

(a) RGB Image (b) Stereo Disparity

(c) Groundplane Deviation (d) Image-space Stereo Labeling

(e) Stereo Labeling Overlay (f) Final Binary Classification

Fig. 2: Demonstration of near-to-far learning using stereo. In

(d), (e), and (f), red represents nontraversable obstacle (pos-

itive); green represents traversable groundplane (negative).

and in this manner, the low-level navigation of the robot is

influenced. A more in-depth treatment is given in [4].

C. Base Learner: Logistic Regression

The classification algorithm for training and evaluating

models in this research is logistic regression [21], a gener-

alized linear classification method common in statistics and

machine learning and appropriate for predicting the certainty

of a binary outcome. Such models are very efficient to train

on large-scale data, motivating their use in the real-time sce-

narios considered here. Moreover, these models by definition

produce probabilistic output, which is desirable in robotic

planning contexts. In this paper, we use the LIBLINEAR

implementation for fast large-scale classification with logistic

regression using a trust-region Newton method [22].

D. Prediction and Visualization Conventions

In this study, terrain predictions yielded by the logistic

regression models are continuous on the interval [0, 1]. A

predicted value of 0 represents full-confidence groundplane

(negative) prediction. This is shown by green coloring.

Similarly, a predicted value of 1 represents full-confidence

obstacle (positive) prediction, shown by red coloring. In

prediction images, color intensity correlates with prediction

confidence. Thus, black represents full uncertainty (0.5), i.e.,

a test point on the decision boundary of the terrain model.
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III. STEREO LABEL CLASS IMBALANCE

To demonstrate the degree to which class imbalance is

present in terrain-based learning approaches, we characterize

and quantify the degree of skew in stereo-derived near-field

training data sets from typical outdoor scenarios. For this

purpose, an analysis is performed using six hand-labeled

natural data sets taken from the domain.

This data collection, recently contributed by the authors

[10] and made publicly available [23], is referred to as

the Hand-labeled DARPA LAGR datasets. Overall, three

scenarios are considered; each scenario is associated with

two distinct image sequences, representing different lighting

conditions. Each of the six datasets consists of a 100-frame

image sequence. The terrain in the images has been hand-

labeled, with each pixel being placed into one of three

classes: OBSTACLE, GROUNDPLANE, or UNKNOWN. Fig. 3

gives a representative image from each dataset, while Fig. 7e

shows an example of the ground truth labeling for a sample

image from Dataset 1B. Further details are available in [4].

These datasets serve two purposes for this study. First,

they are used to establish the presence and degree of skew

in typical outdoor scenarios by examining associated near-

field stereo information. Second, they provide the ground

truth labels against which the classifiers, trained with various

mechanisms for coping with skew, are evaluated.

Related to this, we note an important consideration in this

research. Whereas typically, a training set is sampled from

and is statistically reflective of the larger, general population,

in this research, this is not necessarily the case. This is

because distribution of the training data in the near-field can

and does differ from that of the far-field.

Our analysis shows that stereo labels derived from the data

above are associated with skew. This is illustrated by exam-

ining positive stereo label percentage over time (frame #)

for each of six datasets, plotted in Fig. 4. Some datasets

exhibit heavy skew, others have only mild skew, while some

contain varying degrees of skew (as the terrain changes

across the images). Corresponding summary statistics across

each dataset are given in Table I. Examples from the datasets

showing mild, moderate, and heavy skew are shown in Fig. 5.

IV. COPING WITH IMBALANCED TRAINING DATA

The class imbalance problem occurs when training data

comprises many more data instances from one class than

another; in these situations, standard machine learning clas-

sifiers can be overwhelmed by the majority class, and will

tend to ignore the minority class. The resulting models will

have higher misclassification rates on the minority class [24].

The problem of class imbalance in training data can be

addressed in many ways; see [25] for an in-depth survey. For

this study, we consider two widely accepted and commonly

used general approaches. The first approach includes sam-

pling or sample balance methods that operate at the data level

in an algorithm-independent way [26]. The second approach

includes classifier-specific methods that involve adjustments

at the algorithm level during training time.

(a) DS1A (b) DS1B

(c) DS2A (d) DS2B

(e) DS3A (f) DS3B

Fig. 3: Representative images from the six datasets in the

Hand-Labeled DARPA LAGR Data [23]. Two lighting condi-

tions each from three different terrain scenarios are included.

Each sequence comprises 100 labeled frames.

In addition, there are also other more specialized methods

not considered in this study. For example, the field of active

learning [27] provides methods for choosing training data;

such methods are most classically applied when acquiring

training labels is expensive, which is not the case here. More-

over, the real-time domain requirement for robot navigation

precludes many active learning techniques, although recent

work in this area proposes an efficient method for active

learning in the presence of class imbalance [28].

A. Sample Balance Methods for Skew Correction

This general class of method seeks to achieve balanced

training data sets by using a variety of data processing

techniques, resulting in balanced sets that differ in the total

number of instances versus the original.

Random Undersampling. The majority class is randomly

undersampled so that the number of examples in this class is

made to equal the number of examples in the minority class,

yielding a balanced training set (Fig. 6d). Also known as one-

sided sampling [29], undersampling can have computational

advantages because the training set size is reduced. One

objection to undersampling is that it ignores a certain amount

of potentially useful majority-class examples [25].
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Fig. 4: Class imbalance in stereo-derived near-field training

labels from the Hand-Labeled DARPA LAGR Data. DS1B

has moderate skew; DS1A, DS2A, and DS2B have heavy

skew; while DS3A and DS3B have only mild skew.

Random Oversampling. The minority class is randomly

oversampled, with replacement, so that the number of exam-

ples in this class is made to equal the number of examples in

the majority class, yielding a balanced training set (Fig. 6a).

(In the figure, the training sets are in fact balanced, although

they do not appear so; this is because the oversampled set

contains duplicates of the original data points.) One objection

to oversampling is that it can increase training time for a

classifier, and in some situations, can lead to overfitting [25].

SMOTE. In contrast to random resampling (above),

SMOTE (for Synthetic Minority Oversampling TEchnique)

synthesizes new data from the minority class by interpo-

lating new samples among a given minority class point’s

k nearest neighbors [30]; an example is shown in Fig. 6c.

This technique belongs to a broader class of “informed”

(versus merely random) sampling methods. Because of the

synthesized minority class examples, the shape of the learned

decision boundary can be made to be smoother.

Other Sampling Methods. Other more sophisticated sam-

pling methods include directed approaches that oversample

or undersample in an informed manner [24], instead of en-

tirely at random. For example, when taking an oversampling

approach, instead of sampling entirely at random, resampling

could occur more frequently on training data closer to the

decision boundary. Ensemble approaches have also been

described [31] [32].

TABLE I: Stereo Label Statistics for DARPA LAGR Data

Number of stereo-labeled pixels, mean across all 100 frames by dataset

DATASET TOTAL NEG POS POS % SKEW

DS1A 55,791 52,845 2,946 5.8 % 18 : 1

DS1B 61,825 50,808 11,017 20.9 % 5 : 1

DS2A 83,904 82,090 1,814 2.3 % 45 : 1

DS2B 78,526 77,148 1,377 1.9 % 56 : 1

DS3A 28,380 18,865 9,514 32.2 % 2 : 1

DS3B 11,089 5,841 5,247 45.4 % 1.1 : 1

B. Algorithmic Methods for Skew Correction

This general class of method seeks to counter class im-

balance by any number of algorithm-specific methods that

operate beyond the data level, i.e., internal to the actual

classifier. One approach that is common in the literature, for

classifiers that support it, is to adjust the misclassification

cost more heavily for the underrepresented minority class

[33]. This biased penalties method aims to ensure that

minority-class instances have adequate influence over the

decision boundary at training time [34]; this is shown in

Fig. 6b. Classifiers that support different penalty factors for

different classes include the Support Vector Machine (SVM)

and logistic regression [22]; the latter is used in this research.

C. Computational Efficiency Considerations

Computational analysis of the skew correction methods

can be divided into two parts: the cost for performing

the correction, and the resultant impact on model training.

Consider a scenario with N and J samples in the minority

and majority classes, respectively.

For random undersampling, J −N majority class samples

are removed at random, and instead of training a model using

all J +N samples, a classifier is now trained with 2N sam-

ples. This can result in significantly reduced training time.

For random oversampling, J −N minority class samples are

added (duplicated) at random, and a model is trained using

2J samples; this generally results in increased training time.

SMOTE is more expensive. Nominally (for balanced sets

of approximately equal size), J − N samples must be

synthesized. This requires interpolation between k nearest

neighbors for some number of minority class examples,

which can be computationally intensive. The resulting larger

set will also generally lead to increased training time.

Finally, for the biased penalties approach, class weights

must be computed; the actual training data set is not

modified. The additional computational cost of using class-

specific weights when training models will be classifier-

dependent; for SVM and logistic regression, it is negligible.

V. EXPERIMENTS

A. Experimental Approach

Hypothesis. Our research hypothesis is that far-field ter-

rain prediction performance can be increased through han-

dling skew in training data sets, either by influencing the

decision boundary with the biased penalties approach or by

sampling training data to create balanced training sets.
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(a) RGB Image – DS3A Frame 26 (b) Stereo Disparity (c) Groundplane Deviation (d) Stereo Mask (Light Skew)

(e) RGB Image – DS1B Frame 82 (f) Stereo Disparity (g) Groundplane Deviation (h) Stereo Mask (Moderate Skew)

(i) RGB Image – DS2B Frame 34 (j) Stereo Disparity (k) Groundplane Deviation (l) Stereo Mask (Heavy Skew)

Fig. 5: Examples of mild, moderate, and heavy skew found in the Hand-Labeled DARPA LAGR Data collection.

Method. To test this hypothesis, and to evaluate the impact

of the various methods for handling class imbalance in this

domain, we conducted randomized experiments on log data

from test runs conducted during the LAGR program in typi-

cal, but challenging, outdoor terrain scenarios under a variety

of lighting conditions. A repeated measures design is needed

to evaluate the statistical significance of the sample balancing

methods, whose results will naturally vary over individual

experiments due to their associated random component. For

this study, we ran 10 randomized experiments.

Testing Sequence. For each image in each dataset, a single

model is learned from training data extracted from near-

field stereo labels associated with that image. This model

is then applied to the pixels in that entire image, yielding

probabilistic terrain class predictions, and then discarded.

This is done separately for each of the four skew correction

methods in the study, as well as for the baseline method (no

skew correction).

For example, the undersampling approach will create a

balanced training set prior to training the model, while the

biased penalties approach will use all of the training data and

influence the model using cost parameters proportional to the

skew. Finally, this procedure is repeated 10 times, yielding

10 randomized experiments in total; this is needed due to

the randomness inherent in the sample balance methods.

Evaluation. To evaluate classifier performance, probabilis-

tic classifier outputs (terrain predictions) are scored against

discrete ground truth labelings included in the hand-labeled

DARPA LAGR data. Our primary aim is to identify safe

terrain and obstacles in the far field (since traditional stereo

approaches are generally able to identify obstacles in the near

field). Therefore, we only score algorithm output on pixels in

the far field (approximately 10m out from but within 100m

of the robot). Additional considerations regarding use of the

far-field band for evaluation purposes are given in [4].

The final score as reported in Table II is the average of

the performance of the algorithm over all 100 images in

the dataset. In particular, the score for a particular image is

given by computing the pixelwise RMSE (see below) of the

probabilistic terrain predictions in the far field as compared

to the discrete class labels from the ground truth.

Fixed Parameters. Some of the methods in this study

have parameters whose values must be specified:

1) For SMOTE, we set k (the number of nearest neighbor

points from which to interpolate when synthesizing

data) to 5 as done by the algorithm designers in

their initial research [30]. The oversampling (SMOTE)

percentage is data-driven and is set to whatever value

is needed (in integral multiples of 100, as required

by SMOTE) for the size of the minority class to

approximately match the majority class, resulting in

generally balanced sets with negligible skew.

2) For the biased penalties approach, the values for the

two cost parameters Cneg and Cpos are determined di-

rectly from the degree of skew in the training data (see

[33]). In particular, these parameters are proportional

to the degree of skew, and the values are scaled such

that Cneg + Cpos = 1.
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(a) No Skew Adjustment
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(b) Biased Penalties
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(c) Oversampling with SMOTE

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Randomly Undersampling the Majority Class

 

 

Negative Class Examples
Postive Class Examples
Learned Decision Boundary

(d) Random Undersampling

Fig. 6: Impact of various methods for coping with imbalanced training data on the learned decision boundary.

Performance Metric. The performance metric used in this

evaluation is Root Mean Square Error (RMSE), where lower

scores are better. RMSE is applicable to binary classification

scenarios where the classifier predictions are continuous on

[0, 1] for corresponding discrete target labels in {0, 1}:

RMSE =

√
1

N

∑N

i=1

(ŷi − yi)2 (1)

where ŷ1, ŷ2, . . . , ŷN are the probabilistic classifier predic-

tions on [0, 1] for a set of N test points, and y1, y2, . . . , yN

are the corresponding discrete class labels in {0, 1}.

RMSE is particularly useful for this scenario because no

specific threshold must be defined, e.g., as would be done

for binary classification accuracy. Importantly, the use of

RMSE here penalizes higher confidence incorrect predictions

(i.e., those prediction probabilities approaching 0 or 1) more

so than it does for lower confidence predictions (i.e., those

predictions approaching 0.5). In this sense, RMSE as applied

here is a generalized and continuous scoring mechanism with

no discontinuity at an arbitrary threshold. Additional details

and rationale for the use of RMSE are given in [4].

B. Experimental Results and Discussion

Raw experimental data from the study is given in Table II.

Overall, these data support two key conclusions. First, it is

clear that methods for handling class imbalance—including

the three sampling methods and the algorithmic biased

penalties approach—have a significant, positive impact on

performance versus taking no action to address the skew.

Second, as a group, the three sample balance methods all

outperformed the biased penalties algorithmic approach.

Over all six datasets, oversampling performed the best

(lowest mean RMSE score), followed by undersampling,

SMOTE, and then biased penalties. These results were all

significant at the 95% confidence level using the unmatched

pairs t-test (where the scores from the randomized experi-

ments are the independent samples).

With regard to the statistical analysis, we emphasize that

statistical significance was determined by comparing the

mean and variance of the scores from the 10 repeated

measures (the randomized experiments). This is in contrast

to achieving statistical significance using high sample sizes

derived from the large number of pixels in an image.

Within each dataset, there was not always a statistically

significant difference among the three sampling methods.

The three sampling methods did outperform the biased

penalties approach for all datasets except DS1A. The biased

penalties approach outperformed the baseline (no skew cor-

rection) for all datasets except DS1B. Within each dataset,

and overall, all three sampling methods performed better

versus taking no skew correction action at all.

A final important observation we make is that performance

benefit (reduction in error) of using sampling methods versus

taking no corrective action for skew was generally linear with

the average degree of skew present in the data. This fits the

intuition that classifier performance degrades as the severity

of class imbalance increases.

Based on the above empirical findings, we offer the

following guidance for the community. First, if it is the case

that there is class imbalance in the training data (stereo-

derived or otherwise), some type of action to correct for skew

should be taken for optimal performance. This is a result

echoed often in the class imbalance applications literature.

Moreover, our findings suggest that, for optimal prediction

performance, oversampling is the method of choice. If this

approach precludes real-time performance, undersampling

should be considered.

C. Experimental Snapshots and Narrative

Representative output from four scenarios is shown in

Fig. 7. The first scenario (Fig. 7a) is associated with approx-

imately 4:1 skew (7b). Although there is generally enough

training information from both classes to make reasonable

terrain predictions without any balancing (7c), by using

undersampling to achieve a balanced training set, obstacle

predictions in the far-field are more robust (7d). Note,

however, that false-positive obstacle predictions (lower-left)

are also present to a larger degree.

The second and third scenarios (Figs. 7f and 7k) are asso-

ciated with heavier skew—around 40:1. In these scenarios,

entire patches of mid- and far-field obstacles (dense, leafless

foliage on the right) are not detected, because they are rep-

resented only minimally in the stereo-derived training sets.

Using the biased penalties approach (7i) or oversampling

(7n), these obstacles are adequately identified and the robot’s

trajectory would be adjusted accordingly.

The fourth scenario (Fig. 7p) is associated with milder

skew, around 2:1 (7q). Terrain predictions without skew cor-

rection are reasonable (7r). By oversampling using SMOTE,

terrain predictions are more robust; obstacle predictions are

confident and obstacle regions are more contiguous (7s).
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TABLE II: Summary of Experimental Results – RMSE

Mean framewise Root Mean Square Error (RMSE) over entire dataset – lower scores are better

DATASET NO ADJUSTMENTa BIASED PENALTIESa UNDERSAMPLINGb OVERSAMPLINGb SMOTEb

DS1A 0.486 0.416 0.424 ±0.002 0.423 ±0.001 0.423 ±0.000

DS1B 0.272 0.278 0.263 ±0.005 0.257 ±0.003 0.263 ±0.002

DS2A 0.393 0.261 0.221 ±0.002 0.220 ±0.001 0.224 ±0.000

DS2B 0.676 0.505 0.500 ±0.001 0.498 ±0.000 0.502 ±0.000

DS3A 0.104 0.100 0.097 ±0.000 0.097 ±0.000 0.100 ±0.000

DS3B 0.139 0.137 0.134 ±0.001 0.134 ±0.001 0.135 ±0.000

OVERALLc 0.345 0.283 0.273 ±0.0008 0.271 ±0.0006 0.274 ±0.0004

a
No random component in method, hence no variance reported among randomized experiments.

b
Standard deviation of 10 repeated measures (randomized experiments).

c
Overall performance, mean over all datasets.

(a) RGB Image – DS1B
Frame 55

(b) Stereo Mask (c) Classifier Output – No
Skew Correction

(d) Classifier Output – Un-
dersampling

(e) Ground Truth Labeling

(f) RGB Image – DS2A
Frame 99

(g) Stereo Mask (h) Classifier Output – No
Skew Correction

(i) Classifier Output – Biased
Penalties

(j) Ground Truth Labeling

(k) RGB Image – DS2B
Frame 87

(l) Stereo Mask (m) Classifier Output – No
Skew Correction

(n) Classifier Output – Over-
sampling

(o) Ground Truth Labeling

(p) RGB Image – DS3A
Frame 98

(q) Stereo Mask (r) Classifier Output – No
Skew Correction

(s) Classifier Output –
SMOTE

(t) Ground Truth Labeling

Fig. 7: Sample experimental snapshots from the study. Explanation and narrative is given in Sec. V-C. Red color indicates

obstacle (nontraversable) terrain prediction, green color indicates ground plane (traversable) terrain prediction, and color

intensity indicates prediction confidence, with black representing full uncertainty (see Sec. II-D). For the ground truth

images at far right, blue color indicates unknown areas in the ground truth; these unlabeled regions are not used in the

computation of classifier performance.
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VI. CONCLUSIONS AND FUTURE WORK

This paper forms part of a line of research that examines

the use of supervised machine learning methods to predict

terrain class, i.e., obstacle or groundplane, in autonomous

outdoor robot navigation. This paper examined the impact of

class imbalance, or skew, in training data sets on terrain pre-

diction performance, with the hypothesis that taking specific

action to correct for class imbalance will lead to increased

terrain prediction performance in the far field. A statistically

significant empirical evaluation was conducted on natural,

hand-labeled ground truth datasets previously logged during

outdoor robot navigation test runs.

The key empirical contributions of the paper are three-

fold. First, it was shown that typical outdoor scenarios are

associated with varying degrees of skew in the stereo labels,

with some scenarios having heavy skew (greater than 50:1).

Second, it was shown that coping with this training data

imbalance is critical to achieving optimal far-field terrain

prediction performance. Finally, the experimental results

indicated that overall, skew correction using sample balance

methods such as random undersampling, random oversam-

pling, and SMOTE outperformed the biased penalties ap-

proach, which in turn outperformed taking no action at all;

these were all statistically significant results.

Future work could investigate the benefit of more so-

phisticated sampling approaches for skew correction. First,

beyond basic random undersampling/oversampling, so-called

directed sampling methods could be used [24]. A hybrid

approach, which combines sample balancing with biased

penalties [35], could also improve performance.
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