
Abstractions and Controllers for Groups of Robots
in Environments with Obstacles

Nora Ayanian and Vijay Kumar

Abstract— We address the problem of controlling a formation
of robots in a cluttered environment. Instead of explicitly
controlling the relative positions between the robots and the
environment, we construct a lower-dimensional abstraction of
the group that establishes a boundary for the group. We
then synthesize feedback controllers that allow the abstracted
group to navigate a two-dimensional environment to a desired
goal position, while automatically adapting the shape of the
boundary as well as the position and orientation of the group
to avoid collisions between the virtual boundary and the
environment. In contrast to previous approaches, we address the
planning and control problems concurrently and are naturally
able to establish bounds on the positions of the robots through
the abstraction. The complexity of the method is independent of
the number of robots which promises scalability to large teams.

I. INTRODUCTION
There are many applications in which groups of robots are

required to navigate complex environments while maintain-
ing desired proximity constraints either for sensing or com-
munication, while avoiding collisions. In automated ware-
house systems, for example, it may be necessary to perform
a wide range of tasks ranging from automated storage and
retrieval to machine tending with one or more robots [1]. In
search and rescue applications, robots may need to navigate
city streets or inside buildings in formations [2], [3]. In
security or defense applications robots may need to maintain
coverage or persistent surveillance in urban environments
[4]. In applications involving manipulation tasks, robots
might need to work together to manipulate an object while
transporting it through the environment. Robots must keep
in close proximity of each other and of the object, in order
to prevent the object from escaping [5]. All these tasks gen-
erally occur in complex environments where having robots
determine individual controllers to get to a goal location
could result in added expense, loss of communication, and
may result in deadlock. In these situations it makes sense to
address the problem of group navigation separately from the
problem of interactions between robot group members.

We address the problem of navigating a large group of
robots through an obstacle-filled environment in a scalable
fashion. We take a hierarchical approach to this problem to
reduce complexity, by using an abstraction of the group of
robots to reduce the dimensionality of the group navigation

We gratefully acknowledge support from NSF grant no. IIS-0427313,
ARO grant no. W911NF-05-1-0219, ONR grants no. N00014-07-1-0829
and N00014-08-1-0696, and ARL grant no. W911NF-08-2-0004.

N. Ayanian and V. Kumar are with the GRASP Laboratory,
Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, PA 19104, USA
{nayanian,kumar}@grasp.upenn.edu

N. Ayanian gratefully acknowledges support from the NSF.

problem. The construction of an abstraction establishes a
boundary for the group, allowing us to reformulate the group
navigation problem as a problem of planning and controlling
the shape, position and orientation of this boundary while
avoiding collisions of this boundary with the environment.

Many authors have addressed the problem of multi-robot
control in complex environments. Approaches to group
navigation problems include formations, leader-follower
schemes, abstractions, potential field methods, and flocking.

By restricting relative positions of robots, formations and
leader-follower schemes reduce the complexity of group
navigation problems [6]–[17]. Much of this work does not
guarantee that formation constraints are maintained in the
presence of obstacles [6]–[14].

The idea of constructing abstractions to reduce the dimen-
sionality of the problem is not new. In [18]–[20], the central
idea is to develop a surjection from the high-dimensional,
multi-robot state space to a low-dimensional abstract space
which characterizes the statistics of the group as well as
the position and orientation of the group. Simple controllers
and estimators can be designed to estimate the statistics and
the pose, while driving these variables to desired values.
However, these methods do not establish bounds on the
positions of the robots. Neither can enforce constraints on
network topology or formation which can change as the
group moves. In [18], safety is not guaranteed: robots can
collide and escape from the abstraction. Some limitations
of [18] are addressed in [19], which still does not enable
us to specify formations in the sense of exact shape and
topology. A particular formation can be specified in [20], but
the number of moments which must be supplied to specify
a particular formation increases with the number of robots,
and the method is not entirely automated.

Flocking or schooling strategies enable control of large
groups of robots with relatively little computation [21]. The
entire group’s velocity is stabilized to a single velocity by
each agent adjusting their velocity according to its neighbors.
However, in the presence of obstacles, no guarantees are
made. In [22], large groups of robots are stabilized to shapes.
Again, the presence of obstacles in the workspace could
cause local minima or deadlock.

With small group sizes, one can provide some guarantees
while taking advantage of some reduction in complexity.
In [23], proofs are provided for creating and maintaining
formations, but collision avoidance is guaranteed only in
most cases, requiring careful parameter choices. In [24], un-
desirable local minima can occur if sufficient virtual leaders
are not added. In [25] a method is proposed for creating

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3537

a formation and maintaining it during motion. However,
no guarantees are made in the presence of obstacles, and
formations are unlabelled. For small groups, [17], [26] pro-
vide guarantees of safety and maintaining desired constraints,
however, these become intractable as the group grows.

In contrast to the papers above, we address the planning
and control problems concurrently and are naturally able
to establish bounds on the positions of the robots through
the abstraction. This allows us to guarantee safety — the
controllers are designed so that the virtual boundary associ-
ated with the abstractions does not pass through obstacles.
The inter-robot constraints and specifications are satisfied
by robot controllers that are designed to satisfy these con-
straints and specifications without exiting the boundary of
the abstraction. In this way, the complexity of the problem
of synthesizing controllers is independent of the number of
robots which promises scalability to large groups.

II. PROBLEM FORMULATION
Consider a group G, of N kinematic agents VR = {rj |j =

1, . . . , N}. A group consists of a small number of robots
which can communicate with each other at high bandwidth,
enabling centralization (adopted from [27]). The group must
navigate an obstacle-filled environment to a specified task
location. Each agent has the state xj ∈ R2 with dynamics:

ẋj = Uj , xj ∈ Xj ⊂ R2, j = 1, . . . , N. (1)
We assume that within a group, communication occurs very
rapidly, so that control can be centralized over the group.

An abstraction of the group of robots reduces the compu-
tational complexity of the problem. Our abstraction defines a
virtual adaptive boundary for the group of robots, while the
controllers at the robot level ensure the robots stay within
the boundary. The abstraction boundary is determined by
automatically synthesized controllers, and the robots react
to the changing size and shape of the abstraction boundary.
Thus, a group of robots can navigate a space knowing only
the boundary and the local state of the group, decoupling
planning and control of the agents from the physical space.
The dimension of the abstraction is independent of the
number of robots N . The specific abstraction we use is
discussed in detail in Section III.

Figure 1 is a graphical representation of the hierarchichal
structure of our approach. At the bottom level, individual
robots execute the continuous controllers that are designed
to satisfy specifications and desired formation properties. At
the middle level, individual robots interact with each other to
maintain constraints (this level may not be necessary for all
problems). At the top level, the abstracted group navigates
the space while maintaining constraints designed to ensure
there is enough room for the robots. We assume that there
are no obstacles within the group boundary. However, if an
obstacle appears in the boundary, [28] provides a framework
for dividing and reconfiguring the group in another location.

The input to each agent in the global reference frame is
Uj = R(uθA) uj + ux,yA , (2)

where ux,yA is the translational and uθA the angular component
of the abstraction input, and R(·) is a rotation matrix, and
uj is the individual input of robot rj .

!"
#$
%&
'$

()

*+
,
")
-.
/%
")

!"#$%&

Fig. 1: Hierarchical structure. At the bottom level, robots
implement the continuous controller. At the top level, the
abstracted group navigates the space.

Our hierarchical control system enables a multiple time
scale approach, as shown in Fig. 1, to eliminate the possi-
bility of local minima which may occur when summing two
controllers. Group dynamics (motion within a group) are as-
sumed to evolve on a much faster time-scale than abstraction
dynamics (overall motion of an entire group); sufficient time
scale separation between group and abstraction dynamics
ensures the two controllers can be designed independently.

Since the abstraction is independent of the robots’ configu-
ration, synthesis of and planning in the abstraction workspace
occurs in advance. At least one robot must have knowledge of
the evolution of the abstraction over time. This information,
as well as individual robot state information, propagates
through the group rapidly via explicit communication.

III. GEOMETRIC ABSTRACTION
The abstraction enables the group of robots to navigate

the space in an obstacle-free environment limited by the
abstraction boundary. Group navigation is handled by a high-
level controller, which treats the abstraction as a single robot.
This controller is then summed to the individual controllers
as in (2). We use a rectangle for the boundary, however, this
is only one example of the possible choices for abstractions.

Definition 3.1: The group abstraction A is a triple

A = (xA, θ, s) ∈ SE(2)× R2, (3)

where xA is the center of the group abstraction, θ is the
angular orientation, and s is a shape vector representing
the boundary and size of the abstraction which encloses the
group of robots. We assign the abstraction dynamics

ẋA = uA, (4)
where uA can be considered a virtual input.

In this work we choose a rectangle as the abstraction
boundary since a rectangle can be described by two param-
eters, width sw and height sh, so that the shape vector is
the pair s = (sw, sh). Although we choose a rectangle, it is
important to note that the rectangle can be replaced by any
convex polytopic shape, provided the shape vector contains
enough information to describe a unique boundary.

We treat the abstraction as a single robot which can change
shape and orientation while navigating the space. Shape
constraints limit the size and shape of the abstraction in order
to ensure we have enough room for the number of robots in
the group. We set bounds on sw and sh, as well as bounds
on perimeter, (sw + sh). We can write these constraints:

Hss ≤ Ks. (5)

3538

0 5 10 15

0

2

4

6

8

10

1

2

3

4

5

6

7

Student Version of MATLAB

(a) (b)

!"/2#

!"#
!"#

!"/2#

!"/2#

!"#

!"#

!"/2#

!"/2#

!"#

!"/2#

!"#

(c)

Fig. 2: (a) A decomposition of the workspace into districts
(Obstacles are shaded) (b) We take the Cartesian Product of
each district Dm with each θ-slice Θk. (c) Our choice for
overestimating the abstraction.

Although perimeter bounds are a less intuitive choice than
area, perimeter is a linear constraint, and area is not. The rea-
son for linear constraints will become clearer in Section IV.

IV. ABSTRACT CONFIGURATION SPACE
We would like to drive the abstraction through the physical

workspace using a controller that can be synthesized auto-
matically. To that end, we build a polytopic configuration
space based on the parameters which define the abstraction.

Definition 4.1: The configuration space C of the abstrac-
tion A is the set of all transformations, including rotations,
of A. The free space Cfree of A is the set of all transforma-
tions, including rotations, of A which do not intersect with
obstacles in the configuration space.

To simplify building and planning on Cfree, we take a hi-
erarchical approach to constructing it. First, slice the angular
component of the configuration space into θ-slices, Θk =
[(k − 1)∆θ, k∆θ], k = {1, . . . , q}, so that q∆θ = 2π, and
tesselate the R2 workspace into districts Dm,m∈{1, . . . , d},
(Fig. 2a). Each district is described by constraints:

Hm
D xA ≤ Km

D , m ∈ {1, . . . , d}. (6)

Representing the free space exactly is not possible with a
finite number of polytopes, as the free space includes curves
due to rotations of the abstraction. Therefore, we seek to
underestimate Cfree with CfreeA , such that CfreeA ⊂ Cfree.
We do this by overestimating the abstraction with AΘk :

AΘk ⊃ {A(xA, θ, s)|A ∈ CfreeA , θ ∈ [(k − 1)∆θ, k∆θ],
k = 1, . . . , q − 1}.

AΘk must be a union of convex polygons. The vertices
of AΘk must be linear functions of xA and s, and the
outward normals must not be an explicit function of s. This
is necessary for computing the applicability conditions for
types A and B contact [29].

We choose to overestimate the abstraction with a rectan-
gular superset of the abstractions through an angular interval
∆θ. Figure 2c shows the abstraction that we choose, which
is a rectangle rotated to angle ∆θ/2 (smallest rectangular
superset of the abstractions). The overestimate is shown
for small ∆θ. With large ∆θ this overestimate becomes
excessive, so another overestimate should be chosen.

Workspace obstacles Ol, l ∈ {1, . . . , o} must be repre-
sented as a finite unions of convex polygons (note that the

boundary of the workspace is considered an obstacle). Obsta-
cles in the workspace map to C-obstacles in the configuration
space for each θ-slice Θk. The C-obstacle for each θ-slice
is computed using the specific overestimate for that θ-slice.

To construct C-obstacles, we follow an algorithm orig-
inally proposed by Lózano-Perez [30] and discussed by
Latombe [29]. To do so, we must project the vertices and
outward normals of the boundary into polyhedral space, thus
the outward normals cannot depend on the shape vector. Here
we follow Latombe’s notation closely.

Let the vertices of the overestimated abstraction be repre-
sented akj (xA), where j = 1, . . . , 4 for θ-slice Θk, and the
outward normal for the facet between akj (xA) and akj+1(xA)
as −→v A,kj (xA). Similarly, let the vertices of obstacle Ol be
represented blj , with the outward normal for the facet between
blj and blj+1 as −→v Bl

j .
The C-obstacles are computed by calculating for each θ-

slice Θk the applicability conditions for type A contact (we
drop the superscripts k and l for clarity),

APPLAi,j(xA) =
[−→v Ai (xA) · (bj−1 − bj) ≥ 0

]∧ [−→v Ai (xA) · (bj+1 − bj) ≥ 0
]
.

(7)

If APPLAi,j(xA) holds, then add to C-obstacle the constraint

fAi,j(xA) ≡ −→v Ai (xA) · (bj − ai(xA)) ≤ 0. (8)

Similarly, we calculate
APPLBi,j =

[
(ai−1(xA)− ai(xA)) · −→v Bj ≥ 0

]∧ [
(ai+1(xA)− ai(xA)) · −→v Bj ≥ 0

]
.

(9)

If APPLBi,j(xA) holds, then add to C-obstacle the constraint

fBi,j(xA) ≡ −→v Bj · (ai(xA)− bj) ≤ 0. (10)

For more details on the applicability condition and the
constraints fAi,j(xA) and fBi,j(xA), refer to [29].

This generates obstacles in R4×N for each θ-slice, which
we can extrude through the interval Θk to get Ol,k ∈
SE(2)× R2. We can represent Ol,k

H l,k
O xA ≤ Kl,k

O , k ∈ {1, . . . , q}. (11)

As depicted in Fig. 3b, the C-obstacles will generally
not coincide at the θ-slice interfaces. Since our controller
requires facets to match on adjacent polytopes, we reconcile
this by considering each interval Θk with corresponding
R4 obstacles, and any intersecting districts. In each district,
before removing obstacles, we extend all obstacle hyperplane
in the intersection of the obstacle and the district for the
adjacent θ-slices. For example, in the 3rd θ-slice in district
7, we intersect the polytopes with the extended hyperplanes
for the 2nd, 3rd, and 4th θ-slices. This results in a union of
polytopes in 4-dimensions for each district and θ-slice.

Finally, the resulting polytopes in each district are ex-
truded into their θ-slices to construct θ-districts: DΘk

m ,m ∈
{1, . . . , d}, k ∈ {1, . . . , q}. In each θ-district we remove
the polytopes which intersect with obstacles. Since the sup-
porting hyperplanes of the intersections of the 4-d districts
with every obstacle in every θ-slice were extended into the
district before extending into θ-space, the polytopes within
each θ-district have matching facets. Furthermore, any pair
of polytopes across a θ-slice interface which are adjacent

3539

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

x
1

x
2

Student Version of MATLAB

(a)

Student Version of MATLAB

(b)

Fig. 3: Configuration space obstacles for θ-slices. (a) C-
obstacles generated for a rectangular abstraction with fixed
length, width, and angle (shown in the bottom left corner).
(b) C-obstacles for θ-slices do not coincide on the interface.

will have matching vertices, ensuring that we cannot drive
the abstraction into prohibited regions.

Thus, the overestimated free space is CfreeA :

CfreeA =
q⋃

k=1

d⋃
m=1

Cfree,k,mA , (12)

Cfree,k,mA =
o⋂
l=1

(
DΘk
m ∩Ol,k

)
.

CfreeA is a union of polytopes in which the abstraction cannot
collide with any obstacles or the boundary of the space.

Problem 4.2: Consider the system (4) and goal group ab-
straction state xgA. Find an input function uA : [0, T0]→ UA
for some initial group abstraction state x0

A ∈ C
free,k0,m0

A ⊂
CfreeA such that

1) for all time t ∈ [0, T0], xA ∈ CfreeA and xA(T0)
arbitrarily close to xgA,

2) ẋA = uA.

A. Feedback controllers on CfreeA

We now develop feedback controllers to solve Problem 4.2
and drive the abstraction to the goal location. A key step is to
define a hierarchical discrete representation of the free space.
Then we translate these paths into feedback controllers.

Each polytope in CfreeA is associated with a θ-district DΘk
m .

We define a two adjacency graphs, one on CfreeA at the θ-
district level, and one on each θ-district at the polytope level.

Definition 4.3: The upper-adjacency graph on CfreeA

is the triple GU = (VU , EU , CU), where VU =
{[1 1], [1 2], . . . , [q d]}, EU is the set of all pairs (DΘk

m , D
Θ′

k

m′)
of θ-districts which share an interface, and CU is the cost
associated with each edge in EU .

Definition 4.4: The lower-adjacency graph on each DΘk
m

is the triple Gk,mL = (V k,mL , Ek,mL , Ck,mL), where V k,mL =
{pk,m1 , . . . , pk,m

nk,m}, where pk,mi is the i-th polytope in DΘk
m ,

Ek,mL is the set of all pairs of polytopes which share a facet,
and Ck,mL is the cost associated with each edge in Ek,mL .
We set the cost Ck,mL = 1 ∀k,m to minimize transitions
within each Cfree,k,mA . In Sec. VI we show results for solving
the same problem with different high-level cost functions.

Problem 4.5: For the initial group abstraction state x0
A,

find a path on GU and corresponding paths through θ-
districts to the goal group abstraction state xgA.

Since there are multiple paths to the goal, we use an
algorithm such as Dijkstra to determine the lowest cost path
to the goal. We first find a path on the upper-adjacency graph
to the goal θ-district . Then we determine a path from every
polytope in DΘk

m to D′Θ
′
k

m on the lower-adjacency graph.
Theorem 4.6 (Necessary and Sufficient condition):

Problem 4.2 has a solution iff Problem 4.5 has a solution.
Proof: CfreeA contains every allowable configuration xA in
our polytopic world model. GU and GL together contain
all the information about the connectivity of CfreeA . Thus, if
there is a solution to Problem 4.2, there must exist a path
from the start node in Gk

0,m0

L to the goal node in Gk
g,mg

L .
Conversely, if there is no path on the graph between the start
node and the goal node, there is no solution to Problem 4.2.

We would like to automatically synthesize feedback con-
trollers on each polytope on the path to solve Problem 4.2.
There are a few options for controllers. Both [31] and
[32] derive controllers that drive a system from any initial
condition in a polytope through a desired exit facet while
guaranteeing the system does not leave the polytope. [31]
requires solving a linear program on each polytope to deter-
mine the inputs at each vertex, then triangulating the polytope
to deterministically apply the controller within the polytope.
Though this is a straightforward approach, smoothness is
difficult to impose. We choose to use the controller in [32].
Here, a vector field is assigned to each facet of the polytope,
inward for invariant facets and outward for the exit facet.
On the Generalized Voronoi Diagram (GVD) a vector field
is assigned pointing out of the exit facet. A bump function
allows for smooth blending between the fields inside the cells
of the GVD. To ensure smoothness between polytopes, we
choose the facet vector fields perpendicular to the facets.

Corollary 4.7 (Completeness): Problem 4.5, and therefore
Problem 4.2, has a solution if the start and goal nodes on
the polytope graph GU are connected.

V. LOWER LEVEL CONTROL
In this section we discuss a few local robot controllers,

which keep the robots within the boundary as it traverses the
space and deforms. Since the boundary restricts the allowable
space for the robots, the robots’ configuration space is local
and decoupled from the cluttered physical workspace. The
input to each robot in the local reference frame of the
abstraction is

uj = uj
(
xl1, x

l
2, . . . , x

l
N , s

)
, (13)

where xli is the position of robot ri in the local reference
frame (fixed to and rotating with the center of the group
abstraction) and s is the shape vector.
A. Robot controllers

In this paper we use a navigation function approach to
demonstrate the use of a controller in a decentralized way
while guaranteeing that the robots stay within the abstraction
boundary. To solve the local navigation problem, we can use
any controller reactive to changing workspace boundaries.
For example, we demonstrate a flexible formation strategy
in Sec. VI-A. A Voronoi coverage type controller [33]–[35]
would be useful if the group was being used for sensing or

3540

surveillance of different spaces (demonstrated in Sec. VI-B.
If maintaining a specific shape is required [22] can be used if
parametrized. For stricter formations, [15], [24], [28] provide
a more structured organization of robots.

It is critical that the group dynamics evolve on a suffi-
ciently faster time scale than abstraction dynamics to guaran-
tee safety. Summing controllers without sufficient time scale
separation could result in local minima.

B. Choosing shape constraints
Choosing shape constraints (5) is critical to ensure that

there is enough space in the abstraction to maintain the
desired formation. Knowing the shape of the abstraction, we
can determine the minimum size of the abstraction so that
it is large enough to contain the number of robots in the
group. Without considering a formation, the minimum size
of the abstraction depends on the number of robots in the
group, N (and a minimum distance collision constraint δmin,
if desired). Indeed it is possible that two formations with the
same number of robots require different shape constraints.
For general guidelines on requirements for abstraction size
and shape constraints, the interested reader is referred to [28].

VI. SIMULATIONS
In this section we demonstrate two lower level controllers

in the exact same space. In both simulations, ∆θ = 20◦,
the start location is in district D3 at A = (xA, θ, s) =(
[2.5 2.5]T, 0, [3.3 3.8]T

)
, and the goal location is in district

D7, at A=(xA, θ, s)=
(
[13 4]T, 0, [2.5 4]T

)
(units in meters).

A. Flexible Formation Simulation
Here we use a flexible formation: each robot is assigned

part of a uniform 3×3 grid in the boundary, parametrized
by sw and sh. To prevent inter-robot collision, we enforce
2.1m ≤ {sw, sh} and 4.2m ≤ sw + sh ≤ 8m, so that the
distance between robots would ideally be a minimum of
0.7m. (Maintaining this inter-robot distance is not guaranteed
using this robot controller. However, using other controllers,
such as [26], it is possible to guarantee inter-robot distances.)
The navigation functions, coupled with the faster time scale
at the robot level, ensure the robots do not escape the
boundary.
B. Voronoi Coverage Simulation

Here we use navigation functions to drive robots to the
centroid of their Voronoi regions. With this type of controller,
the bearing of the robots relative to each other will change
as the abstraction boundary changes. The constraints on this
simulation are 1m ≤ {sw, sh}, 4m ≤ sw + sh ≤8m. In this
simulation, the cost of changing angular intervals is doubled,
so that the lowest cost path travels through more rooms.

VII. COMPLEXITY
The complexity of our method is independent of the

number of robots. It is dominated by the number of polytopes
in CfreeA . We extend the hyperplanes which support the
intersections of districts with obstacles. The boundary of 2-d
C-obstacles is made of at mostO(nA, nB) edges where nA is
the number of vertices in the abstraction, and nB the number
of vertices in the obstacle. We construct C-obstacles in R4,

since we consider changing sizes of the abstraction. Since
each hyperplane may divide the existing polytopes into two,
the maximum number of polytopes in one θ-slice of CfreeA

is O(2nAnBq) where q is the number of θ-slices.

VIII. CONCLUDING REMARKS
The central contribution of this paper is to provide a

method to construct abstractions for a group of robots which
allows automatic synthesis of feedback controllers for nav-
igating an environment with obstacles. We defined abstrac-
tions to be virtual boundaries that bound the positions of the
robots in the group. We designed feedback controllers that
allow the virtual boundary associated with the abstractions
to change its position and shape while avoiding the obstacles
in the environment. We then designed robot controllers
that satisfied inter-robot constraints and specifications while
guaranteeing that the robots do not exit the boundary of the
abstraction. This two-level hierarchy allows us to manage the
complexity of synthesizing controllers for large groups.

While this paper addressed the problems of planning and
control for a single group with homogeneous robots, it is
also possible to consider a team with multiple groups with
merging and splitting operations to change the composition
of the group. Further, the robots in each group could be
heterogenous with unique capabilities and identities. Some of
these ideas are presented in a recently published paper [28].
Our future work is to extend the methods in the present paper
to incorporate ideas from [28], and to consider experimental
validation of the basic ideas in this paper.

REFERENCES

[1] R. D’Andrea, “Towards a ten thousand mobile robot warehouse,” in
Proc. Int. Symp. Robot. Research, Luzern, Switzerland, August 2009.

[2] J. Carlson and R. Murphy, “How ugvs physically fail in the field,”
IEEE Trans. Robot., vol. 21, no. 3, pp. 423–437, June 2005.

[3] R. Murphy, J. Kravitz, S. Stover, and R. Shoureshi, “Mobile robots in
mine rescue and recovery,” IEEE Robot. Autom. Magazine, vol. 16,
no. 2, pp. 91–103, June 2009.

[4] M. Saptharishi, C. Spence Oliver, C. Diehl, K. Bhat, J. Dolan,
A. Trebi-Ollennu, and P. Khosla, “Distributed surveillance and re-
connaissance using multiple autonomous ATVs: Cyberscout,” IEEE
Trans. Robot. Autom., vol. 18, no. 5, pp. 826–836, Oct 2002.

[5] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via
caging in environments with obstacles,” in Proc. IEEE Int. Conf.
Robot. Autom., 2008, pp. 1471–1476.

[6] V. Kumar, N. Leonard, and A. S. Morse, Eds., Cooperative Con-
trol, ser. Lecture Notes in Control and Information Sciences,
vol. 309. Berlin Heidelberg New York: Springer-Verlag, 2004,
http://www.cis.upenn.edu/ kumar/wcc/index.html.

[7] N. J. Cowan, O. Shakernia, R. Vidal, and S. Sastry, “Vision-based
formation control,” in Intelligent Robots and Systems (IROS). Las
Vegas, NV: IEEE/RSJ, October 2003.

[8] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Trans. Robot.
Autom., vol. 17, no. 6, Dec. 2001.

[9] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Coordination of multiple
autonomous vehicles,” in Proc. of IEEE Mediterranean Conf. Control
and Automation, Rhodes, Greece, June 2003.

[10] C. Belta and V. Kumar, “Towards abstraction and control for large
groups of robots,” in Control Problems in Robotics, Springer Tracts
in Advanced Robotics. Berlin: Springer-Verlag, 2002.

[11] M. Ji, A. Muhammad, and M. Egerstedt, “Leader-based multi-agent
coordination: controllability and optimal control,” in Proc. Amer.
Control Conf., Minneapolis, Minnesota, June 2006.

[12] M. C. D. Gennaro and A. Jadbabaie, “Formation control for a coop-
erative multi-agent system using decentralized navigation functions,”
in Proc. Amer. Control Conf., Minneapolis, Minnesota, June 2006.

3541

Fig. 4: A simulation of 9 robots navigating a complex space while maintaining a flexible formation inside the abstraction.

Fig. 5: Simulation of 9 robots navigating a complex space while using Voronoi region coverage methods inside the abstraction.

[13] S. Zelinski, T. Koo, and S. Sastry, “Optimization-based formation
reconfiguration planning for autonomous vehicles,” in Proc. IEEE
Conf. Robot. Autom., Taiwan, September 2003.

[14] O. Orqueda and R. Fierro, “Robust vision-based nonlinear formation
control,” in Proc. American Control Conf., June 2006.

[15] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
IEEE Trans. Rob. Autom., vol. 17, no. 6, pp. 947–951, Dec 2001.

[16] R. Olfati-Saber and R. Murray, “Distributed cooperative control of
multiple vehicle formations using structural potential functions,” in
Proc. of IFAC World Congress, Barcelona, July 2002.

[17] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Trans. Rob. Autom.,
vol. 17, no. 6, pp. 905–908, Dec 2001.

[18] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
IEEE Trans. Rob., vol. 20, no. 5, pp. 865–875, Oct. 2004.

[19] N. Michael and V. Kumar, “Controlling shapes of ensembles of robots
of finite size with nonholonomic constraints,” in In Proc. Robotics:
Science and Systems, June 2008, pp. 157–162.

[20] P. Yang, R. Freeman, and K. Lynch, “Multi-agent coordination by
decentralized estimation and control,” IEEE Trans. Automat. Control,
vol. 53, no. 11, pp. 2480–2496, Dec. 2008.

[21] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Automat. Contr., vol. 52, no. 5, pp.
863–868, May 2007.

[22] M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decentralized con-
trollers for shape generation with robotic swarms,” Robotica, vol. 26,
no. 5, pp. 691–701, September 2008.

[23] P. Ogren, M. Egerstedt, and X. Hu, “A control lyapunov function
approach to multi-agent coordination,” in Proc. IEEE Conf. Dec.
Control, vol. 2, 2001, pp. 1150–1155 vol.2.

[24] N. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” in Proc. of IEEE Conf. on Decision
and Control, vol. 3, 2001, pp. 2968–2973.

[25] B. Smith, J. Wang, and M. Egerstedt, “Persistent formation control
of multi-robot networks,” in Proceedings of the IEEE Conference on
Decision and Control, Dec. 2008, pp. 471–476.

[26] N. Ayanian and V. Kumar, “Decentralized feedback controllers for
multi-agent teams in environments with obstacles,” in Proc. IEEE Int.
Conf, Robot. Autom., Pasadena, CA, May 2008, pp. 1936–1941.

[27] C. Anderson and N. R. Franks, “Teams in animal societies,” Behav
Ecol, vol. 12, no. 5, pp. 534–540, 2001.

[28] N. Ayanian, V. Kumar, and D. Koditschek, “Synthesis of controllers
to create, maintain, and reconfigure robot formations with communi-
cation constraints,” in Proc. Int. Symposium Robot. Research, Luzern,
Switzerland, August 2009.

[29] J.-C. Latombe, Robot Motion Planning. Kluwer Academic, 1991.
[30] T. Lozano-Perez, “Spatial planning: A configuration space approach,”

IEEE Trans. Comput., vol. 32, no. 2, pp. 108–120, 1983.
[31] L. Habets and J. van Schuppen, “A control problem for affine dynami-

cal systems on a full-dimensional polytope,” Automatica, vol. 40, no. 1,
January 2004.

[32] S. Lindemann and S. Lavalle, “Computing smooth feedback plans
over cylindrical algebraic decompositions,” in Robotics: Science and
Systems. Philadelphia, Pennsylvania: MIT Press, August 2006.

[33] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, April 2004.

[34] L. C. A. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. C.
Mesquita, and G. A. S. Pereira, “Simultaneous coverage and tracking
(scat) of moving targets with robot networks,” in Proc. Int. Workshop
Algorithmic Found. Robot., Guanajuato, Mexico, December 2008.

[35] M. Schwager, D. Rus, and J.-J. E. Slotine, “Decentralized, adaptive
control for coverage with networked robots,” The International Journal
of Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

3542

