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Abstract— Shape control of continuum robots requires a
means of sensing the the curved shape of the robot. Since
continuum robots are deformable, they take on shapes that are
general curves in space, which are not fully defined by actuator
positions. Vision-based shape-estimation provides a promising
avenue for shape-sensing. While this is often facilitated by
fiducial markers, sometimes fiducials are not feasible due to
either the robot’s application or its size. To address this,
we present a robust and efficient stereo-vision-based, shape-
sensing algorithm for continuum robots that does not rely
on fiducials or assume orthogonal camera placement. The
algorithm employs self-organizing maps to triangulate three-
dimensional backbone curves. Experiments with an object with
a known shape demonstrate an average accuracy of 1.53 mm
on a 239 mm arc length curve.

I. INTRODUCTION

Continuously flexible robots offer a number of potential
advantages over traditional, rigid-link manipulators in certain
applications [21], [23]. They are particularly useful for
working in obstacle-filled environments in a manner similar
to an elephant trunk or octopus tentacle. Example continuum
robots applications include subsea manipulation, industrial
inspection, and jet-washing [21], as well as minimally inva-
sive surgery (see e.g. [4], [6], [7], [26], [28]).

Our primary motivation for the vision-based, shape-
sensing algorithm described in this paper is medical con-
tinuum robotics, particularly the concentric-tube continuum
robot design also known as an active cannula, shown in Fig. 1
[7], [22], [26]. This particular robot is among the thinnest
continuum robots developed to date (typically 1-2.5 mm
in diameter), and can be constructed in diameters ranging
from 200 µm-10 mm, a range defined by the commercially
available diameters of the Nitinol tubes from which they are
made. While shape-sensing is challenging for all continuum
robot designs, it is particularly challenging for very thin
robots.

Several methods exist for encoding the shape of curved,
flexible devices. One involves embedding strain sensors
along the length of the device, as implemented in the robotic
cockroach antennae in [15]. Fiber optic sensors have also
been developed for measuring strain in flexible objects [10],
[19], [20]. However, while strain gages and optical fibers
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may be options for larger-scale continuum robots, they are
prohibitively bulky for integration in medical continuum
robots, which are designed to be as thin as possible.

One efficient and straightforward method of real-time
shape-sensing for continuum robots is the use of fiducial
markers on the robot. Hannan and Walker employed this
approach using a high-speed monocular camera system to
observe fiducial bands on an elephant-trunk manipulator [11].
They then fit a series of circular arcs to the fiducial markers to
describe the shape of the robot. Limitations of this method
include dependence on fiducials and the approximation of
the shape by circular arcs, which may not be accurate in
all cases. This method was subsequently applied to set point
regulation, where the orientations of various reference planes
along the trunk were controlled [5]. Proof-of-concept end-
point control based on stereo vision has also been accom-
plished with an active cannula by Webster, et al. [27] using
a tip-mounted fiducial. It is useful to extend these concepts
to control an entire general robot curve, which requires
sensing of that curve. It is also desirable to accomplish this
without relying on fiducial markers, since reliably attaching
and segmenting many fiducials is challenging – particularly
with very thin robots with telescoping backbones. These
factors motivated the algorithm described in this paper, which
triangulates shape without fiducials.

Some prior work has been done in the area of shape
sensing for medical robots and devices. Webster, et al. used
monocular [24] and stereo [25] optical cameras to sense
the shape of a steerable needle embedded in transparent
phantom tissue by post processing images. The system was
subsequently used for closed-loop control by tracking the
advancement of the needle tip [12]. Lee and Poston used
two cameras to triangulate curve points on a catheter using
epipolar geometry [16]. While accurate and robust, this
method requires a brute force search of all points in one
image for every point in the other using epipolar geometry

Fig. 1. Picture of an active cannula, a miniature surgical continuum robot
actuated by the translation and rotation of concentric precurved tubes.
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to establish point correspondences. The algorithm proposed
in this paper is similar in concept, but reduces the search
space significantly through the use of Self-Organizing Maps.

Camarillo et al. proposed a “voxel-carving” algorithm
to extract the position of their manipulator by projecting
segmented pixels from three orthogonal views into a 3D
voxel space to determine which voxels are occupied by the
manipulator [4]. Using this 3D point cloud, the data was
ordered in one of the views using an angle parameter from a
fixed point outside the data set, and then smoothed. Though
good accuracy and speed were obtained with this method,
the use of three orthogonal cameras may not be feasible in
all medical applications. In many medical applications we
envision having at most two cameras, as would be the case
in biplane fluoroscopy or binocular endoscopy. Furthermore,
the method used for ordering the data may not be well-
suited to more complex curves. General methods also exist
for extracting camera parameters and reconstructing a 3-
D shape from a number of uncalibrated cameras [2], but
these methods are unnecessarily complex for simpler cases
in which the fixed transformations between cameras and the
world frame can be known a priori.

The Self-Organizing Map (SOM) structure was originally
developed as a way to find lower dimensional patterns
in complex, high-dimensional data. Kohonen [13] provides
an informative overview of how and why SOMs are im-
plemented, including possible variations in the algorithm.
In this paper we use SOMs to find a simplified curve
which approximates a 3D shape of a continuum robot. This
is similar in nature (though different in implementation)
to 3D surface reconstruction with SOMs, which has been
extensively studied (see e.g. [1], [14], [18]). Kumar et al.
addressed the problem of extracting a 3D curve from a 3D
point cloud [14], and their work inspired our application of
SOMs to continuum robots.

In this paper, a shape-sensing algorithm is presented which
eliminates the need for fiducials, multiple orthogonally-
placed cameras, and assumptions that the robot be circularly
or near-circularly curved.

In this algorithm, a set of 3D backbone reference points,
ordered according to arc length along the robot, are iter-
atively generated in such a way that their projections in
the 2D camera views accurately approximate the 2D point
distributions. The algorithm presented in this paper is an
extension of previous advances in the use of self-organizing
maps in 3D reconstruction in that we eliminate the need
for a 3D point cloud as input and rely only on segmented
images from stereo cameras. The segmented images are used
in tandem to “train” representative reference points to fit
the silhouette of the robot, order the points according to arc
length, and then project them into 3D. The resulting ordered
set of 3D backbone curve points can then be fit using a
parametrically-defined curve in Cartesian coordinates.

II. SOM CONTINUUM ROBOT SHAPE SENSING

Our algorithm assumes that one begins with two binary
images, each containing pixels labeled as either containing

the robot or not containing the robot. We explain how these
are obtained via image processing in our proof-of-concept
experimental system in Section III. Our algorithm works
directly with these binary images, without first triangulating
a 3D point cloud from them, so we refer to it as stereo SOM.
Before addressing specifics of our stereo SOM algorithm, we
provide a general overview of reconstruction of a parametric
space curve from a large 3D point cloud using the conven-
tional SOM algorithm.

A. Conventional SOM

For an extensive treatment of conventional SOM algo-
rithms for 3D reconstruction we refer the reader to Kumar
et al. [14], whose notation we follow in this paper. We
begin by letting S =

{
Pi = (xi, yi, zi) ∈ R3, i = 1, ..., N

}
be a 3D point cloud representing the physical presence
of a continuum robot in space. We then choose a set
of k reference vectors (3D points that the algorithm will
iteratively adjust to approximate the centerline, or backbone
curve of the robot), M = {Ql = (xl, yl, zl), l = 1, ..., k}.
The initial positions of the reference vectors can be chosen
in any way, for instance by choosing a random sample of
points from S, or by sampling the curve estimate from a
previous algorithm output. Let Qc(Pi) and Qc′(Pi) be the
nearest and second nearest (in the euclidean sense) reference
vectors, respectively, to each Pi ∈ S.

Using these definitions, one can then establish an adja-
cency matrix as illustrated in Fig. 2 for M on the basis
of the nearest and second-nearest reference vectors for each
point Pi as,

A = {amn} , where

amn =
N∑
i

[
1, if Qm = Qc(Pi) ∧ Qn = Qc′(Pi)
0, else

for m ≤ k, n ≤ k.
(1)

Thus, the matrix A provides a sense of the “order” of the
reference vectors because it shows which reference vectors
are close to the same data points and thus each other. If
a(m,n) = 0, there are no reference vectors with Qm and Qn

as their best matching and second best matching reference
vectors, respectively. Therefore Qm should not be adjacent
to Qn. If S represents an ordered set of points along a
curve, A will necessarily be constructed such that the only

Fig. 2. Illustration of the structure of the adjacency matrix for correctly
ordered reference vectors. The rows indicate the nearest reference vector
and the columns indicate the second nearest reference vector to a given
data point. Thus, for example, there are two data points nearest to reference
vector 1, for whom the second nearest reference vector is 2. Therefore, the
1,2 element of the matrix is 2.
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non-zero elements of the matrix lie on either side of the
main diagonal. Thus, the correct ordering of the points in
M will result in this form. The sparse reverse Cuthill-McKee
ordering of matrix A can be used to find a permutation matrix
which reorders A to have its nonzero elements concentrated
near the diagonal. In our experiments in Section III, we use
Matlab’s symrcm function to implement this operation. This
results in the correct ordering of M such that there is little
or no topological error. In the context of a 3D curve, zero
topological error would mean having the reference vectors
in order of increasing arc length along the curve, as depicted
in Figure 2. More information on the ordering technique can
be found in [9].

After M is ordered, the algorithm “trains” the reference
vectors. In the algorithm presented here, a batch-training
construct was chosen for both its simplicity and speed when
compared to other methods (see [13] for an overview of
various training methods). In batch-training, each reference
vector (Ql) gets updated to a new position (Q∗l ) based on
the average location of the points in its own neighborhood
and the neighborhoods of the two closest reference vectors
according to,

Q∗l =

∑
j∈Ul
|Nj |Nj∑

j∈Ul
|Nj |

(2)

where the neighborhood of Qj is Nj = {Pi |Qj = Qc(Pi)},
Ul =

⋃l+n
b=l−nQb, and n is the range of neighborhoods to

include in each training calculation. The batch-training algo-
rithm is simply a weighted average. This form of the equation
saves computation time because it allows precomputation of
both the averages and number of elements in each Nj for
the batch-training algorithm, both of which appear numerous
times in overlapping neighborhoods. The training loop is
performed for multiple iterations, quickly drawing reference
vectors toward the trajectory of the curve, r.

B. Algorithm Modification for Stereo Images

The method of [14] above assumes that one has a 3D point
cloud to begin. In the case of stereo vision for a continuum
robot without fiducial markers, it can be computationally
expensive to obtain such a 3D point cloud from 2D images,
because a large number of point correspondences between
the two camera images must be established to triangulate the
3D points. These point correspondences can be established
by a search algorithm using epipolar geometry as in [8], but
this is generally computationally expensive.

Thus, instead of first generating a large 3D point cloud and
then applying SOM, we have adapted the SOM algorithm to
use only the two separate 2D image views. We do so by
training the 2D projections of the 3D reference vectors in
parallel using the data in the two camera views, and then
ordering both sets according to one set’s adjacency matrix.
We subsequently triangulate the projections into 3D and then
project back into the camera views prior to the next training
step. The triangulation of pairs of 2D reference vector
projections into 3D is only performed once for each reference
vector pair during a single iteration of the training loop, and

the point correspondences are automatically maintained by
the shared ordering of the reference vectors in both views. In
this way, we can reconstruct a 3D curve from stereo camera
data at least as fast as the conventional SOM algorithm
presented in II-A can approximate a 3D curve from a 3D
point cloud. Thus, by circumventing the step of generating
a large 3D point cloud, our algorithm gains efficiency.

C. Stereo SOM

The algorithm begins with segmenting the images from
each camera. The occupied pixels from each image are then
stored in two separate matrices (one for each camera) of
pixel coordinates. An initial set of reference vectors, each
of which is denoted Q3Dl, must now be chosen to initialize
the SOM algorithm. For the experiments described in Section
III, the reference vectors were initialized as a straight line
of points originating at the known robot base frame in the
direction of deployment (the positive z-axis). Choosing an
appropriate number of reference vectors is important to the
performance of the algorithm as we will discuss in Section
III. In general, the optimal number of reference vectors to
choose will depend on the diameter, length, and potential
shapes of the robot.

Next, Q3D is projected into each camera frame, then con-
verted from points in the camera frame to pixel coordinates.
These pixel coordinates will hereafter be referred to as Q’s.
Next, the function “bestQs” finds Qc(Pi) and Qc′(Pi) for all
Pi. This information is then used to sort the Pi into groups
corresponding the neighborhoods of each Q. Thus, there will
be one group of Pi’s for each reference vector, although it
is possible that some neighborhoods will be empty. In this
case, the Q with an empty neighborhood will be removed in
the training step.

We then choose one image and use its adjacency matrix
Q’s to sort the Q’s in both images. This assures us that the
Q’s from each image are in the same order so that point
correspondences are known before triangulation into 3D. It
is desirable to use the image which is least likely to contain
topological ambiguity or self intersections, so we use the
projection that contains the largest range of Q’s in either the
x or y direction.

After reordering both sets of Q’s, the Q3D’s can be
triangulated using the point correspondences. As defined
by [17], the triangulation algorithm uses the fundamental
epipolar matrix F and the normalized camera coordinates
of each pair of Q’s, Qn and Qn′ (the corresponding Q’s
from each camera) to calculate D = QT

n′FQn, which is
a measure of how well each pair of Q’s correspond (how
close their epipolar lines are to intersecting). If any of the
D’s exceeds some threshold value Dmax, the loop will
repeat by reprojecting the triangulated Q3D’s back onto the
image planes and beginning a new training iteration. In our
experiments, the algorithm usually did not need to repeat.
The first training step is robust enough to pull even poorly
initialized points very close to the backbone curve in a single
iteration. Simply increasing the number of training epochs,
or maximum number of times the training loop itself is
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Algorithm 1 Biplane SOM
loop

Get Camera Frames
Segment Images
Get Pixel Matrices

5: Get Deployed Arc Length
Initialize Q3D
while D ≥ Dmax and Iter≤MaxIter do

Project Q3D into Camera Pixel Coordinates
Run bestQs() and sortPoints()

10: batchTrain()
Add Q’s if necessary
if Q’s added then

batchTrain()
end if

15: Calculate Largest Spread
Run aMatrix() according to largest spread
Find Projected Q3D’s from 2D Q’s
Calculate D

end while
20: if Q3D is reversed then

Flip order
end if
Fit Parametric Curve to Q3D
Reparametrize w.r.t. Arc Length

25: end loop

repeated, usually avoids repetitions of the entire SOM loop.
For the experiments in this paper, a value of 10 was used for
the maximum number of training epochs. Once the Q3D’s
have converged, a parametric curve can be fit to them to
create a backbone representation. Initializing Q3D for future
approximations of the backbone (e.g. if the robot is moving)
can then be done by finding the position of various points
along the previously determined curve.

III. EXPERIMENTS

In order to evaluate the accuracy and speed of the algo-
rithm proposed in Section II, experiments were performed
using a mock-up of a miniature continuum robot, shown
in Fig. 4, with a known backbone shape. The mock-up
was rapid-prototyped with a circular cross section with an
outer diameter of 6.4 mm. The backbone reference curve
was defined by a parametric polynomial approximating a
helix with linearly increasing radius. In our experiments, we
reconstruct the 3D backbone of this mock-up from stereo
camera images using the stereo SOM algorithm, and evaluate
the accuracy by comparing the results against the known
curve.

A. Image Acquisition and Preprocessing

As shown in Fig. 4, images of the mock-up were taken by
a custom stereo camera system consisting of two Sony XCD-
X710 digital cameras, capable of capturing 8-bit grayscale
images at a resolution of 1024×768 pixels with a rate of
30 frames per second. The cameras are mounted on an

Fig. 3. The initial image from a single camera (top) and the final segmented
image after processing (bottom).

adjustable truss structure so that they are capable of viewing
the mock-up from a variety of overhead angles. The image
background is covered by matte white felt to simplify image
preprocessing for experimental validation.

Prior to beginning the experiments, we fixed the two cam-
eras rigidly in place and used Matlab’s Camera Calibration
Toolbox [3] to calibrate them. To acquire images and perform
several preprocessing steps, we used the OpenCV library for
C++. We employed a standard edge-detection algorithm as
follows. First, we convolved our original images with a 3×3
symmetric Gaussian kernel in order to filter the image, re-
moving any background noise. Next, we enhanced edges via
convolution with a 3 × 3, 2-dimensional Laplacian. Finally,
we thresholded the resulting image. Adjusting the threshold
appropriately to account for lighting conditions, we obtained
a set of pixels almost solely along the robot edges, as seen in

Continuum Robot
Mock Up

Stereo Camera
System

Top View

1
5

0
m

m

Fig. 4. A photo of the experimental setup. The continuum robot mock-up
was actuated to various orientations while images were taken by our stereo
camera system.
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TABLE I
EXPERIMENTAL RESULTS FOR ACCURACY, PRECISION, AND SPEED

Number Mean Std. Dev. Mean
of Q’s Error (mm) Error (mm) Time (s)

20 3.14 0.68 0.188
30 1.94 0.42 0.195
40 1.73 0.29 0.232
50 1.53 0.31 0.248
60 1.59 0.27 0.311
70 1.60 0.28 0.365
80 1.60 0.43 0.636
90 1.78 1.00 0.724

100 1.88 0.93 0.993

Fig. 3. We note that in practical implementation – particularly
in the surgical setting – more advanced image pre-processing
will be necessary. However, this simple method is sufficient
to demonstrate the stereo SOM algorithm and perform the
experiments that follow.

B. Experimental Procedure

The robot mock up was gripped at its base using a rotary
positioning stage (Velmex model A5990TS C029338), and
rotated and translated to 20 different poses. Images were
taken and processed into two dense 2-D point distributions
of edge points in image coordinates as described above in
Section III-A. For each pose, the SOM algorithm developed
in Section II was used to reconstruct the 3D backbone
curve based on 800 data points randomly selected from the
collection of edge pixels in each image. A set of initial
reference vectors was established extending out 150 mm (the

100 200 300 400 500 600
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500

550
Right Image

100 200 300 400 500 600

250

300
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400

450
Left Image

Data Point

Reference Vector Projection

Fig. 5. The 2D data sets in the left and right camera views with the 2D
projections of the 3D reference vectors for a case with 50 initial reference
vectors.

length in the z-axis of the mock-up) from the robot base in
a straight line.

For each of the 20 experimental poses, the SOM algorithm
was initialized with a number of reference vectors equally
spaced along a 150 mm straight line from the origin along
the positive z-axis. For numbers of initial reference vectors
ranging from 20 to 100 in increments of 10, the time required
to obtain the ordered 3D backbone points from the original
2D images was measured using Matlab’s built-in tic and
toc functions. The average run times are shown in Table I.

C. Results and Discussion

The accuracy of the algorithm over the 20 positions was
also evaluated for each number of initial vectors. After each
run of the algorithm, a 6th degree polynomial curve was
fit to the resulting 3D backbone points (the ground truth
backbone curve was also of degree 6). This experimental
curve was rigidly registered to the ground truth backbone
curve by comparing 100 points at equal increments along
the arc lengths of each curve. The mean euclidean error in
these points is shown in Table I Plots of the 3D points output
by the algorithm, the curve fit to these points, and the ground
truth curve are shown together in Figure 6. On average, each
of the 20 orientations showed similar levels of error.

Table I summarizes the speed, accuracy and precision
of the SOM algorithm in our experiments. In terms of
accuracy and consistency, there is an optimal number of
initial reference vectors around 50. The reason for this is
illustrated by Fig. 6. If the number of reference vectors is
too small, the error will increase because the curve is sparsely
sampled, and the polynomial fit will not necessarily match
the actual curve. If the number of reference vectors is too
large, the model will start to follow any noise or random
clumping in robot pixel positions, rather than the backbone
of the device. As the number increases and reference vector
neighborhoods become smaller, the ability of the training
algorithm to pull reference vectors to the center of the curve
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Fig. 6. A comparison of the reconstruction with 20 (left), 50 (middle),
and 100 (right) initial reference vectors. Too few reference vectors lead to
inaccuracy, while too many lead to increased run time, increased sensitivity
to noise, and the potential for topological error.

4595



is reduced. Another negative effect with large numbers of
reference vectors is the potential for topological ambiguity
(points not in a clear order), which causes an inaccurate curve
fit and is again due to the noise inherent at this scale. This
is the reason for the large standard deviation for 90 and 100
initialized Q’s. Increasing the number of reference vectors
also makes the algorithm more computationally intensive and
thus increases the processing time.

In Figure 6, it is apparent that the reference vectors do
not reach to the ends of the curve. This is due to the effect
that batch-training has of pulling reference vectors into the
middle of the curve – the outermost 2D reference vectors are
pulled slightly away from the ends of the curve as shown in
Figure 5.

Overall, the algorithm is relatively robust in the range of
40 to 70 initial reference vectors. The optimal number of
50 gives a mean centerline accuracy of 1.53 mm – which is
relatively small considering that our mock up had an outer
diameter of 6.4 mm – and a mean run time of 0.248 s.
Thus, the the algorithm is capable of running at 4.0 Hz in
Matlab 7.3.0 on a 2.13 GHz PC with 2.0 GB of RAM under
the Linux Gnome Red Hat operating system, excluding the
computation involved in image preprocessing.

IV. CONCLUSION

In this paper we have presented an algorithm based on
the concept of Self-Organizing Maps that can be used to
reconstruct a continuum robot’s 3D backbone curve from
segmented 2D stereo images. Bypassing the generation of
a large 3D point cloud makes the algorithm efficient, and
our experiments demonstrated a reconstruction accuracy of
1.53 mm at 4.0 Hz with a known robot curve seen from a
number of different angles. This algorithm will be useful for
encoding the shape of continuum robots, which is a necessary
prerequisite to closed-loop shape control for the new class of
miniature continuum robots being developed for minimally
invasive surgery. In the future, we envision our algorithm
being implemented with image feedback from a variety of
medical imaging sources including biplane fluoroscopy and
stereo endoscopy.
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