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Abstract— In this paper, a homography-based approach for
determining the ground plane using image pairs is presented.
Our approach is unique in that it uses a Modified Expectation
Maximization algorithm to cluster pixels on images as belonging
to one of two possible classes: ground and non-ground pixels.
This classification is very useful in mobile robot navigation
because, by segmenting out the ground plane, we are left with
all possible objects in the scene, which can then be used to
implement many mobile robot navigation algorithms such as
obstacle avoidance, path planning, target following, landmark
detection, etc. Specifically, we demonstrate the usefulness and
robustness of our approach by applying it to a target following
algorithm. As the results section shows, the proposed algorithm
for ground plane detection achieves an almost perfect detection
rate (over 99%) despite the relatively higher number of errors
in pixel correspondence from the feature matching algorithm
used: SIFT.

I. INTRODUCTION

One of the main problems in mobile robot navigation

and map building is obstacle detection [3]. To accomplish

this task, many sensors have been employed to retrieve

information about the robot’s environment such as ultrasonic

sensors (SONAR) [4] and laser scanners [6]. Even though

these sensors provide means of detecting obstacles, they have

a tendency to be expensive. This reason coupled with the

recent increase in the availability of low cost cameras makes

a vision based approach for mobile robot navigation quite

attractive.

While some approaches focus on the 3D reconstruction

of an entire scene [1], [10] , many others focus on just

finding the ground plane [18], [17], [14], [15], [5], [19].

That is, the classification of pixels as either belonging to the

ground plane or not. Some approaches rely on simple color

properties of the image to detect ground planes, however

they are constrained to specific environments [9]. Other

approaches use a stereo camera setup to detect ground planes

either from the 3D reconstruction of the scene [10] or

from some disparity constraints derived from the setup of

the cameras [17], [15]. While these algorithms can provide

reasonable results, they require two cameras that need to

be calibrated precisely. Optical flow is also used for ground

plane detection since the motion fields provide a simple

method of clustering the different planes. However, such

methods can be computationally intense and a coarse-to-fine

approach must be employed to deal with this problem [5].

There are also approaches that exist which are homography-

based, such as in [18], [5], [19] that take images of two
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different views of a scene and use the homography constraint

as a criterion for ground plane detection. Finally, like in our

proposed method, some approaches resort to a probabilistic

scheme to cluster the ground and non-ground pixels. In

[14], for example, the RANSAC algorithm is used for robust

estimation of the ground plane, but as it is well known, the

RANSAC algorithm starts to fail whenever the number of

outliers exceeds 40% of the total number of data points.

In this paper, we propose a modification to the Expectation

Maximization (EM) algorithm [2] to create a homography-

based ground plane detection algorithm. The idea is to

apply the SIFT algorithm [11] to establish a correspondence

between pixels from an image pair and then apply the ho-

mography constraint under a probabilistic framework as the

criterion for the classification of the pixels as either ground

plane or obstacle. The probabilistic framework allows for

the parameters of the homography to be constantly updated

while the accuracy of the classification is maximized. Our

method requires a simple initialization step due to the fact

that the EM needs an initial guess, however, this initialization

only needs to be performed once for a mobile robot’s camera

configuration.

This paper is organized as follows: Section 2 provides

a full description of the homography-based ground plane

detection algorithm using the proposed Modified EM (or

MEM). Section 3 discusses the application of the proposed

MEM to mobile robot navigation. Finally, in Section 4 we

present the results followed by the conclusions and future

work in Section 5.

II. HOMOGRAPHY-BASED GROUND-PLANE DETECTION

USING MEM

As we have briefly explained, our goal is to perform

mobile robot navigation by segmenting out the images of the

objects from the ground plane. By doing so, algorithms for

obstacle avoidance, target tracking (e.g. human following),

landmark detection, and many others can be more easily

implemented [3]. So, in order to carry out these tasks, it is

required first that image pixels be clustered into at least two

different sets: ground pixels and non-ground pixels. As we

mentioned in Section I, many approaches have been proposed

over the years for this clustering [18], [17], [14], [15], [5],

[19]. In our work, we proposed a new method for ground-

plane detection using the homography of the ground plane

and a new unsupervised clustering approach based on the

Expectation Maximization algorithm.
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A. Homography Relation and Decomposition

As we know, a homography is a transformation matrix

that relates the pixel coordinates of planar points as seen

from two different viewing angles. That is, given the pixel

correspondences on two images of a plane, the pixel coor-

dinates of any of the planar points will satisfy the following

constraint:

sp̂i = H pi (1)

where, pi and p̂i are the homogeneous pixel coordinates of

the planar points on image I and Î, s is a scale factor, and

H is the homography of the plane between the two images.

The pair of corresponding pixels pi and p̂i will be referred

to as the pixel correspondence xi. In [7], it is shown that H

can be decomposed into:

H = Â(R+
t

d
nT )A−1 (2)

In this equation, A and Â are the intrinsic parameters of

the cameras, which would be the same in a single-camera

setting. These parameters can be easily obtained using a

camera calibration technique like the one described in [16].

Also, the parameters R and t are the 3x3 rotation matrix and

the 3x1 translation vector describing the motion between the

two cameras, while the parameters n and d are respectively

the normal vector that defines the plane, and the distance

between camera and plane. Together, these parameters rep-

resent a total of 10 unknown elements: three for the rotation

matrix, three for the translation vector, three for the normal

vector, and one for the distance value. However, since a

homography only has 8 degrees of freedom, these elements

are not independent and theoretically only four pairs of

pixel correspondences are required to fully determine a

homography.

In the next section we explain how we use the homography

constraint to classify pixel correspondences as ground or

non-ground.

B. Expectation Maximization Algorithm

The Expectation Maximization algorithm is a powerful

method commonly used for unsupervised clustering in pat-

tern recognition. In a typical application, observed data needs

to be grouped into different clusters based on a probability

density function whose parameters are unknown. In order to

achieve such clustering, the EM employs two steps: 1) An

expectation step, or E-Step, which computes the expected

value of a likelihood function based on the current set of the

parameters stored in the vector θt ; and 2) A maximization

step, or M-Step, which calculates a new parameter vector

θt+1 that maximizes the likelihood estimate used in the E-

Step. The EM algorithm iterates between these two steps

until convergence and the final clustering of the data xi, is

given by:

P(C j|xi;θt) (3)

that is, the posterior probability of the cluster C j given the

data xi and the parameters θt . Since this probability density

function is hard to be found directly, we resort to Bayes

theorem to express (3) in terms of its prior probability. That

is:

P(C j|xi;θt) =
P(xi|C j;θt)P(C j)

∑
k

P(xi|Ck;θt)P(Ck)
(4)

where P(xi|C j;θt) is usually easier to be inferred. Also,

P(C j), the prior probability of cluster C j, can be arbitrarily

initialized (e.g. uniformly) and is subsequently refined during

the iterations in the EM algorithm.

In other words, for each cluster C j, and given an initial

set of parameters θt , the E-Step of the algorithm estimates

(3) using (4), while in the M-Step, it refines that same

probability by re-calculating the next parameter vector θt+1

using maximum likelihood, that is:

θt+1 = argmax
θ

∑
i
∑

j

P(C j|xi;θt) ln(P(xi|C j;θt)P(C j)) (5)

The solution for the above maximization is given by the

following expression:

∑
i
∑

j

P(C j|xi;θt)
d

dθ j

lnP(xi|C j;θt) = 0 (6)

Finally, as we mentioned earlier, P(C j) must also be

refined at each iteration of the algorithm, which is done using

a simple sample mean:

P(C j) =
1

N

N

∑
j=1

P(C j|xi;θt) (7)

C. Proposed Modification to EM

Before we explain the proposed modifications to the EM

algorithm, let us define how the above equations apply to the

specific problem of ground plane detection. First, in this ap-

plication, the observed data xi are the pixel correspondences

established between image pairs using the SIFT algorithm

[11]. Also, the parameter vector θt consists of the unknowns

in the decomposition of the homography given by (2). That

is, the angles of rotation and the values of translation between

the two positions of the camera, plus the direction (normal)

and the distance between camera and the ground plane. Next,

since (4) requires us to determine the likelihood P(xi|C j;θt),
we could rearrange (1) to return a geometric error distance

of the following form:

erri = ||p̂i −
Hground pi

s
|| (8)

In this case, the likelihood that a pixel correspondence

belongs to the ground plane could be made inversely pro-

portional to this distance. Unfortunately, such metric does

not return a value between 0 and 1, and therefore it cannot

be directly employed as our likelihood function. Instead, we

must apply a decay function to this error distance so that the
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Fig. 1. Result of the empirical study for the choice for the standard
deviation of the decay function

output becomes more appropriate for our needs. One require-

ment for this decay function is, of course, monotonicity, as to

guarantee that no probability inversion occurs between two

pixel correspondences. Here, we choose to use a standard

Gaussian centered at 0 (µ = 0) with standard deviation σ .

The final form of our likelihood function is then given by:

P(xi|Cground ;θt) =
exp(−

err2
i

2σ2 )

∑
i

exp(−
err2

i

2σ2 )
(9)

where erri is the geometric error distance defined by (8)

for correspondence xi assuming that xi belongs to cluster

Cground and given the current parameters of the homography

of the ground plane stored in θt . The summation in the

denominator is over the entire set of pixel correspondences

and is used to approximate the total number of pixels in

cluster Cground .

The choice for the standard deviation in the decay function

was reached empirically. That is, we sought the optimal

standard deviation for the decay function that simultane-

ously satisfies the following criteria: 1) the optimal standard

deviation must be large enough so that the effect of small

errors in the matching from SIFT could be minimized; and

2) the optimal standard deviation must be small enough so

that pixel correspondences that do not belong to the ground

plane are not given high probabilities. Figure 1 illustrates our

choice of the standard deviation. In this figure, the left curve

is a Gaussian that models the geometric error of a pixel

correspondence that belongs to the plane, while the right

curve models the errors of pixel correspondences that do not

belong to the plane. Our choice of standard deviation (σ=

3) is represented by the dashed line which is the intersection

of these curves.

Since we do not have a homography to describe the

non-ground pixels, the only question remaining is how to

assign probabilities when assuming the pixels belong to

cluster Cnon−ground . To solve this problem, we look at the

output of the decay function not only as an indication of the

likelihood that a pixel correspondence belongs to the ground

plane, but also as a indication that it does not belong to the
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ground plane and therefore belongs to cluster Cnon−ground

. To use the decay function in the second way, we take

the complement of the decay function. In other words, we

replace the exp(−
err2

i

2σ2 ) terms with
(

1− exp(−
err2

i

2σ2 )
)

in both

the numerator and denominator in (9). It should be noted

here that this is not the same as assigning a probability that

is the complement of P(xi|Cground ;θt). Instead, we are simply

taking the complement of the decay function.

Now that we have defined these equations for our appli-

cation, we can explain why it is necessary for us to modify

the EM algorithm. As stated previously, after all of the

posterior probabilities have been computed, the next step of

the algorithm is to calculate the new parameter vector θt+1

based on maximum likelihood. In order to do this, we refer to

(6) which is the desired solution for θt+1, but involves taking

the derivative with respect to each parameter in the vector

θt . For our case, it would be impractical to factor (8) (2)

and (9) into (6). For that reason, we propose an alternative

solution to the M-Step.

In this modified M-Step we choose to use an optimization

algorithm to estimate the parameters in θt+1 instead of

solving for them analytically. The objective function of

this minimization is the summation of the geometric error

in (8) for all of the correspondences with respect to the

homography of the ground plane. The problem with this

approach is the fact that we cannot simply use all the detected

pixel correspondences, otherwise the optimization will find

values of θt+1 that satisfy all of the pixels, whether they

form a plane or not. Therefore, in order for this optimization

to be successful, we need a criterion to minimize the effect

of pixel correspondences that do not belong to the ground

plane. We do this by calculating the geometric error for a

pixel correspondence and weighting it with the posterior

probability found for the pixel correspondence. This idea

creates a step that is similar to (5), which is the goal of

the original M-Step.

For the optimization that replaces the maximization step,

we investigated two algorithms: Levenberg-Marquardt [12]

and the Simplex method [8]. The reason that these algorithms
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Fig. 3. Flowchart of the Target Follower Navigation Algorithm

are attractive for our MEM is because they do not require

an explicit gradient or hessian. In order to help make

the decision on which algorithm to use, we performed a

comparison which is described in the next section.

D. Levenberg-Marquardt vs. Simplex

We compared the performance of the two algorithms by

creating a test where we ran each optimization on 256

real pixel correspondences that belonged to a plane. Each

optimization was provided with the same initial guess for θt

and the same termination criteria. Both optimizations were

ran until convergence and the output can be seen in Fig. 2.

As shown in the figure, both algorithms quickly decrease

the objective function value within a few iterations. It can

be seen that even though the Levenberg-Marquardt at first

reaches a lower objective function value early in the itera-

tions, it takes a longer time to converge to a final solution.

The Simplex optimization however surpasses it, reaching

approximately the same ending objective function value.

Not only does the Simplex method converge after fewer

iterations, but also it takes much less time to run a single

iteration. For these reasons, the decision was made to use

the Simplex algorithm for our modified M-Step.

III. NAVIGATION ALGORITHM

As we mentioned earlier, the proposed homography-based

method for ground plane detection together with the Modi-

fied EM algorithm can be very useful in many aspects of

mobile robot navigation. In this section, we provide one

example by employing our method in a simple target tracking

and following algorithm. To keep this algorithm simple and

focus on the performance of the classification itself, we

assume that the mobile robot only sees one object on the

ground. This object is the one that the robot needs to follow.

The algorithm consists of four steps, which are illustrated

in Figure 3. These steps are: 1) Initialization; 2) Feature

Detection and Matching; 3) Ground Pixel Classification; and

4) Robot Motion Control. Details about each of these steps

are provided in the following sections.

Fig. 4. Example of Sift Output

A. Initialization

Since the homography constraint could be applied to any

plane in the environment, it is necessary that the algorithm

be initialized with respect to the desired plane, in this case,

the ground plane. This initialization is simple, but important

since the Expectation Maximization algorithm is sensitive

to the initial guess, and the overall quality of the clustering

depends on it. In order to carry out such initialization, the

algorithm must be provided with two images of the ground

plane, with no objects. The initialization step then finds pixel

correspondences between those two images and runs the

MEM algorithm using a posterior probability set to one for

all pixel correspondences. It is important to stress the fact

that this initialization only needs to be done once for any

robot, that is, for any configuration of the cameras.

B. Feature Detection and Matching

Once the robot has been initialized, the detection of the

ground plane starts by the capture of two images. These

images are run against each other using the SIFT algorithm

[11], which extracts a large number of pixel correspondences,

both on the ground plane as well as on possible objects in the

scene. A sample of the output from the SIFT algorithm can

be seen in Figure 4. It is this output of pixel correspondences

that is passed onto the MEM algorithm for clustering.

C. Ground Pixel Classification

The MEM algorithm is the step of our navigation algo-

rithm where pixel classification occurs. As mentioned before,

this pixel classification is the main step of the navigation

algorithm and is what allows an object in front of the robot

to be detected and tracked. As Algorithm 1 shows, the MEM

takes as input the pixel correspondences detected by SIFT,

and outputs two clusters: ground pixels and non-ground

pixels. Our implementation relies on two cameras, however

the algorithm can be used in a single camera setting. The

difference between these two settings comes when creating

the guess for the MEM. For a single camera setting some

method for obtaining a guess for the transformation of the

robot between frames would need to be incorporated such as

using dead reckoning or decomposition of the fundamental

matrix. By using two cameras, we are able to eliminate the

need for this step, and are able to use the same guesses for

every pair of frames. The MEM step remains the same for

either setting in that it takes an initial guess and clusters the

pixel correspondences. An example of a clustering produced

by the MEM can be seen in Figure 6 where black squares
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Algorithm 1 MEM Algorithm

Input: Pixel Correspondences
Output: Classified Pixels

while(!termination criteria met)
Calculate Probabilities()
Update Homography Parameters()
Update Class Probabilities()

end
Calculate Probabilities()
Assign Clustering()

represent ground pixels and the blue circles represent the

target object pixels.

D. Robot Motion Control

Once the MEM step returns the two clusters of pixel

correspondences, that information can be used for target

tracking and following. Since we are interested in following

the target, the pixels that we actually use for navigation are

the pixels on the target object and not the pixels on the

ground plane. In order to track the target object, the algorithm

aims to keep the target object in the center of the field of

view of the camera on the robot. Any deviation of the target

object from the center requires a modification of the heading

of the mobile robot. This adjustment of the heading should

result in the target object being centered again in the camera’s

view.

The calculation of the adjustment heading is done by

the following steps. First, we back-project all the pixels of

the target object into the 3D space in front of the robot.

Since we do not have depth information, we simply take

the rays departing from the camera and project them onto

the horizontal axis. The accumulation of intersection points

between the rays and the horizontal axis is what is used for

the actual control of the robot.

IV. EXPERIMENTAL RESULTS

Our target tracking and following algorithm was imple-

mented and tested on a HP Pavilion dv6 running Intel(R)

Core(TM)2 Duo CPU @ 2.0GHz. In order to improve the

performance of the navigation algorithm, we ran the MEM

step only once for every four image pairs collected. That is,

the MEM step of the algorithm was used on the first pair of

images to estimate the probabilities and the parameter vector

as described in section II-B. After that, the same parameter

vector and ground class prior probability, P(Cground), were

preserved during the classification of the pixels for the

next three collected image pairs. Upon collection of the

fourth image pair, the MEM was ran again to obtain a

new parameter vector and probabilities. The assumption was

that the environment does not change drastically within four

frames, so the MEM algorithm could rely on the same

parameters of the first pair.

For the actual tracking and following algorithm, we used

two P3DX mobile robots from Mobile Robots Inc (Fig. 5).

One of the mobile robots served as our target object, which

ran a program that allows the robot to “wander” through

Fig. 5. Mobile Robots used for testing

Total number

of pixels

Classified

Correct

Classifi-

cation

Percent-

age

Incorrect

classification

from SIFT

Incorrect

classification

from MEM

alone

Ground 88,145 99.62% 270 (0.3%) 71 (0.08%)

Non-

ground
7,930 99.4% 24 (0.3%) 22 (0.3%)

Total 96,075 99.6% 294 (0.3%) 93 (0.1%)

TABLE I

STATISTICS OF THE CLASSIFICATION

the hallway, while avoiding collisions using its on board

SONAR ring. Meanwhile, the second robot ran the proposed

tracking and following algorithm. The experiment consisted

of capturing 6 trials of the robot running all the way down

the hallway while tracking and following the other robot.

This equated to 1000 frames and over 400,000 pixels for

classification by the proposed algorithm.

A. Qualitative Results

The statistics collected for the experiment above are

summarized in Table I. Since we did not have ground truth

available, the ground truth had to be manually obtained. For

this reason, we randomly sampled 20% of the 1,000 frames

collected from the six sequences. The table summarizes the

statistics of the 20% of the samples.

As it can be noticed from the table, 96,075 pixel corre-

spondences were collected, with 88,145 of these pixels being

classified as ground pixels, and 7,930 as target object pixels.

Also, the algorithm returned 341 ground pixels that happened

to be misclassified as object pixels. At the same time, it also

returned 46 object pixels that were misclassified as ground

pixels. However, not all of these misclassifications were due

to the proposed algorithm alone. That is, 270 of ground

pixels were misclassified because the SIFT algorithm was

not able to find a correct match between the pair of images.

Similarly, 24 of the target object pixels were misclassified

for the same reason. In the end, only 71 of the ground pixels

and 22 of the target object pixels were misclassified by the
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Fig. 6. Sample images from test sequences. Black squares are pixels
classified as ground. Blue circles are pixels classified as non-ground.

MEM alone. Overall, the MEM algorithm achieves a total

correct classification rate of 99.6%. Some samples from the

sequences can be seen in Figure 6.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced a Modified Expectation

Maximization algorithm that can be employed in a novel

approach to homography-based ground plane detection. We

have shown that this approach provides very accurate means

for classifying image pixels as either belonging to objects or

the ground plane in a scene. The algorithm was tested using

a Simplex optimization algorithm, which out performed the

Levenberg-Marquardt, but in the future other possible opti-

mization algorithms can be studied – e.g. particle swarms.

Also, a simple target following navigation algorithm was

developed as a proof of concept and test case for the MEM

algorithm. In the future, this algorithm will be improved

in order to detect multiple planes for indoor navigation in

hallways. Other applications of our MEM method for ground

plane detection include its use in an outdoor setting, where

the ground plane to be detected is not necessarily smooth as

in the case of indoor navigation. Figure 7 shows one such

example where the algorithm is being used for target tracking

and geolocation from airborne video [13].

Fig. 7. Before image of all pixels and after image after ground plane pixels
are segmented out
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