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Abstract— We develop a distributed controller to position
a team of aerial vehicles in a configuration that optimizes
communication-link quality, to support a team of ground
vehicles performing a collaborative task. We propose a gradient-
based control approach where agents’ positions locally minimize
a physically motivated cost function. The contributions of this
paper are threefold. We formulate of a cost function that
incorporates a continuous, physical model of signal quality,
SIR. We develop a non-smooth gradient-based controller that
positions aerial vehicles to acheive optimized signal quality
amongst all vehicles in the system. This controller is provably
convergent while allowing for non-differentiability due to agents
moving in or out of communication with one another. Lastly, we
guarantee that given certain initial conditions or certain values
of the control parameters, aerial vehicles will never disconnect
the connectivity graph. We demonstrate our controller on
hardware experiments using AscTec Hummingbird quadrotors
and provide aggregate results over 10 trials. We also provide
hardware-in-the-loop and MATALB simulation results, which
demonstrate positioning of the aerial vehicles to minimize
the cost function H and improve signal-quality amongst all
communication links in the ground/air robot team.

I. INTRODUCTION

Distributed control of groups of robots working collabo-

ratively to acheive a task has been the focus of many recent

research efforts. These systems are particularly interesting

because of their inherent robustness to failures, and because

of their potential to solve a large range of interesting prob-

lems such as the exploration of an environment, search and

rescue tasks, collaborative construction, and the modeling

of biological systems. However, many applications of dis-

tributed systems require that agents work at large distances

from one another, or in noisy environments, where communi-

cation quality can degrade or be lost altogether. The National

Aeronautics and Space Administration (NASA) has recently

focused attention on swarm-based missions where hundreds

or even thousands of intelligent spacecraft will work in teams

to achieve collaborative tasks in space exploration [1]. The
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case of exploration in an unknown environment with ambient

noise exemplifies the need for communication networks that

can be optimized adaptively. We propose a nonsmooth,

gradient-based approach to positioning a group of aerial

vehicles in a configuration that optimizes communication-

link quality amongst a team of ground vehicles performing

an independent, collaborative task. We acheive this objective

via careful design of an appropriate cost function that is then

minimized by the placement of the aerial vehicles.

A common approach to distributed minimization of a cost

function is to design a gradient-based controller where agents

follow a distributed gradient descent on that cost function.

We design a cost function that incorportates the Signal-To-

Interference Ratio (SIR) from the communication literature,

which is a physically-based, continuous measure of link

quality between any two communicating agents [2]. Local

minima of our cost function achieve a tradeoff between max-

imizing the SIR for any single link, and equalizing the com-

munication capability, also SIR, over all links in the graph.

We model signal strength between two agents that degrades

with distance and drops non-smoothly to zero outside of the

communication radius R. The non-differentiability due to

agents entering or leaving the communication radius of one

another necessitates the use of results from the nonsmooth

stability analysis literature [3] to prove convergence to local

minima of the cost function. Furthermore, for certain initial

conditions and controller parameter values, we prove that

aerial vehicles will never move in such a way so as to

disconnect the communication graph.

We implement our controller on a team of AscTec Hum-

mingbird flying quadrotor robots providing network coverage

for ground vehicles, using xBee-PRO modules for wireless

communication. We present aggregate results of ten hardware

experiment trials, demonstrating positioning of a team of

three quadrotor aerial vehicles to provide optimized com-

munication for a group of three ground vehicles. We also

present the results of hardware-in-the-loop simulations for

up to three aerial vehicles and four ground vehicles, and

MATLAB simulation results for up to eight aerial vehicles

and eight ground vehicles. Our MATLAB simulations also

show that we can adjust the behavior of the aerial vehicles to

optimize SIR values over individual links, or an equalization

of SIR values over all links in the communication graph, by

adjusting a design parameter λ in the cost function H .
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Fig. 1. These figures show the initial and converged configurations for two aerial vehicles and three ground sensors. Figure 1(c) demonstrates the new
equilibrium acheived when one flier is re-assigned to a ground station.

A. Related Work

The development of distributed control of groups of robots

working collaboratively to achieve a task has been a research

focus in broad ranging fields including dynamic routing

problems [4], [5], collaborative construction tasks [6], mod-

eling of biological systems, and coverage [7], [8]. In many

of these applications communication across the network

is an important and challenging problem. The paper [9]

concerns formation control of agents under communication

constraints. Other work concerns using a communication

tether to link a ground, or base station, to an exploring agent

[10], [11]. The paper [12] addresses the communication

problem by integrating information theoretic measures into

the objective function and demonstrates this approach on a

chain configuration of mobile robots.

A second challenge we address in this paper is to ensure

that aerial vehicles will never move to disconnect the com-

munication graph. This is a difficult problem in a distributed

system because each agent’s controller only accounts for

local information and the connectivity status is a global

property of that graph. Other research efforts have focused at-

tention solely on the problem of maintaining connectivity for

distributed systems [13], [10], [14]. Many of these works use

distributed algorithmic methods of checking the connectivity

of the graph via gossip algorithms, local minimum spanning

trees, or other iterative approaches. Our approach allows for

a continuous method of connectivity maintenence using local

information at the expense of a more conservative controller.

Less conservative approaches to this problem could involve a

combination of our distributed controller for communication

optimization and an algorithmic check for graph connectivity

such as the work in [14].

This paper is organized as follows: Section II describes

the problem and our approach, Section III provides the

nonsmooth convergence analysis of our controller and proof

of connectivity maintenence, and Section IV presents the ex-

perimental and MATLAB results. We conclude with Section

V.

II. PROBLEM FORMULATION

We are interested in the problem where n ground vehicles,

performing a collaborative task such as coverage, search, or

exploration of an environment, are required to communicate

over distances greater than their communication radius R in

order to acheive their assigned task. We propose the use of

a group of m aerial vehicles to provide a communication

network for the ground vehicles, where the aerial robots fol-

low a distributed control law and are placed at locations that

optimize communication link quality amongst all vehicles

according to a specific cost H . We assume that 1) m is large

enough to provide a connected network amongst ground ve-

hicles, 2) that communication only exists amongst neighbors

within a distance radius R where signal strength is modeled

by fij described later in this section, and that 3) the ground

vehicle dynamics are zero as necessary for the mathematical

proof, although in the practical setting we may allow ground

vehicles to move given that their velocities are much smaller

than those of the aerial vehicles. We note that assumption

3 is common for problems using Lyapunov-type proofs of

stability. Due to the distributed nature of our problem, all

agents have access only to local information and thus will

be unaware of disconnected subclusters. Therefore we must

also assume that the communication network composed of

both air and ground vehicles is initially in a connected state,

although our controller is robust to changes in the network

including agents arriving or exiting. Our hardware results

demonstrated in Figure 4 include such a scenario, where

an aerial vehicle is disabled and the remaining aerial vehicle

positions themselves to compensate for the loss of the aerial

vehicle.

We aim to ensure connectivity of the graph in a continuous

fashion by either placing a requirement that the initial

conditions of the system are below some critical cost, or by

adjusting a design parameter λ in our cost function to ensure

that aerial vehicles will never break existing connections.

Aerial vehicles are controlled via a gradient descent

method, where we allow for a nonsmooth cost function that

is non-differentiable at the points where agents come in and

out of communication radius of each other. Due to the local

non-differentiability of the cost function, we must instead

use the generalized gradient of the cost function which we

denote ∂H
∂xi

throughout. We find the direction of descent for

the resulting nonsmooth gradient vector field such that the

controller takes the form

ẋi = −Ln(∂H)(xi). (1)

Where Ln(∂H)(xi) : R
d → R

d is the generalized gradient

vector field, and −Ln(∂H)(xi) is a direction of descent of
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H at xi ∈ R
d [3]. In Section III we find the generalized

gradient vector field of the cost function and show that the

resulting positions of the aerial vehicles converge to critical

points of this cost function.

We design our cost function to incorporate a physically-

based, continuous, measure of signal quality called the

Signal-to-Intereference Ratio (SIR) [2]. The SIR value of

the link i-j improves with increasing communication strength

between agents i and j and decreases with increasing envi-

ronmental noise Ni and interfering communication amongst

i’s other neighbors as seen from the definition of SIR:

SIRij =
fij

Ni +
∑

k∈Ni\j
fik

(2)

Where Ni\j is the set of neighbors of i not including j.

The communication strength over link i-j is denoted fij . We

choose an example model for the signal strength that drops

off proportional to dij
−α, but we emphasize that other, more

problem specific models for signal strength can be used with

our controller so long as this function is locally Lipschitz and

regular and models no communication outside of the radius

R. These properties are important for the analysis of our

controller but we defer this discussion to section III. We

define fij as

fij =

{

P0

dα
ij+1 − C , dij ≤ R

0 , dij ≥ R
(3)

where C = P0

Rα is a constant to ensure continuity at dij = R,

and we define dij = ‖i − j‖. Thus the communication

strength model reaches a maximum value of P0

dα
ij+1 − C

at dij = 0 and drops off by α as dij > 0 with a non-

smooth transition to zero at dij = R as seen in Figure 2.

This non-smooth transition is necessary to model loss of

communication between two agents at a distance larger than

R from each other. Finally, we present our cost function H .

H =
∑

i

∑

j 6=i

−SIRij +
λ

SIRij + δ
(4)

Where the term δ ∈ (0, 1] is included to ensure that the cost

function H is continuous at the point where agents become

disconnected and the value of SIRij = 0. A smaller δ value

has the effect of putting more weight on the second term of

the cost function. It is evident that the cost function is global

and thus uses position information for all agents. However,

as shown in equation (8) the control for each agent is local,

as all non-neighbor information drops out in the derivative.

Figure 6 shows optimization of a non-smooth H as agents

enter the communication neighborhoods of others.

Minimization of this cost function corresponds to a com-

promise of two competing goals. The first term in the cost

function favors increased SIR over all communication links

in the graph while the second term favors equal SIR over

each individual link, which can be thought of as equal re-

source allocation where SIR measures communication ability

Fig. 2. Plot of fij .

of each link. The design parameter λ is used to adjust the

weighting of the first term versus the second term in the cost

function. A higher weighting on the second term corresponds

to agents seeking to equalize their SIR values amongst all of

their neighbors whereas a higher weighting on the first term

will result in agents greedily improving individual SIR links.

In Section III we prove that there exists a critical value of

λ, λcr, that prevents agents from disconnecting from existing

neighbors and demonstrate this range of behaviors for the

controller in Figure 3.

Because the cost function H is non-smooth due to the non-

differentiability of fij at dij = R, our controller requires a

non-smooth stability analysis as described in the next section.

III. NON-SMOOTH ANALYSIS

In this section of the paper we present the stability analysis

of the controller presented in (1). We also describe the

sufficient conditions to ensure connectivity preservation for

the communication graph.

A. Non-Smooth Analysis of Controller

The cost function H presented in Section II is non-

smooth at the point where agents move in and out of the

communication radius R of each other. This is reflected as

a non-smooth transition to zero in the function fij at the

point dij = R. As a result, the derivative does not exist at

this point and we must instead find the generalized gradient

and generalized gradient vector field of our cost function in

order to build the appropriate controller.

1) Generalized Gradient and the Generalized Gradient

Vector Field: Following the theory of discontinuous dynam-

ical systems, due to the local non-differentiability of H , the

controller in (1) in fact uses the generalized gradient ∂H
∂xi

.

The generalized gradient of a function f at a point of non-

differentiability, x, is presented in [3], as the convex hull

of the all the possible limits of the gradient at neighboring

points where the gradient is defined. More precisely:

∂H

∂x
= co {limzi→z∇H(zi) ∀zi : zi → z, zi /∈ ΩH} . (5)
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where co denotes convex hull, H : R
d → R is a locally

Lipschitz function, and ΩH ⊂ R
d denotes the set of points

where H fails to be differentiable. Moreover, the generalized

gradient vector field, Ln(∂H
∂x

) : R
d → R

d, is defined in

[3] where Ln : B(Rd) → B(Rd) is a set-valued map that

associates to each subset S of R
d the set of least-norm

elements of its closure S̄. Most importantly, −Ln(∂H
∂x

) is

a direction of descent of H at x ∈ R
d [3]. Finding the

generalized gradient for an arbitrary nonsmooth function

can be a daunting task, however for our case, because

the function fij is smooth everywhere except at R, the

generalized gradient is equivalent to the normal gradient at

all points outside of R, where at R it takes the value zero.

The generalized gradient vector field of fij for our problem

is:

Ln[
∂fij

∂xi

] =
{

{−αP (xi−xj)‖xi−xj‖
α−2

(‖xi−xj‖
α+1)2 } , dij < R

{0} , dij ≥ R

(6)

Knowing the generalized vector field for fij is sufficient for

finding the generalized vector field of the cost function H .

This relies on the fact that fij is Lipschitz and regular. A

function is said to be locally Lipschitz at x ∈ R
d if there

exist a Lx and ǫ ∈ (0,∞) such that ‖f(y) − f(y′)‖ ≤
Lx ‖y − y′‖ for all y, y′ ∈ B(x, ǫ) where B(x, ǫ) is a ball

centered at x of radius ǫ. A function is said to be regular

when its right directional derivative f ′(x; v) is equal to its

generalized directional derivative f0(x; v), [3], where:

f0(x; v) = lim
h→0+

sup
y→x

f(y + hv) − f(y)

h
(7)

The proof of fij Lipschitz and regular, as well as the final

form of the controller using the generalized vector field of

H is presented in the next subsection.

2) Stability of Controller: We present our main stability

result as Proposition 1 but we first present supporting results

from the nonsmooth analysis literature. The first results are

the Sum Rule and Quotient Rule for algebraic operations on

nonsmooth functions summarized in [3]. These results are

important for conserving Lipschitz and regular properties

of nonsmooth functions and for finding the generalized

gradient of a function that is an algebraic composition of

such functions.

Sum Rule: If f1,f2:Rd → R are locally Lipschitz and regular

at x ∈ R
d and s1, s2 ∈ R, then the function s1f1 + s2f2

is locally Lipschitz and regular at x and the generalized

gradient ∂(s1f1 + s2f2)(x) = s1∂f1 + s2∂f2.

Quotient Rule: If f1,f2: R
d → R are locally Lipschitz and

regular at x ∈ R
d and s1, s2 ∈ R, then the function f1/f2

is locally Lipschitz and regular at x and the generalized

gradient ∂(f1/f2)(x) = (1/f2
2 (x))(f2∂f1 − f1∂f2).

We combine the results Theorem 1 and Theorem 2 of Jorge

Cortes’ Discontinuous Dynamical Systems to produce a

result similar to Proposition 11 of the same work. We state

this result here as Lemma 1.

Lemma 1: Let H : R
d → R be locally Lipschitz and

regular. Then, the strict minimizers of H are strongly

stable equilibria of the nonsmooth gradient flow of H .

Furthermore, if there exists a compact and strongly invariant

set for the nonsmooth dynamics in (1), then the solutions

of the nonsmooth gradient flow asymptotically converge to

the set of critical points of H [3].

We are now ready to state and prove our theorem for

stability and convergence properties of our controller in (1).

Theorem 1: Aerial vehicles following the direction

of descent of the generalized gradient of H such that

ẋi(t) = −Ln( ∂H
∂xi

) will asymptotically converge to the

critical points of H where the strongly stable critical points

are local minima of H .

Proof: The proof of this theorem follows readily from

Lemma 1, using the fact that H is locally Lipschitz and

regular, and that there exists a compact and strongly invariant

set for (1). The maximum of a finite set of continuously

differentiable functions is a locally Lipschitz and regular

function [3]. Thus the function fij is regular because it

can be written as fij = max{ P0

dα
ij+1 − C, 0} where both

f(dij) = P0

dα
ij+1 − C and f(dij) = 0 are continuously

differentiable functions and thus fij is a locally Lipschitz

and regular function. Combining equations (3) and (2), it is

clear that H ,from (4), is an algebraic composition of signal

strength functions. Since the signal-strength function fij is

Lipschitz and regular, by applying the Sum Rule and Quotient

Rule it follows that H is both Lipschitz and Regular. Lastly,

we show that there exists a compact and strongly invariant

set for the dynamical system in (1). The generalized gradient
∂H
∂xi

for agent i goes to zero when agent i is outside of the

communication radius R for all other N −1 agents and thus

we define the set, M, to be the set of points for which the

generalized gradient is non-zero. Let M ⊆ R
d be the set

of all points inside the radius 2R(N − 1) from the origin

where, for the case of one ground robot g, we place g at the

origin. By definition this set is both closed and bounded in a

ball B(0, 2R(N − 1)) and is thus compact. This generalizes

readily to the case of more than one ground robot if we find

the union of all such sets. Furthermore, a solution to (1)

with any initial condition x0 ∈ M remains in M because
∂H
∂xi

(p) = 0 ∀p /∈ M and so M is a strongly invariant set.

Using the Product Rule and the Sum Rule, and the fact that

fij is Lipschitz and regular, we now present the final form

of our controller from (1).
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ẋi = −Ln[
∂H

∂xi

]

=

N
∑

i=1

N
∑

j=1

−
∂SIRij

∂xi

(1 + λ(SIRij + δ)−2). (8)

Where
∂fij

∂xi
was defined above in (6) and

∂SIRij

∂xi
is

∂SIRij

∂xi

=

∂fij

∂xi

Ni +
∑

k∈Ni\j fik

− fij

∂Ni

∂xi
+

∑

k∈Ni\j
∂fik

∂xi

(Ni +
∑

k∈Ni\j fik)−2
(9)

B. Connectivity Maintenence

We use the fact that the aerial vehicles are following a

gradient descent on the cost function H to identify initial

conditions that prevent agents from moving to disconnect

the communication graph. Because of the distributed nature

of our controller, we do not employ any global checks on

graph connectivity and thus require that the communication

graph is initially connected. We present two approaches

to maintaining graph connectivity. The first approach

identifies the minimum cost of a disconnected network

and requires that the initial conditions of any network

are below this value. The second approach is to find a

critical value of λ in (4) such that aerial vehicles will

never move outside of a radius R from their neighbors

and thus will remain connected. The main difference

between these two approaches is that the first approach is

a check on initial conditions to ensure that connectivity

is maintained, while the second approach is a design

perspective where a value of the parameter λ is chosen as a

function of other parameters in (4) to prevent disconnection.

Theorem 2: Given that the network begins in a connected

state, the aerial vehicles will not move in such a way

to disconnect the graph under either of the two following

conditions:

1) The initial cost of the system H begins below the

minimum cost of a disconnected graph Hdmin
.

2) The design parameter, λ, in (4) takes a value

λ ≥ λcrit where λcrit is the value at which the dot

product ∂H
∂xi

T
(xi − xj) = 0 for the pair i-j where

d∗ij = max ‖xi − xj‖ s.t. d∗ij < R .

Proof: We identify the minimum cost of a disconnected

graph that we call Hdmin
. Because our controller requires that

agents will move to decrease the cost, H , if the initial cost

of the system H0 < Hdmin
then the network will remain

connected. For the second part of the theorem we identify

a value of the parameter λ such that an agent will never

disconnect from its neighbors in the worst-case scenario.

Namely, we ensure that the dot product ∂H
∂xi

T
(xi − xj) =

0 in the limit as dij → R so that agent i’s velocity

component in the direction away from j is zero and thus

will never disconnect an existing connection. This is depicted

graphically in Figure 3.

1) Minimum cost of a Disconnected Network: The cost

of disconnecting an edge in the communication graph, or

equally, the cost of a missing connection in the communica-

tion graph is given by:

Hij |dij=R =
λ

δ
(10)

To find the minimum cost of a disconnected graph, we

find the minimum number of missing connections for a

disconnected graph. If we look at the case of two discon-

nected subgraphs, the number of elements in each subgraph

is s and N − s respectively, where N is the total number

of elements. The function c(s) = s(N − s) denotes the

number of missing connections between the two subgraphs

(we assume subgraphs are fully connected). Minimizing c(s)
w.r.t. k yields s = 1, meaning that the minimum number of

disconnections in a graph is acheived when s = 1. All other

cases where the number of subgraphs is less than one is a

subcase of this one. Therefore we find that the minimum

number of edge disconnections for a disconnected graph is

2(N − 1) and the cost for this graph is:

Hd = 2(N − 1)
λ

δ
+

∑

u6=s

∑

w 6=s

−SIRuw + λ(SIRuw + δ)−1

(11)

Furthermore, we are interested in the minimum cost of such

a graph. The theoretical minimum of Equation (4) would be

acheived when the SIR value for all the agents in the second

subgraph is maximal. The maximum theoretical value of the

SIRij from Equation (2) is acheived when the distance of

the two agents i and j goes to zero and when interfering

communication from i’s neighbors, or environmental noise

Ni is not accounted for. This maximum is the same maxi-

mum as that of fij and is max{SIRij} = P0−C. Plugging

this into the cost function we find the minimum possible H
for a disconnected graph:

Hdmin
=2(N − 1)

λ

δ
−

(N − 1)(N − 2)
(

(P0 − C) − λ((P0 − C) + δ)−1
)

(12)

Therefore we conclude that if the initial configuration has

a cost Hinitial < Hdmin
then the aerial vehicles will remain

connected for all time.

2) Finding Critical Value of λ to Ensure Connectivity: We

find the λ for which two agents that are currently neighbors,

will not move a distance larger than R from each other.

The intuition behind this critical λ value is the observation

that as the distance between two agents i-j approaches the

communication radius R, λ can be chosen such that the

generalized gradient ∂H
∂xi

will have a zero component in

the direction pointing away from j, and thus the agent i

1968
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Fig. 3. This plot shows the force felt by a communication vehicle in the presence of two ground (sensor) agents, S1 and S2. It demonstrates the effect
of the design parameter λ on the communication vehicle gradient field where connectivity is maintained for λ ≥ λCrit. Figures a through c show how the
controller exhibits greedy SIR-maximizing behavior for small λ values and an increasingly symmetric configuration demonstrating a balanced SIR over all
links for larger λ values.

will never move further than the distance R away from j,

∀j ∈ Ni. This corresponds to the λ that forces

−
∂H

∂xi

T

(xi − xj) = 0 (13)

Where the vector (xi − xj) points from j to i and j is a

neighbor at a distance approaching R from i. We expand

Equation (13):

−
(∂Hij

∂xi

+
∂Hji

∂xi

+
∑

{u,w}6={i,j},{j,i}

∂Huw

∂xi

)T

∗ (xi − xj) = 0 (14)

Where

∂Huw

∂xi

= −
∂SIRuw

∂xi

(1 + λ(SIRuw + δ)−2) (15)

As seen in Equation (14) and (15), the gradient-based

controller for agent i is a combination of the gradients of

the SIR values between i and k, ∀k ∈ Ni, weighted by the

inverse of the value of the SIR for that pair xi-xk. This

weighting is directly influenced by λ, but goes to zero when

λ = 0. Therefore, it is intuitive that a larger λ value will

amplify the effect of the value SIRuw → 0 in Eq (15),

and thus the contribution of the gradient on i from the agent

whose distance is approaching R will dominate for larger

values of λ. Solving for λ from Equation (14), we find:

λ =
−

∑ N
u

∑N
w

∂SIRuw
∂xi

T
(xi−xj)

∑

N
u

∑

N
w (SIRuw+δ)−2 ∂SIRuw

∂xi

T
(xi−xj)

(16)

As the distance dij → R, we note that:

∂SIRij

∂xi

T

(xi − xj) →

αP0(R
α + 1)−2Rα−2(Ni +

∑

k∈Ni

fik)−1R2. (17)

and

SIRij = SIRji →
1

δ
. (18)

To find λcrit we must analyze the upper bound to the

equation (16). This corresponds to finding the case where

the link i-j is most easily disconnected. From the Equation

(14) we see that the upper bound is when the gradient dot

product ∂Huw

∂xi

T
(xi−xj) is maximized, or equivalently, when

all agents xk 6= xj have a maximum value of the gradient
∂Huw

∂xi
in the direction exactly opposite to the vector (xi−xj).

If we ignore agent interference in the Signal-to-Interference

Ratio to get a upper bound on Huw, this is the case where

all agents not including j are co-located at a point that is

opposite of the direction i-j with respect to i so that the

vector exactly opposite to (xi − xj) is (xw − xi). We place

all N − 2 agents at a distance R − γ from i, where

γ = arg max
γ

∂Hwi

∂xi

T

(xw − xi). (19)

Thus the smallest value of lambda for which we are guaran-

teed to preserve connectivity is:

λcrit = −
(

−
αPRα

(Rα + 1)2(Ni + (N − 2)P )
−

αPRα

(Rα + 1)−2Nj

+
∑

w

N ∂SIRiw

∂xi

T

(xi − xj) +
∂SIRwi

∂xi

T

(xi − xj)
)

∗
(

2(
1

δ
)2 +

∑

w

N
(SIRiw + δ)−2 ∂SIRiw

∂xi

T

(xi − xj)

+ (SIRwi + δ)−2 ∂SIRwi

∂xi

T

(xi − xj)
)−1

(20)

Placing all neighbors k, not including j, of i at a distance

(R−γ) from i, and using the upper bound on SIR by ignoring

all third party neighbor interference in the SIR terms except

interference from j, we find the following expressions which

can be plugged into the above equation to find λcrit:

∂SIRiw

∂xi

T

(xi − xj) = −
aiw

Ni

(R − γ)R−

P0

(R−γ)α − C

N2
i

(
∂Ni

∂xi

T

(xi − xj) + aijR
2) (21)

1969



and

∂SIRwi

∂xi

T

(xi − xj) = −
awi

Nw

(R − γ)R (22)

SIRiw = (
P0

(R − γ)α + 1
− C)(Ni)

−1 (23)

SIRwi = (
P0

(R − γ)α + 1
− C)(Nw)−1 (24)

aiw = awi = αP0((R − γ)α + 1)−2(R − γ)α−2 (25)

Because we have found the minimum value of λ for which

− ∂H
∂xi

T
(xi − xj) = 0, ∀j, we have shown that if we choose

λ ≥ λcrit, agent xi will never move out of the ball of radius

R centered at xj .

IV. RESULTS

In this section we present the results of implementing our

controller on a quadrotor hardware testbed, hardware-in-the-

loop simulations, and MATLAB simulations.

A. Hardware Implementation

We tested our controller on a group of three aerial vehicles

which are AscTec Hummingbird flying quad-rotor robots

each with an ARM micro-processor and 2.4 GHz xBee mod-

ules for wireless communication, and three ground vehicles.

We conducted the experiments in a room equipped with a

Vicon motion capture system where position information was

broadcasted wirelessly to each robot and all computation

was performed onboard each of the robots in real time. For

our hardware experiments we set the controller parameters

λ = 1 > λcrit and δ = 0.001, and the communication

parameter α = 2. We demonstrate that the aerial vehicles

acheive a configuration that locally minimizes the cost H .

Figure 4 shows minimization of the cost function H averaged

over ten trials with errorbars indicating the one standard

deviation around the mean. Each experiment lasted on the

order of one minute.

We demonstrate the adaptive capabilities of the controller

by disabling one of the aerial vehicles and relocating this

aerial vehicle to a fixed position on the ground. As shown

in Figure 4, the remaining aerial vehicles re-adjust their

equilibrium position to compensate for this change in the

system. Figure 4

B. Hardware-in-the-Loop Simulation

We tested our controller on a total of 7 ARM micro-

controllers communicating wirelessly via xBee-XSC wireless

modules. The tests were conducted on four ground vehicles,

and three aerial communication vehicles with control param-

eters λ = 1 > λcrit and δ = 0.001. Figure 5 shows the

minimization of the cost and Figure the trajectories of the

aerial vehiles with final equilibrium positions marked as blue

circles.
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Fig. 4. Position trajectories and aggregate cost function for three fliers
(shown as blue solid line in Fig 6(a) ) with flier equilibrium positions
marked as blue squares and ground vehicle positions marked as red squares.
After reaching equilibrium one of the fliers is deactivated and moved to
the side while the remaining fliers find a new equilibrium position (post-
deactivation trajectories shown in dotted magenta line).

C. MATLAB Simulation

We test a configuration with 16 total vehicles, where 8 are

ground sensors and the remaining 8 are aerial communication

vehicles. We set the control parameters δ = 0.001 and the λ
parameter to λ = 10 > λcrit to target equalized SIR values

amongst aerial vehicles. The aerial vehicles shown in blue

have initial positions at a depot in the top right and bottom

left corners. Green circles denote the communication radius

of the farthest sensors, sensors 1 and 6, to demonstrate that

aerial vehicles are initialized out of communication range

with other sensors and aerial vehicles in the team. The

resulting agent trajectories and cost function demonstrates

non-smooth transitions for the points where agents enter each

others communication radius as shown in Figure 6.

V. CONCLUSION

This paper presents the formulation of a distributed con-

troller to optimize signal-link quality amongst a team of air

and ground vehicles, where the ground vehicles are perform-

ing a collaborative task independent of the aerial vehicles,

and the task of the air vehicles is to position themselves to

optimize signal-quality amongst all vehicles in the network.

We control the aerial vehicles via gradient descent on a

cost function comprised of a continuous, physically-based

1970
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Fig. 5. Position data and cost function for hardware-in-the-loop simulation
where aerial vehicle trajectories are shown as blue lines and converged
positions as blue dots. The ground vehicles are plotted as red squares in
this figure.

measure of signal quality, the Signal-to-Interference Ratio.

We assume that agents are only in communication within

a radius R and our provably convergent controller allows

for neighbors to enter and exit each other’s communication

neighborhood in a nonsmooth manner. We demonstrate our

controller in hardware experiments using AscTech quad-rotor

vehicles, in hardware-in-the-loop simulations, and in MAT-

LAB simulations, demonstrating the positioning of the aerial

vehicles to minimize the cost function H and improve signal-

quality amongst all communication links in the ground/air

robot team.
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