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Abstract— In this paper, we are presenting a method to esti-
mate terrain properties (such as small-scale geometry or surface
friction) to improve the assessment of stability and the guiding
of foot placement of legged robots in rough terrain. Haptic
feedback, expressed through joint motor currents and ground
contact force measurements that arises when prescribing a
predefined motion was collected for a variety of ground samples
(four different shapes and four different surface properties).
Features were extracted from this data and used for training
and classification by a multiclass AdaBoost machine learning
algorithm. In a single leg testbed, the algorithm could correctly
classify about 94% of the terrain shapes, and about 73% of
the surface samples.

I. INTRODUCTION

The main advantage of legged locomotion is the ability to

move in rough and highly unstructured terrain. In contrast

to a wheeled robot, whose motion is limited by the worst

obstacle along the continuous path of its wheels, the mobility

of a legged robot is only limited by the availability of dis-

continuous footholds that can be distributed relatively sparse

throughout the environment. This allows legged systems to

overcome obstacles like grooves, gaps, steps, or sandy and

slippery terrain, which might be impassable for vehicles

relying on wheels or tracks. However, this ability comes

with the drawback that legged robots, due to their intermitted

support and the high position of the center of mass, tend

to fall and tipp over more easily than wheeled systems.

This makes stability a key element when evaluating the

performance of legged robots.

Common stability criteria for legged robots can be clas-

sified as either static or dynamic. Static methods, such as

the center of mass projection method (CM, [1]), completely

ignore the motion of the robot and assess the stability solely

based on the relative position of the CoM and the feet.

This assumption is only valid as long as the robot moves

slowly and does not undergo large accelerations. Dynamic

stability criteria, such as the Center of Pressure Method

(CoP, [2]), or the Zero Moment Point (ZMP, [3]) additionally

take into account the current velocity and acceleration of the
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Fig. 1. The presented methodology was developed for the walking robot
ALoF, which was specifically designed for locomotion in rough terrain. The
robot is about 0.5 m long and weights about 15 kg.

robot, and can hence not only provide information on foot-

placement and CoM kinematics, but also give a limit for

possible joint accelerations and contact forces. An overview

of such stability margins can be found in a comparative study

by Gonzalez et al. [4].

However, most of these criteria are solely based on geo-

metric properties and internal states, such as the shape and

position of the support polygon in relation to a resulting

force on the CoM. This allows simplifying assumptions about

the ground, which is consequently often considered to be

completely flat, or —in the more sophisticated models—

piecewise planar. Terrain properties in a broader sense, such

as friction coefficient, compliance, or small-scale geometry

of the ground are not taken into consideration. Yet, these

properties will have a very big influence on the actual

stability of a walking robot, as they determine the risk of

slipping and sliding, and the overall reliability of a stance.

Both, under static and dynamic considerations, estimating

the terrain characteristic is hence very important for robust

and efficient legged locomotion.

Detailed knowledge about the terrain, especially on a small

scale, will help to guide foot placement, constrain the CoM

motion, or estimate the load-bearing capabilities of a single

contact point. In the DARPA learning locomotion challenge

[5], [6], for example, detailed geometric terrain information

was provided in advance. This information reduced loco-

motion to a global optimization problem with nearly no

uncertainty. As such knowledge is currently not available

in real world applications, new ways must be established

to characterize an environment while walking through it. In

addition to visual perception, physical interaction with the
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TABLE I

DIMENSIONS OF THE ROBOTIC LEG

Shank length [mm] 165
Thigh length [mm] 150
Shank diameter [mm] 20
Foot diameter [mm] 44
Position of FSR above the foot [mm] 90
Leg weight [kg] 0.64

environment is thereby indispensable. This can be observed

in nature, where humans and animals not only visually but

also haptically explore possible footholds when it comes to

unknown and uncertain terrain. While this issue of terrain

classification has drawn considerable attention for locomo-

tion with wheeled [7]-[10] or tracked systems [11], to the

best of our knowledge, these principles have never been

applied to terrain classification for legged robots.

In this paper, we have applied machine-learning strategies

to classify the geometric shape and surface properties of

selected footholds based on haptic information. The stance

of a robotic leg is investigated in an experimental setup, in

which ground elements with different shapes and surfaces

were mounted. Small-scale motion is induced, and features

are extracted from the resulting contact force and current

measurements, and processed by a multiclass AdaBoost

classifier [14], [15] to obtain the terrain-sample category.

The following section describes the hardware components,

the experimental setup, the sampling procedure, and the

classification algorithm that were used in this study.

II. METHODS

A. Robotic leg

The leg used in our test setup originates from a

quadrupedal robot (Fig. 1) designed for research on locomo-

tion in rough and highly unstructured terrain. A single leg

(Tab. I) was separated from the main body of the robot and

attached to a testbed that could be equipped with different

terrain samples. The hip segment was rigidly connected to the

sample-holder, which limited the motion of the leg to two

degrees of freedom (hip and knee flexion/extension). Only

the knee joint was actively driven by an electric DC-motor.

The motor and gearbox of the joint for hip flexion/extension

were removed in this setup, such that the leg was allowed to

swing freely and without drag about its hip axis. Since the

rotational axes of the two joints are parallel, the motion of

the foot was planar. A compliant spherical rubber ball with

a high coefficient of friction was used as foot-element.

B. Force sensing element

To allow the registration of ground contact forces, the rigid

shank of the robotic leg was divided into two parts. The force

sensing unit (Fig. 2) was placed at the cutting site which

allowed measuring the force along the shank axis as well as

the two bending moments in the cutting plane.

In this unit, three individual sensors were uniformly

distributed around the leg axis, each one registering the

TABLE II

PERFORMANCE CHARACTERISTICS OF A FORCE SENSING RESISTOR

(FSR-151)

Parameter Value
Type: Interlink Electronics FSR-400
Force Sensitivity Range: approx. 1 N to 100 N
Force Repeatability: � 2% to � 5%
Force Resolution: Better than 0.5% full scale
Switch Characteristics: Essentially zero travel
Device Rise Time: 1-2 ms
Lifetime: � 10 million actuations

normal force at its position. The upper and lower parts of

the sensor were connected with a fixed bolt that exhib-

ited a well-defined pre-compression force onto the sensor

layer and additionally enabled the measurement of tensional

forces. As sensing elements we used force sensing resistors

(Interlink Electronics FSR-400), whose resistance decreases

approximately exponentially with the applied force. The most

essential characteristics are listed in Table II. We decided to

use these sensors, as they are very inexpensive (less than

10$) and easy to use, however, we acknowledge that they

come with some considerable drawbacks: particularly, they

are not suitable for high precision measurements and show a

substantial hysteresis which makes them ill suited for highly

dynamic measurements. These drawbacks clearly reduce the

applicability, but when using them in the field of walking

robots and limiting them to tasks such as obstacle detection

or terrain classification, their performance is sufficient.

Fig. 2. Shown in (a) is an exploded CAD-view of the force sensing element
that we used to deduce the normal and tangential forces at the contact point.
It is based on a layer of force sensing resistors (b) that register the normal
force and moments in the cut-surface of the sensor. A typical resistance vs.
force characteristic of such a FSR is shown in (c) [12].

C. Test setup

For the terrain classification, artificial terrains with differ-

ent geometrical shapes and surfaces textures were mounted

onto the testbed (Fig. 3). In a first series, experiments

were performed for four different terrain shapes: a convex

and a concave cone, a convex hemispherical bulge, and a

concave hemispherical indentation (Fig. 4a). The radius of

the spheres was equal to the foot radius and the indention

2829



was made 20 mm deep. All samples were produced from

rapid-prototyping material (Objet FullCure720) without any

additional surface-treatment.
In a second series, flat terrain with different surface

properties was investigated. To this end, we used a very low

friction PTFE coating and three different types of abrasive

paper with an ISO/FEPA grit designation of 60, 120, and

240 [13] (Fig. 4b).
The samples were mounted below the foot and the knee

joint angle was defined to be zero when the shank tube was

in vertical position. The symmetry axis of the samples was

aligned with the axis of the shank tube. As the hip was not

actuated, the contact force between foot and ground surface

was created solely by the weight of the leg.

During the predefined leg motion, the analog signal of

the FSR was low-pass filtered and amplified in an analog

circuit, then sampled, and finally sent from a microprocessor

(Microchip DSPIC33FJXMC710) via the UART interface to

the main processing unit on a standard laptop computer (PC).

Sensor data was sampled with a frequency of 50 Hz.
PID position control on joint level was employed in the

knee actuator by a Maxon EPOS 24/5 servo controller. The

knee position profile generated by the PC was transmitted via

CAN-bus to the motor controller, while the sensor values of

the actuator, i.e. motor current, angular position, and angular

rate, were sent back to the PC, on which data pre-processing,

feature extraction of the sample data and the classification

algorithm were conducted.

Fig. 3. To facilitated testing, one of the legs was separated from the
main body and mounted to the sample holder of a testbed. Hip adduc-
tion/abduction was blocked, leaving only two degrees of freedom, of which
only the knee joint was actuated. Different terrain samples could be fastened
to this setup, which is shown as an overview in (a). (b) shows the detail of
the shank with the incorporated force sensing element placed on a concave
hemispherical indentation as terrain sample.

D. Measurement cycle

To obtain meaningful sensor data for a terrain shape and

surface classification, the knee joint was actuated in two dif-

ferent manners: In the first set of experiments, the knee-joint

oscillated slightly with an amplitude of about one degree, and

a frequency of about 0.5 Hz. Fig. 5 shows the measured knee

Fig. 4. Terrain in four different geometrical shapes (a) was mounted in
the experimental testbed. As shape samples we used a convex cone (CvxC),
a convex hemispherical bulge (CvxH), a concave hemispherical indentation
(CcvH), and a concave conical bulge (CcvC). They were produced by rapid-
prototyping without additional surface treatment. In a second series, a flat
surface coated with Teflon and three different types of abrasive paper (b)
was used to simulate standing on different coefficients of friction.

angle and the corresponding motor current when the leg is

moving against a concave hemisphere. It also depicts the cor-

responding measurement of the three force sensors. This data

was recorded and used for feature generation. Ideally, the

signal amplitudes should be symmetrical about the neutral

position of the leg oscillation, however, effects such as the

non-linearity of sensors, backlash in the gears, or elasticity

and hysteresis of the foot deteriorate the actual signals. The

knee oscillation was used to determine the geometrical shape

of the ground surface (shape classification).

Fig. 5. Sample measurement of the knee angle, the corresponding motor
current (a), and the three force sensor readings (b) while the leg is tested
on a concave spherical indention.

For the surface classification, the foot was placed on a

terrain sample and a planar leg motion was generated by
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rotating the knee by 10 deg. towards the leg mount, i.e.

performing a scratching motion. Measuring the tangential

ground contact force and the motor current during the motion

allows the observation of static and dynamic friction effects.

Fig. 6 shows an example plot of this motion on a PTFE

coated surface. Provided are the motor current, as well as the

time and frequency representation of the three force sensor

readings.

Fig. 6. Sample measurement of the knee angle, the motor current (a), the
time traces of the force sensor signals (b), and the corresponding frequency
domain representation (c, Frequency in % of the sample frequency f�, 50
Hz.) on a PTFE-coated surface.

E. Classification

1) Overview: Fig. 7 shows a schematic of the classifi-

cation process. After the execution of a measurement cycle,

the recorded sensor data was preprocessed and features were

extracted. This data was then used to either train the classifier

or to evaluate its performance on a separate set of test data.

The samples for terrain shape classification consisted of 25

training samples and 20 test samples for each of the four

classes (180 samples total), and the classification of the

terrain surface was based on 25 training samples and 15 test

samples for every terrain surface (160 samples total).

Fig. 7. Overview of the training/classification process for automated terrain
characterization.

2) Classification method: We employed a multiclass vari-

ant of the binary AdaBoost classifier to differentiate the

terrain surfaces and terrain shape samples. AdaBoost is a

binary classification algorithm that combines a weighted

ensemble of weak-classifiers into a strong classifier. The

only requirement of each weak-classifier is that its accuracy

is better than random guessing, that is better than 0.5 in

a two-class case. The input to the algorithm is a set of

labeled training data ��i� li) � i = 1� . . . � N , where each �i

is an example and li = �+1�−1} indicates whether �i is

positive or negative. In a series of rounds t = 1� . . . � T ,

the algorithm generates repeatedly a weak classifier ht ��i),
in our case a decision stump, using a weight distribution

w�t) over the training examples. A decision stump defines

a single axis-parallel partition of the space. The idea of the

algorithm is to adapt the weight distribution w�t) at each
round such that weak classifiers are trained on the mistakes

of the previous one. The final strong classifier H�fi) is

a weighted majority vote of the T best weak classifiers:

H �fi) = sign
�

�T

t=1 αtht�fi)
�

Large weights are assigned to good weak classifiers

whereas poor ones receive small weights. In our case we

need to classify a sample of terrain surface (or shape)

among multiple classes. We therefore face a multi-class

classification problem for which we follow a one-vs-all

strategy: when training a terrain surface class (or shape),

all the features of the samples belonging to the considered

class are treated as positive samples and all the features

of the samples of the other classes are tagged as negative.

This operation is computed for each class. When a unob-

served sample feature fi is presented for classification, it is

processed by each learned classifier and the resulting class

label is defined by the classifier with the larger likelihhod:
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αc

t

, where θc represents the learned

classifier for the class c.

3) Features: For every preprocessed sample vector s

(consisting of three force sensor recordings and one current

measurement), the following features have been computed

and were used for classification.

1) The standard deviation σs of s in the time domain. The

elements si ∈ s are considered, in this case, Gaussian

distributed.

2) The maximum/minimum max = max�si)� min =
min�si)�∈ ∀i = 1 . . . n� si ∈ s

This ideally reflects the maximum force magnitude

which occurs at the transition from static to dynamic

friction of the leg.

3) The mean of s in the time domain. This can be

interpreted as a metrics for the symmetry for the terrain

shape measurement and reflects the dynamic friction

during terrain surface measurements. The elements

si ∈ s are considered, in this case, gaussian distributed.

4) Dominant frequency with f > 5 Hz of force sensor and

motor current sensor signals. The dominant frequency

gives a hint about the vibration frequency that occurs

in the dynamic friction phase (see Fig. 6b and c).

5) The standard deviation σ�S of S in the frequency

domain.

In total, 4·5=20 features (five features for each of the four
sets of sensor data) were collected per sample. The features

are the same for the terrain shape and the terrain surface

classification but may not have the same importance for

both types (e.g. measuring the vibration frequency does not

give valuable information for the terrain shape classification).

However, the weighting and the selection of the individual

features is managed by the training process of AdaBoost.

III. RESULTS

Table III shows the confusion matrix of the terrain shape

classification to reflect the performance of the classificator.

Shown in each row and column are the results for the

convex cone (CvxC), the concave cone (CcvC), the convex

hemispherical indentation (CvxH), and the concave hemi-

spherical indentation (CcvH). The diagonal elements of this

matrix represent the correctly classified samples while the

other elements stand for wrongly predicted classes. The two

parameters Success Rate (SR) and False Alarm Rate (FR) are

used to evaluate the performance of the classification. The

success rate is the ratio between the number of elements of

a given class that have been classified successfully and the

total number of elements in this class. The false alarm rate,

on the other side, describes the number of elements wrongly

classified as a certain class compared to the total number of

elements that do not belong to this class.

In our experiments, very high success rates were achieved

for the classification of the convex samples (100% for the

cone and 80.0% for the hemisphere). Concave shapes, on the

other side could achieve success rates of 100% for the conical

TABLE III

CONFUSION MATRIX OF THE TERRAIN SHAPE CLASSIFICATION

Terrain shape of sample
Classified as CcvC CvxC CcvH CvxH
CcvC 20 0 1 0
CvxC 0 20 0 4
CcvH 0 0 19 0
CvxH 0 0 0 16

SR [%] 100.0 100.0 95.0 80.0
FR [%] 1.7 6.7 0.0 0.0

TABLE IV

CONFUSION MATRIX OF THE TERRAIN SURFACE CLASSIFICATION

Terrain surface of sample
Classified as FT G240 G120 G60
FT 14 0 0 0
G240 1 12 7 5
G120 0 3 8 0
G60 0 0 0 10

SR [%] 93.3 80.0 53.3 66.7
FR [%] 0.0 28.9 6.67 0.0

shape and 95% for the hemisphere. This is a very good

result for the prediction of small scale geometry, especially

if we consider the fact that for the assessment of a selected

foothold it is often sufficient to distinguish only between a

convex and concave surface, as a concave surface shape can

improve the grip and provide against slipping and sliding.

The algorithm performed slightly worse for the different

terrain surfaces (Table IV). Within the different types of

abrasive paper, an average of 2 out of 3 samples was

classified correctly. As a positive result, the teflon coated

surfaces (FT) have been predicted correctly with a probability

of approx. 93.3% and with no false alarms at all. Again, if

we consider that to assess the quality of a foothold it might

be sufficient to distinguish between low and high coefficients

of friction, this is an overall satisfying result.

IV. DISCUSSION

A. Conclusions

In this paper we presented a novel approach to terrain

shape and terrain surface classification for legged robots. A

custom-made low cost force sensing device was integrated

in a robotic leg to obtain haptic feedback that resulted from

a prescribed knee joint actuation. A multiclass AdaBoost

classifier has been trained with real-world data samples,

which included features computed from motor current mea-

surements as well as from contact force recordings. The clas-

sifier could reliably distinguish four different surface types

and discriminate between concave and convex footholds.

Even with the limited amount of available training data and

with the cheap and noisy sensors that were used as base

for the feature generation, the classifier showed a satisfying

performance.

While these results were obtained in a simplified test

setup, they pave the way for the application of terrain
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classification methods in actual legged robots and for the

estimation of terrain properties in an unknown environment.

This would be very helpful in the assessment of the quality

of a selected foothold: Using haptics to evaluate the local

surface properties before the weight of the robot is shifted

onto the corresponding foot will help deciding whether a

new and different placement of this foot is indicated, and

hence improve the overall stability of locomotion in rough

and highly unstructured terrain. Secondly, the obtained haptic

information can be included in a geometric map of the

environment where it can be combined with data from other

sensors. This will allow the application of additional learning

algorithms, with the goal to reliably predict the haptic terrain

properties and thus expedite the selection of proper footholds,

for example, by combining haptic and visual information as

it is already common for wheeled systems [18].

A missing link in this process is the deduction from terrain

properties as they were estimated in this work to the actual

’quality’ of footholds, i.e., answering the question whether

a specific foothold provides the robot with a secure stance

or not. Within the presented framework, a very direct way

of tackling this issues is to place the robot in an actual

environment, and to manually ’show’ it footholds that have

been labeled ’good’ and ’bad’ by the user. The automated

classifiers can then learn directly on these categories. This

will make it unnecessary to model characteristics of an

environment by hand, as done in previous projects [19].

We are currently considering a variety of improvements

to increase the performance of the terrain classification.

This refers less to the quality of the classification which is

already more than satisfying, but rather to the process that

is necessary to obtain the required data. Currently, samples

with a length of up to 2 seconds are necessary to extract

sufficient information for the classification process. Such

long sample duration is a clear disadvantage if we strive

to utilize the presented method in an actual walking robot.

Improving the quality of the force sensing unit and increasing

the sample frequency might allow to prescribe smaller and

faster motions to the knee joint, and hence generate sufficient

information in a considerably shorter time.

Furthermore, including the currently disabled hip joint

in the analysis, will grant the opportunity to extend the

analysis to three dimensions. As in our current setup the

joints are not backdrivable, this will require some changes

in the measurement routine: Most importantly, in contrast to

the passive loading of the sample that was utilized in this

study, we will need to rely on active loading of the foot.

While maintaining a constant contact pressure will also have

a beneficial impact on the quality of the extracted features,

it requires a force-controlled robotic system, a technique

that is indispensable anyway when we intend to apply the

method to an actual multi-legged robot. Such a full-scale

application is a truly challenging endeavor, as it not only

substantially increases the number of degrees of freedom

involved in loading a single leg, but also limits the range of

tests that can be performed with a single foot. For example,

performing trials that involve large motions or high contact

forces might compromise the stability of the current stance

and must hence be avoided at all costs.

However, based on the very promising results that we ob-

tained in this simplified study, we believe that the application

of haptic terrain classification in an actual multi-legged robot

is a challenge well worth to tackle.
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